References
- Kijne JW. Abiotic stress and water scarcity: identifying and resolving
conflicts from plant level to global level. Field Crop Res. 2006;
97:3-18. https://doi.org/10.1016/j.fcr.2005.08.011.
- Lekakis E, Aschonitis V, Pavlatou-Ve A, Papadopoulos A, Antonopoulos
V. Analysis of temporal variation of soil salinity during the growing
season in a flooded rice field of thessaloniki plain-Greece. Agron. J.
2015; 5:35-54. https://doi.org/10.3390/agronomy5010035.
- Kumar P, Sharma PK. Soil Salinity and Food Security in India. Front.
Sustain. Food Syst. 2020; 4: 533781.
https://doi.org/10.3389/fsufs.2020.533781.
- Mukhtar S, Malik KA, Mehnaz S. Osmoadaptation in halophilic bacteria
and archaea. Res. J. Biotechnol. 2020; 5(5):154-61.
- Kibria M, Hoque M. A review on plant responses to soil salinity and
amelioration strategies. Open J. Soil Sci. 2019; 9:219-31.
https://doi.org/10.4236/ojss.2019.911013.
- Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Malik KA. Impact of
soil salinity on the microbial structure of halophyte rhizosphere
microbiome. World J. Microbiol. Biotechnol. 2018; 34:136.
https://doi.org/10.1007/s11274-018-2509-5.
- Ahmad K, Hussain M, Ashraf M, Luqman M, Ashraf MY, Khan ZI. Indigenous
vegetation of Soon valley at the risk of extinction. Pak. J. Bot.
2007; 39(3):679-90.
- Dagla HR, Shekhawat NS. In vitro multiplication of Haloxylon
recurvum (Moq.) a plant for saline soil reclamation. J. Plant Biol.
2005; 7:155-60.
- Shrivastava P, Kumar R. Soil salinity: A serious environmental issue
and plant growth promoting bacteria as one of the tools for its
alleviation. Saudi J. Biol. Sci. 2015; 22(2):123-31.
https://doi.org/10.1016/j.sjbs.2014.12.001.
- Etesami H, Beattie GA. Plant-microbe interactions in adaptation of
agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M,
Kumar S, editors. Probiotics and Plant Health. Singapore: Springer
Nature. pp. 163-200. https://doi.org/10.1007/978-981-10-3473-2_7.
- Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and
plant health. Trends Plant Sci. 2012; 17(8):478-86.
https://doi.org/10.1016/j.tplants.2012.04.001.
- Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B, et al. Rhizosphere
microbiome assembly and its impact on plant growth. J. Agric. Food
Chem. 2020; 68(18):5024-38.
https://doi.org/10.1021/acs.jafc.0c00073.
- Hartmann A, Klink S, Rothballer M. Importance of N-Acyl-Homoserine
Lactone based quorum sensing and quorum quenching in pathogen control
and plant growth promotion. J. Pathog. 2021; 10:1561.
https://doi.org/10.3390/pathogens10121561.
- DasSarma P, Klebahn G, Klebahn H. Translation of Henrich Klebahn’s
damaging agents of the klippfish, a contribution to the knowledge of
the salt loving organisms. Saline Syst. 2010; 6:7.
https://doi.org/10.1186/1746-1448-6-7.
- DasSarma S, DasSarma P. Halophiles and their enzymes: negativity put
to good use. Curr. Opin. Microbiol. 2015; 25:120-26.
https://doi.org/10.1016/j.mib.2015.05.009.
- Oren A. Taxonomy of the family Halobacteriaceae: a paradigm for
changing concepts in prokaryote systematic. Int. J. Syst. Evol.
Microbiol. 2012; 62:263-71.
https://doi.org/10.1099/ijs.0.038653-0.
- Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB,
Brocks JJ. De novo metagenomic assembly reveals abundant novel major
lineage of Archaea in hypersaline microbial communities. ISME J. 2012;
6:81-93. https://doi.org/10.1038/ismej.2011.78.
- Patel RR, Thakkar VR, Subramanian RB. Simultaneous detection and
quantification of phytohormones by a sensitive method of separation in
culture of Pseudomonas sp. Curr. Microbiol. 2016; 72:744-51.
https://doi.org/10.1007/s00284-016-1012-1.
- Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Malik KA. Impact of
soil salinity on the microbial structure of halophyte rhizosphere
microbiome. World J. Microbiol. Biotechnol. 2018; 34:136.
https://doi.org/10.1007/s11274-018-2509-5.
- Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, et al.
Haloarchaea endowed with phosphorus solubilization attribute
implicated in phosphorus cycle. Sci. Rep. 2015; 28:12293.
https://doi.org/10.1038/srep12293.
- Kumar V, Tiwari SK. Halocin HA1: An archaeocin produced by the
haloarchaeon Haloferax larsenii HA1. Process Biochem. 2017;
61:202-08. https://doi.org/10.1016/j.procbio.2017.06.010.
- Smith-Moore CM, Grunden AM. Bacteria and archaea as the sources of
traits for enhanced plant phenotypes. Biotechnol. Adv. 2018;
36:1900-16.
https://doi.org/10.1016/j.biotechadv.2018.07.007.
- Dave B, Anshuman K, Hajela P. Siderophores of halophilic archaea and
their chemical characterization. Indian J. Exp. Biol. 2006; 44: 340.
- Trivedi C, Reich PB, Maestre FT, Hu HW, Singh BK, Delgado-Baquerizo M.
Plant-driven niche differentiation of ammonia-oxidizing bacteria and
archaea in global drylands. ISME J. 2019; 13(11):2727-36.
https://doi.org/10.1038/s41396-019-0465-1.
- Patel RR, Patel DD, Bhatt J, Thakor P, Triplett LR, Thakkar VR.
Induction of pre‐chorismate, jasmonate and salicylate pathways byBurkholderia sp. RR18 in peanut seedlings. J. Appl. Microbiol.
2021; 131:1417-30. https://doi.org/10.1111/jam.15019.
- Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK. Draft genome sequence
of Halolamina pelagica CDK2 isolated from natural salterns from
Rann of Kutch, Gujarat, India. Genome Announc. 2017; 5(6):1-2.
https://doi.org/10.1128/genomeA.01593-16.
- Das D, Salgaonkar BB, Mani K, Braganca JM (2014) Cadmium resistance in
extremely halophilic archaeon Haloferax strain BBK2. Chemosphere.
112:385-92. doi: 10.1016/j.chemosphere.2014.04.058.
- Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M,
Martínez-Espinosa RM, Kumavath R (2023) Bioactive molecules from
haloarchaea: Scope and prospects for industrial and therapeutic
applications. Front Microbiol. 14:1113540.
doi:10.3389/fmicb.2023.1113540.
- Voica DM, Bartha L, Banciu HL, Oren A (2016) Heavy metal resistance in
halophilic Bacteria and Archaea. FEMS Microbiol Lett. 363(14):fnw146.
doi:10.1093/femsle/fnw146.
- Kauri T, Wallace R, Kushner DJ. Nutrition of the halophilic
archaebacterium, Haloferaxvolcanii . Syst Appl Microbiol. 1990;
13:14–18. https://doi.org/10.1016/S0723-2020(11)80174-8.
- Winnepenninckx B, Backeljau T, de Wachter R. Extraction of high
molecular weight DNA from molluscs. Trends. Genet. 1993; 9: 407-12.
https://doi.org/10.1016/0168-9525(93)90102-n.
- Yildiz E, Ozcan B, Caliskan M. Isolation, characterization, and
phylogenetic analysis of halophilic archaea from a salt mine in
central Anatolia (Turkey). Pol. J. Microbiol. 2012; 61:111-17.
https://doi.org/10.33073/pjm-2012-014.
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular
Evolutionary Genetics Analysis across computing platforms. Mol. Biol.
Evol. 2018; 35:1547-49.
https://doi.org/10.1093/molbev/msy096.
- Pikovskaya R. Mobilization of phosphorus in soil in connection with
vital activity of some microbial species. Mikrobiologiya. 1948;
17:362-70.
- Watanabe F, Olsen S. Test of an ascorbic acid method for determining
phosphorus in water and NaHCO3 extracts from soil.
Soil Sci. 1965; 29:677-78.
https://doi.org/10.2136/sssaj1965.03615995002900060025x.
- Baldani VLD, Baldani JI, Olivares FL, Döbereiner J. Identification and
ecology of Herbaspirillum seopedicae and the closely relatedPseudomonas rubrisubalbicans . Symbiosis. 1992; 19:65-73.
- Mehnaz S, Lazarovits G. Inoculation effects of Pseudomonas
putida, Gluconaacetobacter azotocaptans and Azospirillum
lipoferum on corn plant growth under greenhouse conditions. Microb.
Ecol. 2006; 51:326-35.
https://doi.org/10.1007/s00248-006-9039-7.
- Perez-Miranda S, Cabirol N, George-Tellez R, Zamudio-Rivera LS. O-CAS,
a fast and universal method for siderophore detection. J. Mircobial.
Meth. 2007; 90:127-31.
https://doi.org/10.1016/j.mimet.2007.03.023.
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et
al. SPAdes: a new genome assembly algorithm and its applications to
single-cell sequencing. J. Comput. Biol. 2012; 19(5):455-77.
https://doi.org/10.1089/cmb.2012.0021.
- Darling AE, Mau B, Perna NT. Progressive Mauve : multiple genome
alignment with gene gain, loss, and rearrangement. PLoS One. 2010;
5(6):e11147. https://doi.org/10.1371/journal.pone.0011147.
- Besemer J, Lomsadzec A, Borodovsky M. GeneMarkS: a self-training
method for prediction of gene starts in microbial genomes.
Implications for finding sequence motifs in regulatory regions.
Nucleic Acids Res. 2001; 29:2607-18.
https://doi.org/10.1093/nar/29.12.2607.
- Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF. From genomics to
chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;
34:354-57.
https://doi.org/10.1093/nar/gkj102.
- Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ. antiSMASH
4.0-improvements in chemistry prediction and gene cluster boundary
identification. Nucleic Acids Res. 2017; 45(W1):W36-W41.
https://doi.org/10.1093/nar/gkx319.
- Vreeland RH. Taxonomy of Halophilic Bacteria. In: Vreeland RH,
Hochstein LI, editors. The Biology of Halophilic Bacteria. Boca Raton:
CRC Press; 1993. pp.105-134.
https://doi.org/10.1007/978-4-431-53898-1_13.
- Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC. Halophile and
halotolerant microorganisms from soils. In: Dion P, Nautiyal PS,
editors. Microbiology of Extreme Soils. Berlin: Springer-Verlag; 2008.
pp. 87-115.
https://doi.org/10.1007/978-3-540-74231-9_5.
- Oren A. Industrial and environmental applications of halophilic
microorganisms. Environ. Techn. 2010; 31:825-34.
https://doi.org/10.1080/09593330903370026.
- Menasria T, Aguilera M, Hocine H, Benammar L, Ayachi A, Si Bachir A,
et al. Diversity and bioprospecting of extremely halophilic archaea
isolated from Algerian arid and semi-arid wetland ecosystems for
halophilic-active hydrolytic enzymes. Microbiol. Res. 2018;
207:289-98. https://doi.org/10.1016/j.micres.2017.12.011.
- Dubey G, Kollah B, Gour VK, Shukla AK, Mohanty SR. Diversity of
bacteria and archaea in the rhizosphere of bioenergy cropJatropha curcas . 3 Biotech. 2016; 6(2):257.
https://doi.org/10.1007/s13205-016-0546-z.
- Sawers RG. Little red floaters: gas vesicles in anEnterobacterium . Environ. Microbiol. 2016; 18:1091-93.
https://doi.org/10.1111/1462-2920.13245.
- Koonin EV, Yutin N. The dispersed archaeal eukaryome and the complex
archaeal ancestor of eukaryotes. Cold Spring Harb. Perspect. Biol.
2014; 6(4):a016188.
https://doi.org/10.1101/cshperspect.a016188.
- Selim S, Akhtar N, Hagagy N, Alanazi A, Warrad M, El Azab E. Selection
of newly identified growth-promoting archaea Haloferax species
with a potential action on cobalt resistance in maize plants. Front.
Plant Sci. 2022; 13.
https://doi.org/10.3389/fpls.2022.872654.
- Jung J, Kim J, Taffner J, Berg G, Ryu C. Archaea, tiny helpers of land
plants. Comput. Struct. Biotechnol. J. 2020; 18:2494-2500.
https://doi.org/10.1016/j.csbj.2020.09.005.
- Hubmacher D, Matzanke BF, Anemüller S. Iron-uptake in the EuryarchaeonHalobacterium salinarum . Biometals. 2007; 20:539-47.
https://doi.org/10.1007/s10534-006-9064-5.
- Shafiee RT, Snow JT, Zhang Q, Rickaby REM. Iron requirements and
uptake strategies of the globally abundant marine ammonia-oxidising
archaeon, Nitrosopumilus maritimus SCM1. ISME J. 2019;
13:2295-2305. https://doi.org/10.1038/s41396-019-0434-8.
- Niessen N, Soppa J. Regulated iron siderophore production of the
halophilic archaeon Haloferax volcanii . Biomolecules. 2020;
10:1072.
https://doi.org/10.3390/biom10071072.
- Herrmann M, Saunders AM, Schramm A. Archaea dominate the ammonia-
oxidizing community in the rhizosphere of the freshwater macrophyteLittorella uniflora . AEM. 2008; 74(10):3279-83.
https://doi.org/10.1128/AEM.02802-07.
- Ludt K, Soppa J. Polyploidy in halophilic archaea: Regulation,
evolutionary advantages, and gene conversion. Biochem. Soc. Trans.
2019; 47:933-44.
https://doi.org/10.1042/BST20190256.
- Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA.
Archaea are interactive components of complex microbiomes. Trends
Microbiol. 2018; 26:70-85.
https://doi.org/10.1016/j.tim.2017.07.004.
- Vinogradov AA, Suga H. Introduction to thiopeptides: Biological
activity, biosynthesis, and strategies for functional reprogramming.
Cell Chem. Biol. 2020; 27:1032-51.
https://doi.org/10.1016/j.chembiol.2020.07.003.
- Al-Mailem DM, Sorkhoh NA, Marafie M, Al-Awadhi, Eliyas M, Radwan SS.
Oil phytoremediation potential of hypersaline coasts of the Arabian
Gulf using rhizosphere technology. Bioresour. Technol. 2010;
101(15):5786-92. https://doi.org/10.1016/j.biortech.2010.02.082.
- Song GC, Im H, Jung J, Lee S, Jung MY, Rhee SK. Plant growth-promoting
archaea trigger induced systemic resistance in Arabidopsis
thaliana against Pectobacterium carotovorum andPseudomonas syringae. Environ. Microbiol. 2019; 2:940-48.
https://doi.org/10.1111/1462-2920.14486.
- Schmid J, Fariña J, Rehm B, Sieber V. Editorial: Microbial
Exopolysaccharides: From Genes to Applications. Front. Microbiol.
2016; 7:308.
https://doi.org/10.3389/fmicb.2016.00308.
- Hamidi M, Mirzaei R, Delattre C, Khanaki K, Pierre G, Gardarin C.
Characterization of a new exopolysaccharide produced byHalorubrum sp. TBZ112 and evaluation of its anti-proliferative
effect on gastric cancer cells. 3 Biotech. 2019; 9(1).
https://doi.org/10.1007/s13205-018-1515-5.
- Just-Baringo X, Albericio F, Álvarez M. Thiopeptide antibiotics:
Retrospective and recent advances. Marine Drugs. 2014; 12(1):317-51.
https://doi.org/10.3390/md12010317.
- Boronat A, Rodríguez-Concepción M. Terpenoid biosynthesis in
prokaryotes. Adv. Biochem. Eng. Biotechnol. 2015; 148: 3-18.
https://doi.org/10.1007/10_2014_285.
- Verma DK, Vasudeva G, Sidhu C, Pinnaka AK, Prasad SE, Thakur KG.
Biochemical and taxonomic characterization of novel haloarchaeal
strains and purification of the recombinant halotolerant α-amylase
discovered in the isolate. Front. Microbiol. 2020; 11:2082.
https://doi.org/10.3389/fmicb.2020.02082.
- Wang S, Zheng Z, Zou H, Li N, Wu M. Characterization of the secondary
metabolite biosynthetic gene clusters in archaea. Comput. Biol. Chem.
2019; 78:165-69.
https://doi.org/10.1016/j.compbiolchem.2018.11.019.