
Table 1 details the performance of our four machine learning
models. While overall MAE and overall RMSE are overall error
metrics, minimum RMSE and maximum RMSE describe the
smallest and largest error values between any two points in the
test set, providing another perspective on model performance.
When comparing RMSE as a proportion of the desired output
range for each model, the RF regressor clearly displays stronger
performance than the SVMs. However, when comparing MAE as
a proportion of the desired output range for each model, the
four models display rather similar performance, with the RBF
SVM ultimately outperforming all other models. This trend
persists in the minimum RMSE value, where all models perform
closely but the RBF SVM still outperforms its counterparts. This
variation is likely a result of the nature of MAE and RMSE. MAE is
linear in nature; therefore, it penalizes all errors equally, while
RMSE is nonlinear in nature and weights errors that are larger in
absolute value more heavily (Chai & Draxler, 2014). With this
understanding of error, we can conclude that the RF regressor is
indeed stronger than the SVMs as it is less likely to produce an
error that is large in magnitude. Temperature emerges as the
most important feature and precipitation as the least important,
while EVI, AQI, wind speed, and humidity are all of similar
importance (Table 2).

Mosquitoes are vectors for a number of serious illnesses, such as
Dengue, Zika, Malaria, and West Nile Virus. In the United States,
West Nile Virus (WNV) is the leading mosquito-borne disease (CDC
2022). As there are currently no vaccines to prevent WNV nor
medications to cure it, government agencies must sustain
financially taxing programs to monitor mosquito populations and
WNV infections in an effort to prevent WNV outbreaks. In this
study, we develop four machine learning models that forecast
WNV infections in humans, enabling government and healthcare
officials to take proactive action instead of reacting to real-time
infection data. Our models take in data on ecological variables –
such as humidity, wind, air quality, and vegetation — and use that
data to predict future WNV infections five weeks in advance. We
then present a comparative analysis of two types of machine
learning models – support vector machine regressors and random
forest regressors – to evaluate which is best suited for the task.
Our results provide a streamlined solution for government
agencies as they monitor WNV, enabling effective and low-cost
preventative action.
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Area of Interest (AOI): Our AOI is the Southern Californian area
comprised of Los Angeles Riverside and Orange County. We chose
these counties since they have significant GLOBE data (see Fig. 1),
open source WNV infection data, and significant changes in
environmental variables across each mosquito season (see Fig. 2).

Our results indicate that random forest regressors are the best
machine learning architecture for this task; however, support
vector machine regressors perform comparably well and even
exceed random forest regressors when the magnitude of error
is unweighted. Our results are particularly strong given the
challenge of predicting absolute values in a dataset that varies
significantly week-to-week, due to delays between infection and
reporting and the life cycle of Culex pipiens.
The RF regressor's feature importances reveal noteworthy
correlations between our ecological variables and WNV
infections. Most notably, EVI, AQI, wind speed, and humidity
rank almost equal in importance. This is significant as, as
detailed in our literature review, there is a lack of consensus on
the importance of AQI and wind speed in mosquito prediction
tasks. Our work suggests that AQI and wind speed are almost as
important as vegetation and humidity metrics when aiming to
predict disease characteristics in the southern California area.
These findings reveal new research directions and provide a
solid foundation for the continued development of early
warning systems for forecasting WNV infections. However, our
work also has potential for growth. For example, our models
would benefit from more frequent WNV testing, as a more
granular dataset with more frequent time steps would likely
reveal new patterns that are currently obscured behind the
weekly reporting structure and thereby reveal new opportunities
to improve our predictions.

Prior work has informed our decision to use Random Forest and
Support Vector Machine models for this task, as they have
consistently proven successful for a variety of mosquito prediction
and classification tasks (Genoud et al. 2020, Früh et al. 2018,
Wieland et al. 2017). The methodology of Lorenz et al. (2020) and
Franklinos et al. (2019) demonstrated learning processes which
evaluate mosquito-borne disease, supporting our use of
Enhanced Vegetation Index (EVI) data derived the practicality of
using remote sensing data in machine from NASA’s Aqua and
Terra satellites. Previous studies used weather variables such as
temperature, precipitation, and humidity to predict mosquito
abundance and transmission (Ligot et al. 2021, Buckner et al.
2011, Chuang et al. 2011); therefore, we included these variables
as well. While Thiruchelvam et al. (2018) found little effect of AQI
on the spread of disease, Gui et al. (2021) observed that extremely
poor air quality and high wind speed could reduce the risk of
Dengue transmission. Given the lack of scientific consensus and
the similar oscillation patterns we observed between AQI and
known significant ecological variables, we decided to include AQI
in our model to assess its significance. These cases of previous
research led to our decision to include humidity, temperature,
precipitation, air quality, wind speed, AQI, and EVI in our models.
We also included GLOBE data in our preliminary analysis, as
several studies discussed the advantages of citizen science data,
pointing out that citizen science programs such as the GLOBE
Observer app’s Mosquito Habitat Mapper and Land Cover
facilitate consistency and utility (Carney et al. 2022 and Früh et al.
2018).
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Figure 1: ArcGIS map of larvae count in Los Angeles, Orange, and Riverside counties.

Figure 2: Land Cover Photo in our AOI documententing seasonal changes in vegetation
like the process of leaves changing color and falling from trees as a result of cooling
temperatures.

Ecological Variables and WNV: We converted Ecological Data 
and WNV data from daily data into averaged weekly data based 
on the CDC’s MMWR Epidemiological week format and limited to 
weeks 24-53 based on WNV data availability and consistency. We 
then padded our ecological data using means calculated across 
each year’s mosquito season and padded our WNV data with 
zeros.
Data sources: California Department of Water Resources Irrigation 
Management Information System, United States Environmental 
Protection Agency, MODIS sensor outputs recorded on the NASA 
Aqua satellite, CHHS California Department of Public Health. 

Figure 3: Los Angeles Ecological Variables Graph from data collected from 2006-2021 
with a five week lag.

Figure 4: graph of West Nile Virus Infections from 2006-2021.

Time Lag: We tested various time lags for the ecological variables 
because Lopez et al. (2014), Ligot et al. (2021), and Schneider et al. 
(2021) emphasized the importance of the incorporation of time 
lag in order to obtain accurate predictions. We started by testing a 
three week time lag then evaluated five, six, and eight week lags. 
We found that a lag of 5 weeks aligned best with our WNV data.

Model Overall MAE Overall RMSE Minimum 
RMSE

Maximum 
RMSE

Range of 
Desired 
Output

RBF SVM 0.514808 0.91283 9.0204E-05 0.37031 5.6596

Linear SVM 0.55336 1.0024 0.000167 0.39182 5.6596

Sigmoid SVM 0.54848 1.0086 0.00012 0.39083 5.6596

RF Regressor 5.74241 8.18072 0.00401 2.9433 59

Table 1: a variety of error metrics used to contextualize our 4 models’ performance

Ecological Variable RF Feature Importance

Average Relative Humidity 0.14559

Average Air Temperature 0.41017

Precipitation 0.02372

Average Wind Speed 0.12840

AQI 0.12990

EVI 0.16222

Figure 5: This graph describes our RF regressor’s predictions in magenta and the actual
WNV cases recorded in gray.

Figure 6: This graph describes our linear SVM regressor’s predictions in orange, RBF
SVM regressor’s predictions in green, sigmoid SVM regressor’s predictions in orange, and
the actual WNV cases recorded in gray.

Table 2: This table details our RF regressor’s feature importance

Conclusion
In summary, our machine learning models forecast the absolute
number of WNV infections five weeks in advance using open
access ecological variables and remote sensing data. Our
methodology and results hold valuable insight for the
development of early warning systems that aid healthcare and
government officials in preparing for and preventing incoming
WNV outbreaks. Our predictions are particularly valuable when
assessed from a resource allocation standpoint, as the five-week
lead time they provide can aid healthcare providers in predicting
when they must prepare to increase capacity. This early notice is
critical to avoiding preventable deaths.
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