References
Abramoff, M., Magalhães, P. & Ram, S. J. (2003). Image Processing with
ImageJ. Biophotonics International. 11. 36–42.
Ahongshangbam, J., Röll, A., Ellsäßer, F., Hendrayanto, H., & Hölscher,
D. (2020). Airborne Tree Crown Detection for Predicting Spatial
Heterogeneity of Canopy Transpiration in a Tropical Rainforest.Remote Sens. , 12, 651. https://doi.org/10.3390/rs12040651
Angassa, A. (2005). The ecological impact of bush encroachment on the
yield of grasses in Borana rangeland ecosystem. African Journal of
Ecology, 43, 14–20. https://doi.org/10.1111/j.1365-2028.2005.00429.x
Atlas of Namibia Team, 2022, Atlas of Namibia: its land, water and life,
Namibia Nature Foundation, Windhoek
Ayalew, S., & Mulualem, G. M. (2018). A Review on Bush Encroachment
Effect on Cattle Rearing in Rangelands. J. Rangel. Sci. , 8,
403–415.
Bester, FV. 1996. Bush encroachment — A thorny problem. In: Tarr,
Peter W., ed. 1996. op. cit. pp. 175–177.
Blaum, N., Rossmanith, E., Popp, A. & Jeltsch, F. (2007). Shrub
encroachment affects mammalian carnivore abundance in arid rangelands.Acta Oecologica, 31, 86–92.
https://doi/10.1016/j.actao.2006.10.004
Blaum, N., Seymour, C., Rossmanith, E., Schwager, M., & Jeltsch, F.
(2009). Changes in arthropod diversity along a land use driven gradient
of shrub cover in the southern Kalahari: Identification of suitable
indicators. Biodivers Conserv , 18, 1187–1199.
https://doi.org/10.1007/s10531-008-9498-x
Blozan, W. (2004). Tree measuring guidelines of the eastern native tree
society. History Research Science, 13-17.
Brodersen, C. R. & McElrone, A. J. (2013). Maintenance of xylem Network
Transport Capacity: A Review of Embolism Repair in Vascular Plants.Frontiers in Plant Science , 4, 1–11.
Brown, J. H., West, G.B. & Enquist, B. J. (2005), Yes, West, Brown and
Enquist”s model of allometric scaling is both mathematically correct and
biologically relevant. Functional Ecology , 19, 735–738.
https://doi.org/10.1111/j.1365-2435.2005.01022.x
Carrodus, B. B. (1972). Variability in the Proportion of Heartwood
Formed in Woody Stems. New Phytol. , 71, 713–718.
http://www.jstor.org/stable/2434722
Chartier, M. P., Rostagno, C. M., & Pazos, G. E. (2011). Effects of
soil degradation on infiltration rates in grazed semiarid rangelands of
northeastern Patagonia, Argentina. Journal of Arid Environments ,
75, 656–661. doi: 10.1016/j.jaridenv.2011.02.007
Chavarro-Rincon, D. (2009). Tree transpiration mapping from upscaled sap
flow in the Botswana Kalahari (Unpublished doctoral dissertation).
International Institute for Geo-information Science and Earth
Observation, Enschede.
Chown, S. L. (2010). Temporal biodiversity change in transformed
landscapes: a southern African perspective. Phil. Trans. R. Soc.
B, 365, 3729–3742. https://doi/10.1098/rstb.2010.0274 Add to Citavi
project by DOI).
Daba, D. E., & Soromessa, T. (2019). The accuracy of species-specific
allometric equations for estimating aboveground biomass in tropical
moist montane forests: case study of Albizia grandibracteata andTrichilia dregeana . Carbon Balance Manage , 14, 18.
https://doi.org/10.1186/s13021-019-0134-8
Dahlin, K. M., Del Ponte, D., Setlock, E., & Nagelkirk, R. (2016).
Global patterns of drought deciduous phenology in semi-arid and
savanna-type ecosystems. Ecography , 40, 314–323.
https://doi.org/10.1111/ecog.02443
de Klerk, J. N. (2004). Bush Encroachment in Namibia. ISBN
0–86976–620–1
Dreber, N., van Rooyen, S.E., & Kellner, K. (2018). Relationship of
plant diversity and bush cover in rangelands of a semi-arid Kalahari
savannah, South Africa. Afr. J. Ecol., 56: 132–135.
https://doi.org/10.1111/aje.12425
Fernández-Ortuño, D., Grabke, A., Li, X., & Schnabel, G. (2015).
Independent Emergence of Resistance to Seven Chemical Classes of
Fungicides in Botrytis cinerea. Phytopathology, 105, 424–432.
https://doi.org/10.1094/PHYTO-06-14-0161-R
Fox J, Weisberg S (2019). An R Companion to Applied Regression, Third
edition. Sage, Thousand Oaks CA.
https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
Fregoso, A. D. (2002). Dry-season transpiration of savannah vegetation -
Assessment of tree transpiration and its spatial distribution in Serowe,
Botswana (Unpublished master’s. thesis). The International Institute for
Geo-Information Science and Earth Observation (ITC), University of
Twente
Gebauer, T., Horna, V., & Leuschner, C. (2009). Variability in radial
sap flux density patterns and sapwood area among seven co-occurring
temperate broad-leaved tree species. Tree Physiol, 28,
1821–1830. https://doi.org/10.1093/treephys/28.12.1821
Geissler, K., Hahn, C., Joubert, D., & Blaum, N. (2019): Functional
responses of the herbaceous plant community explain ecohydrological
feedbacks of savanna shrub encroachment. Perspect. Plant Ecol.
Evol. Syst , 39. https://doi/10.1016/j.ppees.2019.125458
Groengroeft, A., de Blécourt, M., Classen, N., Landschreiber, L. &
Eschenbach, A. (2018) Acacia trees modify soil water dynamics and the
potential groundwater recharge in savanna ecosystems. In: Climate change
and adaptive land management in southern Africa – assessments, changes,
challenges, and solutions (ed. by Revermann, R., Krewenka, K.M.,
Schmiedel, U., Olwoch, J.M., Helmschrot, J. & Jürgens, N.), pp.
177-186, Biodiversity & Ecology, 6, Klaus Hess Publishers, Göttingen &
Windhoek. doi:10.7809/b-e.00321
Haan, C. T., Barfield, B. J., & Hayes, J. C. (1994). Rainfall-Runoff
Estimation in Storm Water Computations. In Design Hydrology and
Sedimentology for Small Catchments; Haan, C.T., Barfield, B.J., Hayes,
J.C., Eds.; Academic Press: San Diego, CA, USA, 1994 (pp 37–103)
Hering, R., Hauptfleisch, M., Geißler, K., Marquart, A., Schoenen, M.,
& Blaum, N. (2019). Shrub encroachment is not always land degradation:
Insights from ground-dwelling beetle species niches along a shrub cover
gradient in a semi-arid Namibian savanna. Land Degrad Dev , 30,
14–24. https://doi.org/10.1002/ldr.3197
Huxman, T.E., Wilcox, B.P., Breshears, D.D., Scott, R.L., Snyder, K.A.,
Small, E.E., Hultine, K., Pockman, W.T. and Jackson, R.B. (2005).
Ecohydrological Implications of Woody Plant Encroachment.Ecology , 86, 308–319. https://doi.org/10.1890/03-0583
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services (2018): The IPBES assessment report on land degradation and
restoration. Montanarella, L., Scholes, R., and Brainich, A. (eds.).
Secretariat of the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services, Bonn, Germany
International Panel on Climate Change (IPCC) (2023) Climate Change: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge and New York: Cambridge University Press
Issoufou, H. B & Rambal, S., Le Dantec, V., Oï, M., Laurent, J.,
Saadou, M. & Seghieri, J. (2015). Is the WBE model appropriate for
semi-arid shrubs subjected to clear cutting?. Tree physiology. 35.
10.1093/treephys/tpv002.
Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016).
Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284
Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016).
Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284
Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016).
Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284Jaskierniak,
D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016). Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284
Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016).
Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284
Jaskierniak, D., Kuczera, G., Benyon, R. G., & Lucieer, A. (2016).
Estimating
tree and stand sapwood area in spatially heterogeneous southeastern
Australian forests. Journal of Plant Ecology,9(3), 272–284
Jaskierniak, D., Kuczera, G., Benyon, R.G., Lucieer, A. (2016)
Estimating tree and stand sapwood area in spatially heterogeneous
southeastern Australian forests, Journal of Plant Ecology , 9,
272–284. https://doi.org/10.1093/jpe/rtv056
Kassambara A. 2020. ggpubr: “ggplot2” based publication ready plots. R
package, version 0.3.0.
Kozlowski, J. & Konarzewski, M. (2004). Is West, Brown and Enquist’s
Model of Allometric Scaling Mathematically Correct and Biologically
Relevant? Function Ecology , 18, 283-289.
https://doi.org/10.1111/j.0269-8463.2004.00830.x
Kumagai, T., Aoki, S., Shimizu, T., Otsuki, K. (2007). Sap flow
estimates of stand transpiration at two slope positions in a Japanese
cedar forest watershed. Tree Physiology , 27, 161–168.
https://doi.org/10.1093/treephys/27.2.161
Lubczynski, M. W. (2009). The hydrogeological role of trees in
waterlimited environments. Hydrogeology Journal , 17, 247–259.
Lubczynski, M. W., Chavarro-Rincon, D. C., & Rossiter, D. G. (2017).
Conductive sapwood area prediction from stem and canopy
areas—allometric equations of Kalahari trees, Botswana.Ecohydrology, 10, e1856. https://doi.org/10.1002/eco.1856
Minamino, R., Tateno, M. (2014). Tree Branching: Leonardo da Vinci’s
Rule versus Biomechanical Models. PLoS ONE 9, e93535.
https://doi.org/10.1371/journal.pone.0093535
Mitra, B., Papuga, S. A., Alexander, M. R., Swetnam, T. L., & Abramson,
N. (2020). Allometric relationships between primary size measures and
sapwood area for six common tree species in snow-dependent ecosystems in
the Southwest United States. J. For. Res. 31, 2171–2180https://doi.org/10.1007/s11676-019-01048-y
Moncrieff, G. R., Chamaillé-Jammes, S., Higgins, S. I., O’Hara, R. B. &
Bond, W. J. (2011). Tree allometries reflect a lifetime of herbivory in
an African savanna. Ecology , 92, 2310–2315.
https://doi.org/10.1890/11-0230.1
Niklas, K. J. (1994). Plant Allometry: The Scaling of Form and Process.
Chicago: University of Chicago Press.
Niklas, K. J. (1997). Size- and age-dependent variation in the
proper-ties of sap- and heartwood in black locust (Robinia
pseudoacaciaL.). Annals of Botany, 79, 473–478.
Nortjé, G. (2019). A Game Drive Optimisation Strategy for Etosha Heights
Game Safaris, Etosha Heights, Namibia. 10.13140/RG.2.2.19246.56643.
Ogle, D. H., Doll, J. C., Wheeler, A. P., Dinno, A. (2023). FSA: Simple
Fisheries Stock Assessment Methods. R package version 0.9.4,
https://CRAN.R-project.org/package=FSA.
Oppelt, A. L., Kurth, W., Godbold, D. L. (2001). Topology, scaling
relations and Leonardo’s rule in root systems from African tree species.Tree Physiology, 21, 117–128.
Patino, S., Tyree, M. T., & Herre, E. A. (1995). Comparison of
hydraulic architecture of woody plants of differing phylogeny and growth
form with special reference to free standing and hemi-epiphytic Ficus
species from Panama. New Phytol, 129, 125–134.
https://doi.org/10.1111/j.1469-8137.1995.tb03016.x
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world
map of the Köppen-Geiger climate classification. Hydrology and
Earth System Sciences, 11, 1633e1644.
Petit, G., & Anfodillo, T. (2009). Plant physiology in theory and
practice: An analysis of the WBE model for vascular plants.Journal of Theoretical Biology, 259, 1-4.
https://doi.org/10.1016/j.jtbi.2009.03.007
Quiñonez-Piñón, & M. R., Valeo, C. (2019). Scaling Approach for
Estimating Stand Sapwood Area from Leaf Area Index in Five Boreal
Species. Forests , 10, 829.
https://doi.org/10.3390/f10100829
Reyes‐Acosta, J. L., & Lubczynski, M. W. (2014). Optimization of
dry‐season sap flow measurements in an oak semi‐arid open woodlandin
Spain. Ecohydrology , 7, 258–277.
Richter, J. (1970). The notebooks of Leonardo da Vinci. Dover, New York.
Schindelin, J., Arganda-Carreras, I., Frise, E. et al. (2012). Fiji: an
open-source platform for biological-image analysis. Nature
Methods , 9, 676–682. https://doi.org/10.1038/nmeth.2019
Scholz, F. G., Bucci, S. J., Goldstein, G., Meinzer, F. C., Franco, A.
C., & Miralles- Wilhelm, F. (2008). Temporal dynamics of stem expansion
and contraction in savanna trees: withdrawal and recharge of stored
water. Tree Physiol . 28, 469–480. doi: 10.1093/treephys/28.3.469
Schoppach, R., Chun, K. P., He, Q., Fabiani, G., & Klaus, J. (2021).
Species-specific control of DBH and landscape characteristics on
tree-to-tree variability of sap velocity. Agricultural and Forest
Meteorology , 307, 108533.
https://doi.org/10.1016/j.agrformet.2021.108533
Shikangalah, R., Musimba, A., Mapaure, I., Mapani, B., Herzschuh, U.,
Tabares, X. & Kamburona-Ngavetene, C. (2021). Growth rings and stem
diameter of Dichrostachys cinerea and Senegalia mellifera along a
rainfall gradient in Namibia. Trees, Forests and People , 3,
100046. https://doi.org/10.1016/j.tfp.2020.100046
Sohel, Md. S. (2022). Systematic review and meta-analysis reveals
functional traits and climate are good predictors of tropical tree water
use. Trees Forests and People . 8. 10.1016/j.tfp.2022.100226
Sprugel, D. G. (1983). Correcting for Bias in Log-Transformed Allometric
Equations. Ecology , 64, 209–210. https://doi.org/10.2307/1937343
Stevens, N., Lehmann, C. E., Murphy, B. P., & Durigan, G. (2016).
Savanna woody encroachment is widespread across three continents.GlobalChange Biology , 23, 235–244.
https://doi.org/10.1111/gcb.13409
Sun, X., Wilcox, B. P., & Zou, C. B. (2019). Evapotranspiration
partitioning in dryland ecosystems: A global meta-analysis of in situ
studies. Journal of Hydrology , 576, 123–136.
https://doi.org/10.1016/j.jhydrol.2019.06.022
Ter-Mikaelian M.T., & Korzukhin M. D. (1997). Biomass equations for
sixty-five North American tree species. For Ecol Manag, 97.
1–24. https://doi.org/10.1016/S0378-1127(97)00019-4
Tredennick, A. T., Bentley, L. P., & Hanan, N. P. (2013). Allometric
convergence in savanna trees and implications for the use of plant
scaling models in variable ecosystems. PloS one , 8(3), e58241.
https://doi.org/10.1371/journal.pone.0058241
Trimble, M. J., & Van Aarde, R. J. (2014). Amphibian and reptile
communities and functional groups over a land-use gradient in a coastal
tropical forest landscape of high richness and endemicity. Anim
Conserv, 17, 441–453. https://doi.org/10.1007/s10531-014-0716-4
Tziaferidis, S. R., Spyroglou, G., Fotelli, M., & Radoglou, K. (2021).
Allometric models for the estimation of leaf area and dry weight from
sapwood and heartwood area in black locust (R. pseudacacia), EGU General
Assembly 2021, online, 19–30 Apr 2021, EGU21-3999,
https://doi.org/10.5194/egusphere-egu21-3999
Wang, X,. Wang, C., Zhang, Q., & Quan, X. (2010). Heartwood and sapwood
allometry of seven Chinese temperate tree species. Ann. For.
Sci., 67, 410. https://doi.org/10.1051/forest/2009131
West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for
the origin of allometric scaling laws in biology. Science . 276,
122–126. https://doi.org/10.1126/science.276.5309.122
West, G. B., Brown, J. H., & Enquist, B. J. (1999). A general model for
the structure and allometry of plant vascular systems. Nature .
400, 664–667. https://doi.org/10.1038/23251
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York. ISBN 978-3-319-24277-4,
https://ggplot2.tidyverse.org.
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023).
dplyr: A Grammar of Data Manipulation. R package version 1.1.0,
<https://CRAN.R-project.org/package=dplyr>.
Wickham, H., Vaughan, D., & Girlich, M. (2023). tidyr: Tidy Messy Data.
R package version 1.3.0,
<https://CRAN.R-project.org/package=tidyr>.
Wilcox, B. P., Basant, S., Olariu, H., & Leite, P. A. M. (2022).
Ecohydrological connectivity: A unifying framework for understanding how
woody plant encroachment alters the water cycle in drylands.Front. Environ. Sci . 10:934535. doi: 10.3389/fenvs.2022.934535
Yaemphum, S., Unawong, W., & Torngern, P. (2022). Sapwood
area~DBH allometries for 14 common tree species in a
successional tropical forest in Thailand. Forestry , 95, 562–571.
https://doi.org/10.1093/forestry/cpab054
Zziwa, N. C. (2003). Assessment of water fluxes in semi-arid
environments (Serowe case study (Botswana). (Unpublished master’s
thesis). International Institute for Geo-information Science and Earth
Observation, Enschede.