References
Abramoff, M., Magalhães, P. & Ram, S. J. (2003). Image Processing with ImageJ. Biophotonics International. 11. 36–42.
Ahongshangbam, J., Röll, A., Ellsäßer, F., Hendrayanto, H., & Hölscher, D. (2020). Airborne Tree Crown Detection for Predicting Spatial Heterogeneity of Canopy Transpiration in a Tropical Rainforest.Remote Sens. , 12, 651. https://doi.org/10.3390/rs12040651
Angassa, A. (2005). The ecological impact of bush encroachment on the yield of grasses in Borana rangeland ecosystem. African Journal of Ecology, 43, 14–20. https://doi.org/10.1111/j.1365-2028.2005.00429.x
Atlas of Namibia Team, 2022, Atlas of Namibia: its land, water and life, Namibia Nature Foundation, Windhoek
Ayalew, S., & Mulualem, G. M. (2018). A Review on Bush Encroachment Effect on Cattle Rearing in Rangelands. J. Rangel. Sci. , 8, 403–415.
Bester, FV. 1996. Bush encroachment — A thorny problem. In: Tarr, Peter W., ed. 1996. op. cit. pp. 175–177.
Blaum, N., Rossmanith, E., Popp, A. & Jeltsch, F. (2007). Shrub encroachment affects mammalian carnivore abundance in arid rangelands.Acta Oecologica, 31, 86–92. https://doi/10.1016/j.actao.2006.10.004
Blaum, N., Seymour, C., Rossmanith, E., Schwager, M., & Jeltsch, F. (2009). Changes in arthropod diversity along a land use driven gradient of shrub cover in the southern Kalahari: Identification of suitable indicators. Biodivers Conserv , 18, 1187–1199. https://doi.org/10.1007/s10531-008-9498-x
Blozan, W. (2004). Tree measuring guidelines of the eastern native tree society. History Research Science, 13-17.
Brodersen, C. R. & McElrone, A. J. (2013). Maintenance of xylem Network Transport Capacity: A Review of Embolism Repair in Vascular Plants.Frontiers in Plant Science , 4, 1–11.
Brown, J. H., West, G.B. & Enquist, B. J. (2005), Yes, West, Brown and Enquist”s model of allometric scaling is both mathematically correct and biologically relevant. Functional Ecology , 19, 735–738. https://doi.org/10.1111/j.1365-2435.2005.01022.x
Carrodus, B. B. (1972). Variability in the Proportion of Heartwood Formed in Woody Stems. New Phytol. , 71, 713–718. http://www.jstor.org/stable/2434722
Chartier, M. P., Rostagno, C. M., & Pazos, G. E. (2011). Effects of soil degradation on infiltration rates in grazed semiarid rangelands of northeastern Patagonia, Argentina. Journal of Arid Environments , 75, 656–661. doi: 10.1016/j.jaridenv.2011.02.007
Chavarro-Rincon, D. (2009). Tree transpiration mapping from upscaled sap flow in the Botswana Kalahari (Unpublished doctoral dissertation). International Institute for Geo-information Science and Earth Observation, Enschede.
Chown, S. L. (2010). Temporal biodiversity change in transformed landscapes: a southern African perspective. Phil. Trans. R. Soc. B, 365, 3729–3742. https://doi/10.1098/rstb.2010.0274 Add to Citavi project by DOI).
Daba, D. E., & Soromessa, T. (2019). The accuracy of species-specific allometric equations for estimating aboveground biomass in tropical moist montane forests: case study of Albizia grandibracteata andTrichilia dregeana . Carbon Balance Manage , 14, 18. https://doi.org/10.1186/s13021-019-0134-8
Dahlin, K. M., Del Ponte, D., Setlock, E., & Nagelkirk, R. (2016). Global patterns of drought deciduous phenology in semi-arid and savanna-type ecosystems. Ecography , 40, 314–323. https://doi.org/10.1111/ecog.02443
de Klerk, J. N. (2004). Bush Encroachment in Namibia. ISBN 0–86976–620–1
Dreber, N., van Rooyen, S.E., & Kellner, K. (2018). Relationship of plant diversity and bush cover in rangelands of a semi-arid Kalahari savannah, South Africa. Afr. J. Ecol., 56: 132–135. https://doi.org/10.1111/aje.12425
Fernández-Ortuño, D., Grabke, A., Li, X., & Schnabel, G. (2015). Independent Emergence of Resistance to Seven Chemical Classes of Fungicides in Botrytis cinerea. Phytopathology, 105, 424–432. https://doi.org/10.1094/PHYTO-06-14-0161-R
Fox J, Weisberg S (2019). An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
Fregoso, A. D. (2002). Dry-season transpiration of savannah vegetation - Assessment of tree transpiration and its spatial distribution in Serowe, Botswana (Unpublished master’s. thesis). The International Institute for Geo-Information Science and Earth Observation (ITC), University of Twente
Gebauer, T., Horna, V., & Leuschner, C. (2009). Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Tree Physiol, 28, 1821–1830. https://doi.org/10.1093/treephys/28.12.1821
Geissler, K., Hahn, C., Joubert, D., & Blaum, N. (2019): Functional responses of the herbaceous plant community explain ecohydrological feedbacks of savanna shrub encroachment. Perspect. Plant Ecol. Evol. Syst , 39. https://doi/10.1016/j.ppees.2019.125458
Groengroeft, A., de Blécourt, M., Classen, N., Landschreiber, L. & Eschenbach, A. (2018) Acacia trees modify soil water dynamics and the potential groundwater recharge in savanna ecosystems. In: Climate change and adaptive land management in southern Africa – assessments, changes, challenges, and solutions (ed. by Revermann, R., Krewenka, K.M., Schmiedel, U., Olwoch, J.M., Helmschrot, J. & Jürgens, N.), pp. 177-186, Biodiversity & Ecology, 6, Klaus Hess Publishers, Göttingen & Windhoek. doi:10.7809/b-e.00321
Haan, C. T., Barfield, B. J., & Hayes, J. C. (1994). Rainfall-Runoff Estimation in Storm Water Computations. In Design Hydrology and Sedimentology for Small Catchments; Haan, C.T., Barfield, B.J., Hayes, J.C., Eds.; Academic Press: San Diego, CA, USA, 1994 (pp 37–103)
Hering, R., Hauptfleisch, M., Geißler, K., Marquart, A., Schoenen, M., & Blaum, N. (2019). Shrub encroachment is not always land degradation: Insights from ground-dwelling beetle species niches along a shrub cover gradient in a semi-arid Namibian savanna. Land Degrad Dev , 30, 14–24. https://doi.org/10.1002/ldr.3197
Huxman, T.E., Wilcox, B.P., Breshears, D.D., Scott, R.L., Snyder, K.A., Small, E.E., Hultine, K., Pockman, W.T. and Jackson, R.B. (2005). Ecohydrological Implications of Woody Plant Encroachment.Ecology , 86, 308–319. https://doi.org/10.1890/03-0583
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (2018): The IPBES assessment report on land degradation and restoration. Montanarella, L., Scholes, R., and Brainich, A. (eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany
International Panel on Climate Change (IPCC) (2023) Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press
Issoufou, H. B & Rambal, S., Le Dantec, V., Oï, M., Laurent, J., Saadou, M. & Seghieri, J. (2015). Is the WBE model appropriate for semi-arid shrubs subjected to clear cutting?. Tree physiology. 35. 10.1093/treephys/tpv002.
Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016). Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284
Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016). Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284
Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016). Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016). Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284
Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016). Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284
Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016). Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284
Jaskierniak, D., Kuczera, G., Benyon, R.G., Lucieer, A. (2016) Estimating tree and stand sapwood area in spatially heterogeneous southeastern Australian forests, Journal of Plant Ecology , 9, 272–284. https://doi.org/10.1093/jpe/rtv056
Kassambara A. 2020. ggpubr: “ggplot2” based publication ready plots. R package, version 0.3.0.
Kozlowski, J. & Konarzewski, M. (2004). Is West, Brown and Enquist’s Model of Allometric Scaling Mathematically Correct and Biologically Relevant? Function Ecology , 18, 283-289. https://doi.org/10.1111/j.0269-8463.2004.00830.x
Kumagai, T., Aoki, S., Shimizu, T., Otsuki, K. (2007). Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed. Tree Physiology , 27, 161–168. https://doi.org/10.1093/treephys/27.2.161
Lubczynski, M. W. (2009). The hydrogeological role of trees in waterlimited environments. Hydrogeology Journal , 17, 247–259.
Lubczynski, M. W., Chavarro-Rincon, D. C., & Rossiter, D. G. (2017). Conductive sapwood area prediction from stem and canopy areas—allometric equations of Kalahari trees, Botswana.Ecohydrology, 10, e1856. https://doi.org/10.1002/eco.1856
Minamino, R., Tateno, M. (2014). Tree Branching: Leonardo da Vinci’s Rule versus Biomechanical Models. PLoS ONE 9, e93535. https://doi.org/10.1371/journal.pone.0093535
Mitra, B., Papuga, S. A., Alexander, M. R., Swetnam, T. L., & Abramson, N. (2020). Allometric relationships between primary size measures and sapwood area for six common tree species in snow-dependent ecosystems in the Southwest United States. J. For. Res. 31, 2171–2180https://doi.org/10.1007/s11676-019-01048-y
Moncrieff, G. R., Chamaillé-Jammes, S., Higgins, S. I., O’Hara, R. B. & Bond, W. J. (2011). Tree allometries reflect a lifetime of herbivory in an African savanna. Ecology , 92, 2310–2315. https://doi.org/10.1890/11-0230.1
Niklas, K. J. (1994). Plant Allometry: The Scaling of Form and Process. Chicago: University of Chicago Press.
Niklas, K. J. (1997). Size- and age-dependent variation in the proper-ties of sap- and heartwood in black locust (Robinia pseudoacaciaL.). Annals of Botany, 79, 473–478.
Nortjé, G. (2019). A Game Drive Optimisation Strategy for Etosha Heights Game Safaris, Etosha Heights, Namibia. 10.13140/RG.2.2.19246.56643.
Ogle, D. H., Doll, J. C., Wheeler, A. P., Dinno, A. (2023). FSA: Simple Fisheries Stock Assessment Methods. R package version 0.9.4, https://CRAN.R-project.org/package=FSA.
Oppelt, A. L., Kurth, W., Godbold, D. L. (2001). Topology, scaling relations and Leonardo’s rule in root systems from African tree species.Tree Physiology, 21, 117–128.
Patino, S., Tyree, M. T., & Herre, E. A. (1995). Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free standing and hemi-epiphytic Ficus species from Panama. New Phytol, 129, 125–134. https://doi.org/10.1111/j.1469-8137.1995.tb03016.x
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633e1644.
Petit, G., & Anfodillo, T. (2009). Plant physiology in theory and practice: An analysis of the WBE model for vascular plants.Journal of Theoretical Biology, 259, 1-4. https://doi.org/10.1016/j.jtbi.2009.03.007
Quiñonez-Piñón, & M. R., Valeo, C. (2019). Scaling Approach for Estimating Stand Sapwood Area from Leaf Area Index in Five Boreal Species. Forests , 10, 829. https://doi.org/10.3390/f10100829
Reyes‐Acosta, J. L., & Lubczynski, M. W. (2014). Optimization of dry‐season sap flow measurements in an oak semi‐arid open woodlandin Spain. Ecohydrology , 7, 258–277.
Richter, J. (1970). The notebooks of Leonardo da Vinci. Dover, New York.
Schindelin, J., Arganda-Carreras, I., Frise, E. et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods , 9, 676–682. https://doi.org/10.1038/nmeth.2019
Scholz, F. G., Bucci, S. J., Goldstein, G., Meinzer, F. C., Franco, A. C., & Miralles- Wilhelm, F. (2008). Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water. Tree Physiol . 28, 469–480. doi: 10.1093/treephys/28.3.469
Schoppach, R., Chun, K. P., He, Q., Fabiani, G., & Klaus, J. (2021). Species-specific control of DBH and landscape characteristics on tree-to-tree variability of sap velocity. Agricultural and Forest Meteorology , 307, 108533. https://doi.org/10.1016/j.agrformet.2021.108533
Shikangalah, R., Musimba, A., Mapaure, I., Mapani, B., Herzschuh, U., Tabares, X. & Kamburona-Ngavetene, C. (2021). Growth rings and stem diameter of Dichrostachys cinerea and Senegalia mellifera along a rainfall gradient in Namibia. Trees, Forests and People , 3, 100046. https://doi.org/10.1016/j.tfp.2020.100046
Sohel, Md. S. (2022). Systematic review and meta-analysis reveals functional traits and climate are good predictors of tropical tree water use. Trees Forests and People . 8. 10.1016/j.tfp.2022.100226
Sprugel, D. G. (1983). Correcting for Bias in Log-Transformed Allometric Equations. Ecology , 64, 209–210. https://doi.org/10.2307/1937343
Stevens, N., Lehmann, C. E., Murphy, B. P., & Durigan, G. (2016). Savanna woody encroachment is widespread across three continents.GlobalChange Biology , 23, 235–244. https://doi.org/10.1111/gcb.13409
Sun, X., Wilcox, B. P., & Zou, C. B. (2019). Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. Journal of Hydrology , 576, 123–136. https://doi.org/10.1016/j.jhydrol.2019.06.022
Ter-Mikaelian M.T., & Korzukhin M. D. (1997). Biomass equations for sixty-five North American tree species. For Ecol Manag, 97. 1–24. https://doi.org/10.1016/S0378-1127(97)00019-4
Tredennick, A. T., Bentley, L. P., & Hanan, N. P. (2013). Allometric convergence in savanna trees and implications for the use of plant scaling models in variable ecosystems. PloS one , 8(3), e58241. https://doi.org/10.1371/journal.pone.0058241
Trimble, M. J., & Van Aarde, R. J. (2014). Amphibian and reptile communities and functional groups over a land-use gradient in a coastal tropical forest landscape of high richness and endemicity. Anim Conserv, 17, 441–453. https://doi.org/10.1007/s10531-014-0716-4
Tziaferidis, S. R., Spyroglou, G., Fotelli, M., & Radoglou, K. (2021). Allometric models for the estimation of leaf area and dry weight from sapwood and heartwood area in black locust (R. pseudacacia), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3999, https://doi.org/10.5194/egusphere-egu21-3999
Wang, X,. Wang, C., Zhang, Q., & Quan, X. (2010). Heartwood and sapwood allometry of seven Chinese temperate tree species. Ann. For. Sci., 67, 410. https://doi.org/10.1051/forest/2009131
West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science . 276, 122–126. https://doi.org/10.1126/science.276.5309.122
West, G. B., Brown, J. H., & Enquist, B. J. (1999). A general model for the structure and allometry of plant vascular systems. Nature . 400, 664–667. https://doi.org/10.1038/23251
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). dplyr: A Grammar of Data Manipulation. R package version 1.1.0, <https://CRAN.R-project.org/package=dplyr>.
Wickham, H., Vaughan, D., & Girlich, M. (2023). tidyr: Tidy Messy Data. R package version 1.3.0, <https://CRAN.R-project.org/package=tidyr>.
Wilcox, B. P., Basant, S., Olariu, H., & Leite, P. A. M. (2022). Ecohydrological connectivity: A unifying framework for understanding how woody plant encroachment alters the water cycle in drylands.Front. Environ. Sci . 10:934535. doi: 10.3389/fenvs.2022.934535
Yaemphum, S., Unawong, W., & Torngern, P. (2022). Sapwood area~DBH allometries for 14 common tree species in a successional tropical forest in Thailand. Forestry , 95, 562–571. https://doi.org/10.1093/forestry/cpab054
Zziwa, N. C. (2003). Assessment of water fluxes in semi-arid environments (Serowe case study (Botswana). (Unpublished master’s thesis). International Institute for Geo-information Science and Earth Observation, Enschede.