References
  1. Kijne JW. Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crop Res. 2006; 97:3-18. https://doi.org/10.1016/j.fcr.2005.08.011.
  2. Lekakis E, Aschonitis V, Pavlatou-Ve A, Papadopoulos A, Antonopoulos V. Analysis of temporal variation of soil salinity during the growing season in a flooded rice field of thessaloniki plain-Greece. Agron. J. 2015; 5:35-54. https://doi.org/10.3390/agronomy5010035.
  3. Kumar P, Sharma PK. Soil Salinity and Food Security in India. Front. Sustain. Food Syst. 2020; 4: 533781. https://doi.org/10.3389/fsufs.2020.533781.
  4. Mukhtar S, Malik KA, Mehnaz S. Osmoadaptation in halophilic bacteria and archaea. Res. J. Biotechnol. 2020; 5(5):154-61.
  5. Kibria M, Hoque M. A review on plant responses to soil salinity and amelioration strategies. Open J. Soil Sci. 2019; 9:219-31. https://doi.org/10.4236/ojss.2019.911013.
  6. Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Malik KA. Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World J. Microbiol. Biotechnol. 2018; 34:136. https://doi.org/10.1007/s11274-018-2509-5.
  7. Ahmad K, Hussain M, Ashraf M, Luqman M, Ashraf MY, Khan ZI. Indigenous vegetation of Soon valley at the risk of extinction. Pak. J. Bot. 2007; 39(3):679-90.
  8. Dagla HR, Shekhawat NS. In vitro multiplication of Haloxylon recurvum (Moq.) a plant for saline soil reclamation. J. Plant Biol. 2005; 7:155-60.
  9. Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015; 22(2):123-31. https://doi.org/10.1016/j.sjbs.2014.12.001.
  10. Etesami H, Beattie GA. Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Kumar S, editors. Probiotics and Plant Health. Singapore: Springer Nature. pp. 163-200. https://doi.org/10.1007/978-981-10-3473-2_7.
  11. Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012; 17(8):478-86. https://doi.org/10.1016/j.tplants.2012.04.001.
  12. Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B, et al. Rhizosphere microbiome assembly and its impact on plant growth. J. Agric. Food Chem. 2020; 68(18):5024-38. https://doi.org/10.1021/acs.jafc.0c00073.
  13. Hartmann A, Klink S, Rothballer M. Importance of N-Acyl-Homoserine Lactone based quorum sensing and quorum quenching in pathogen control and plant growth promotion. J. Pathog. 2021; 10:1561. https://doi.org/10.3390/pathogens10121561.
  14. DasSarma P, Klebahn G, Klebahn H. Translation of Henrich Klebahn’s damaging agents of the klippfish, a contribution to the knowledge of the salt loving organisms. Saline Syst. 2010; 6:7. https://doi.org/10.1186/1746-1448-6-7.
  15. DasSarma S, DasSarma P. Halophiles and their enzymes: negativity put to good use. Curr. Opin. Microbiol. 2015; 25:120-26. https://doi.org/10.1016/j.mib.2015.05.009.
  16. Oren A. Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematic. Int. J. Syst. Evol. Microbiol. 2012; 62:263-71. https://doi.org/10.1099/ijs.0.038653-0.
  17. Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 2012; 6:81-93. https://doi.org/10.1038/ismej.2011.78.
  18. Patel RR, Thakkar VR, Subramanian RB. Simultaneous detection and quantification of phytohormones by a sensitive method of separation in culture of Pseudomonas sp. Curr. Microbiol. 2016; 72:744-51. https://doi.org/10.1007/s00284-016-1012-1.
  19. Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Malik KA. Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World J. Microbiol. Biotechnol. 2018; 34:136. https://doi.org/10.1007/s11274-018-2509-5.
  20. Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, et al. Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci. Rep. 2015; 28:12293. https://doi.org/10.1038/srep12293.
  21. Kumar V, Tiwari SK. Halocin HA1: An archaeocin produced by the haloarchaeon Haloferax larsenii HA1. Process Biochem. 2017; 61:202-08. https://doi.org/10.1016/j.procbio.2017.06.010.
  22. Smith-Moore CM, Grunden AM. Bacteria and archaea as the sources of traits for enhanced plant phenotypes. Biotechnol. Adv. 2018; 36:1900-16. https://doi.org/10.1016/j.biotechadv.2018.07.007.
  23. Dave B, Anshuman K, Hajela P. Siderophores of halophilic archaea and their chemical characterization. Indian J. Exp. Biol. 2006; 44: 340.
  24. Trivedi C, Reich PB, Maestre FT, Hu HW, Singh BK, Delgado-Baquerizo M. Plant-driven niche differentiation of ammonia-oxidizing bacteria and archaea in global drylands. ISME J. 2019; 13(11):2727-36. https://doi.org/10.1038/s41396-019-0465-1.
  25. Patel RR, Patel DD, Bhatt J, Thakor P, Triplett LR, Thakkar VR. Induction of pre‐chorismate, jasmonate and salicylate pathways byBurkholderia sp. RR18 in peanut seedlings. J. Appl. Microbiol. 2021; 131:1417-30. https://doi.org/10.1111/jam.15019.
  26. Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK. Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc. 2017; 5(6):1-2. https://doi.org/10.1128/genomeA.01593-16.
  27. Das D, Salgaonkar BB, Mani K, Braganca JM (2014) Cadmium resistance in extremely halophilic archaeon Haloferax strain BBK2. Chemosphere. 112:385-92. doi: 10.1016/j.chemosphere.2014.04.058.
  28. Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M, Martínez-Espinosa RM, Kumavath R (2023) Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front Microbiol. 14:1113540. doi:10.3389/fmicb.2023.1113540.
  29. Voica DM, Bartha L, Banciu HL, Oren A (2016) Heavy metal resistance in halophilic Bacteria and Archaea. FEMS Microbiol Lett. 363(14):fnw146. doi:10.1093/femsle/fnw146.
  30. Kauri T, Wallace R, Kushner DJ. Nutrition of the halophilic archaebacterium, Haloferaxvolcanii . Syst Appl Microbiol. 1990; 13:14–18. https://doi.org/10.1016/S0723-2020(11)80174-8.
  31. Winnepenninckx B, Backeljau T, de Wachter R. Extraction of high molecular weight DNA from molluscs. Trends. Genet. 1993; 9: 407-12. https://doi.org/10.1016/0168-9525(93)90102-n.
  32. Yildiz E, Ozcan B, Caliskan M. Isolation, characterization, and phylogenetic analysis of halophilic archaea from a salt mine in central Anatolia (Turkey). Pol. J. Microbiol. 2012; 61:111-17. https://doi.org/10.33073/pjm-2012-014.
  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018; 35:1547-49. https://doi.org/10.1093/molbev/msy096.
  34. Pikovskaya R. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya. 1948; 17:362-70.
  35. Watanabe F, Olsen S. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. 1965; 29:677-78. https://doi.org/10.2136/sssaj1965.03615995002900060025x.
  36. Baldani VLD, Baldani JI, Olivares FL, Döbereiner J. Identification and ecology of Herbaspirillum seopedicae and the closely relatedPseudomonas rubrisubalbicans . Symbiosis. 1992; 19:65-73.
  37. Mehnaz S, Lazarovits G. Inoculation effects of Pseudomonas putida, Gluconaacetobacter azotocaptans and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb. Ecol. 2006; 51:326-35. https://doi.org/10.1007/s00248-006-9039-7.
  38. Perez-Miranda S, Cabirol N, George-Tellez R, Zamudio-Rivera LS. O-CAS, a fast and universal method for siderophore detection. J. Mircobial. Meth. 2007; 90:127-31. https://doi.org/10.1016/j.mimet.2007.03.023.
  39. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012; 19(5):455-77. https://doi.org/10.1089/cmb.2012.0021.
  40. Darling AE, Mau B, Perna NT. Progressive Mauve : multiple genome alignment with gene gain, loss, and rearrangement. PLoS One. 2010; 5(6):e11147. https://doi.org/10.1371/journal.pone.0011147.
  41. Besemer J, Lomsadzec A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001; 29:2607-18. https://doi.org/10.1093/nar/29.12.2607.
  42. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006; 34:354-57. https://doi.org/10.1093/nar/gkj102.
  43. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017; 45(W1):W36-W41. https://doi.org/10.1093/nar/gkx319.
  44. Vreeland RH. Taxonomy of Halophilic Bacteria. In: Vreeland RH, Hochstein LI, editors. The Biology of Halophilic Bacteria. Boca Raton: CRC Press; 1993. pp.105-134. https://doi.org/10.1007/978-4-431-53898-1_13.
  45. Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC. Halophile and halotolerant microorganisms from soils. In: Dion P, Nautiyal PS, editors. Microbiology of Extreme Soils. Berlin: Springer-Verlag; 2008. pp. 87-115. https://doi.org/10.1007/978-3-540-74231-9_5.
  46. Oren A. Industrial and environmental applications of halophilic microorganisms. Environ. Techn. 2010; 31:825-34. https://doi.org/10.1080/09593330903370026.
  47. Menasria T, Aguilera M, Hocine H, Benammar L, Ayachi A, Si Bachir A, et al. Diversity and bioprospecting of extremely halophilic archaea isolated from Algerian arid and semi-arid wetland ecosystems for halophilic-active hydrolytic enzymes. Microbiol. Res. 2018; 207:289-98. https://doi.org/10.1016/j.micres.2017.12.011.
  48. Dubey G, Kollah B, Gour VK, Shukla AK, Mohanty SR. Diversity of bacteria and archaea in the rhizosphere of bioenergy cropJatropha curcas . 3 Biotech. 2016; 6(2):257. https://doi.org/10.1007/s13205-016-0546-z.
  49. Sawers RG. Little red floaters: gas vesicles in anEnterobacterium . Environ. Microbiol. 2016; 18:1091-93. https://doi.org/10.1111/1462-2920.13245.
  50. Koonin EV, Yutin N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb. Perspect. Biol. 2014; 6(4):a016188. https://doi.org/10.1101/cshperspect.a016188.
  51. Selim S, Akhtar N, Hagagy N, Alanazi A, Warrad M, El Azab E. Selection of newly identified growth-promoting archaea Haloferax species with a potential action on cobalt resistance in maize plants. Front. Plant Sci. 2022; 13. https://doi.org/10.3389/fpls.2022.872654.
  52. Jung J, Kim J, Taffner J, Berg G, Ryu C. Archaea, tiny helpers of land plants. Comput. Struct. Biotechnol. J. 2020; 18:2494-2500. https://doi.org/10.1016/j.csbj.2020.09.005.
  53. Hubmacher D, Matzanke BF, Anemüller S. Iron-uptake in the EuryarchaeonHalobacterium salinarum . Biometals. 2007; 20:539-47. https://doi.org/10.1007/s10534-006-9064-5.
  54. Shafiee RT, Snow JT, Zhang Q, Rickaby REM. Iron requirements and uptake strategies of the globally abundant marine ammonia-oxidising archaeon, Nitrosopumilus maritimus SCM1. ISME J. 2019; 13:2295-2305. https://doi.org/10.1038/s41396-019-0434-8.
  55. Niessen N, Soppa J. Regulated iron siderophore production of the halophilic archaeon Haloferax volcanii . Biomolecules. 2020; 10:1072. https://doi.org/10.3390/biom10071072.
  56. Herrmann M, Saunders AM, Schramm A. Archaea dominate the ammonia- oxidizing community in the rhizosphere of the freshwater macrophyteLittorella uniflora . AEM. 2008; 74(10):3279-83. https://doi.org/10.1128/AEM.02802-07.
  57. Ludt K, Soppa J. Polyploidy in halophilic archaea: Regulation, evolutionary advantages, and gene conversion. Biochem. Soc. Trans. 2019; 47:933-44. https://doi.org/10.1042/BST20190256.
  58. Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA. Archaea are interactive components of complex microbiomes. Trends Microbiol. 2018; 26:70-85. https://doi.org/10.1016/j.tim.2017.07.004.
  59. Vinogradov AA, Suga H. Introduction to thiopeptides: Biological activity, biosynthesis, and strategies for functional reprogramming. Cell Chem. Biol. 2020; 27:1032-51. https://doi.org/10.1016/j.chembiol.2020.07.003.
  60. Al-Mailem DM, Sorkhoh NA, Marafie M, Al-Awadhi, Eliyas M, Radwan SS. Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresour. Technol. 2010; 101(15):5786-92. https://doi.org/10.1016/j.biortech.2010.02.082.
  61. Song GC, Im H, Jung J, Lee S, Jung MY, Rhee SK. Plant growth-promoting archaea trigger induced systemic resistance in Arabidopsis thaliana against Pectobacterium carotovorum andPseudomonas syringae. Environ. Microbiol. 2019; 2:940-48. https://doi.org/10.1111/1462-2920.14486.
  62. Schmid J, Fariña J, Rehm B, Sieber V. Editorial: Microbial Exopolysaccharides: From Genes to Applications. Front. Microbiol. 2016; 7:308. https://doi.org/10.3389/fmicb.2016.00308.
  63. Hamidi M, Mirzaei R, Delattre C, Khanaki K, Pierre G, Gardarin C. Characterization of a new exopolysaccharide produced byHalorubrum sp. TBZ112 and evaluation of its anti-proliferative effect on gastric cancer cells. 3 Biotech. 2019; 9(1). https://doi.org/10.1007/s13205-018-1515-5.
  64. Just-Baringo X, Albericio F, Álvarez M. Thiopeptide antibiotics: Retrospective and recent advances. Marine Drugs. 2014; 12(1):317-51. https://doi.org/10.3390/md12010317.
  65. Boronat A, Rodríguez-Concepción M. Terpenoid biosynthesis in prokaryotes. Adv. Biochem. Eng. Biotechnol. 2015; 148: 3-18. https://doi.org/10.1007/10_2014_285.
  66. Verma DK, Vasudeva G, Sidhu C, Pinnaka AK, Prasad SE, Thakur KG. Biochemical and taxonomic characterization of novel haloarchaeal strains and purification of the recombinant halotolerant α-amylase discovered in the isolate. Front. Microbiol. 2020; 11:2082. https://doi.org/10.3389/fmicb.2020.02082.
  67. Wang S, Zheng Z, Zou H, Li N, Wu M. Characterization of the secondary metabolite biosynthetic gene clusters in archaea. Comput. Biol. Chem. 2019; 78:165-69. https://doi.org/10.1016/j.compbiolchem.2018.11.019.