References
Abbott, L. C., & Nigussie, F. (2020). Adult neurogenesis in the mammalian dentate gyrus. Anatomia, histologia, embryologia, 49(1), 3-16.
Abrahao, K.P., Salinas, A.G., Lovinger, D.M., 2017. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 96, 1223–1238.
Aglawe, M.M., Kale, M.B., Rahangdale, S.R., Kotagale, N.R., Umekar, M.J., Taksande, B.G.2021. Agmatine improves the behavioral and cognitive impairments associated with chronic gestational ethanol exposure in rats. Brain Res. Bull. 167, 37-47.
Amaral, D.G. and Witter, M.P., 1989. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31.3, 571–591.
Augier, E., Flanigan, M., Dulman, R.S., Pincus, A., Schank, J.R., Rice, K.C., Kejun, C., Heilig, M., Tapocik, J.D., 2014. Wistar rats acquire and maintain self-administration of 20 % ethanol without water deprivation, saccharin/sucrose fading, or extended access training. Psychopharmacology (Berl). 231, 4561–4568.
Bird, C.W., Taylor, D.H., Pinkowski, N.J., Chavez, G.J., Valenzuela, C.F., 2018. Long-term Reductions in the Population of GABAergic Interneurons in the Mouse Hippocampus following Developmental Ethanol Exposure. Neuroscience 383, 60–73.
Birot, G., Kachenoura, A., Albera, L., Bénar, C., Wendling, F., 2013. Automatic detection of fast ripples. J. Neurosci. Methods 213, 236–249.
Blanco, J.A., Stead, M., Krieger, A., Viventi, J., Marsh, W.R., Lee, K.H., Worrell, G.A., Litt, B., 2010. Unsupervised Classification of High-Frequency Oscillations in Human Neocortical Epilepsy and Control Patients. J. Neurophysiol. 104, 2900–2912.
Burnos, S., Hilfiker, P., Sürücü, O., Scholkmann, F., Krayenbühl, N., Grunwald, T., Sarnthein., J., 2014. Human Intracranial High Frequency Oscillations (HFOs) Detected by Automatic Time-Frequency Analysis. PLoS One 9.
Buzsáki, G., Leung, L.S., Vanderwolf, C.H., 1983. Cellular bases of hippocampal EEG in the behaving rat. Brain research reviews 6.2, 139–171.
Buzsáki G. 1989. Two-stage model of memory trace formation: a role for ”noisy” brain states. Neuroscience. 31, 551-70.
Buzsáki, G., Logothetis, N., & Singer, W. (2013). Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron, 80(3), 751-764.
Buzsáki, G., 2015. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188.
Caccavano, A., Bozzelli, P. L., Forcelli, P. A., Pak, D. T., Wu, J. Y., Conant, K., & Vicini, S. (2020). Inhibitory parvalbumin basket cell activity is selectively reduced during hippocampal sharp wave ripples in a mouse model of familial Alzheimer’s disease. Journal of Neuroscience, 40(26), 5116-5136.
Carson, E.J., Pruett, S.B., 1996. Development and Characterization of a Binge Drinking Model in Mice for Evaluation of the Immunological Effects of Ethanol. Alcohol. Clin. Exp. Res. 20, 132–138.
Chao, O. Y., de Souza Silva, M. A., Yang, Y. M., & Huston, J. P. (2020). The medial prefrontal cortex-hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neuroscience & Biobehavioral Reviews, 113, 373-407.
Charupanit, K., Lopour, B.A., 2017. A Simple Statistical Method for the Automatic Detection of Ripples in Human Intracranial EEG. Brain Topogr. 30, 724–738.
Clark, R.E., Squire, L.R., 2013. Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proc. Natl. Acad. Sci. 110, 10365 LP – 10370.
Cowen, S.L., Gray, D.T., Wiegand, J.-P.L., Schimanski, L.A., Barnes, C.A., 2020. Age-associated changes in waking hippocampal sharp-wave ripples. Hippocampus 30, 28–38.
Crabbe, J.C., 2014. Use of animal models of alcohol-related behavior. Handb. Clin. Neurol. 125, 71–86.
Creery, J.D., Brang, D.J., Arndt, J.D., Bassard, A., Towle, V.L., Tao, J.X., Wu, S., Rose, S., Warnke, P.C., Issa, N.P. and Paller, K.A., 2022. Electrophysiological markers of memory consolidation in the human brain when memories are reactivated during sleep. Proceedings of the National Academy of Sciences, 119(44), p.e2123430119.
Crépon, B., Navarro, V., Hasboun, D., Clemenceau, S., Martinerie, J., Baulac, M., Adam, C., le Van Quyen, M., 2010. Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain 133, 33–45.
de La Prida, L.M 2020. Potential factors influencing replay across CA1 during sharp-wave ripples. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 75, 20190236.
Dubowski, K. M. (1980). Alcohol determination in the clinical laboratory. American journal of clinical pathology, 74(5), 747-750.
Duff, M. C., Covington, N. V., Hilverman, C., & Cohen, N. J. (2020). Semantic memory and the hippocampus: Revisiting, reaffirming, and extending the reach of their critical relationship. Frontiers in human neuroscience, 13, 471.
Ellenrieder, N.V., Andrade-Valença, L.P., Dubeau, F., Gotman, J., 2012. Automatic detection of fast oscillations (40-200Hz) in scalp EEG recordings. Clin. Neurophysiol. 123, 670–680.
Evangelista, R., Cano, G., Cooper, C., Schmitz, D., Maier, N., Kempter, R., 2020. Generation of Sharp Wave-Ripple Events by Disinhibition. J. Neurosci. 40, 7811–7836.
Feng, Q., Song, Q., Wang, M., Pang, P., Liao, Z., Jiang, H., Shen, D., Ding, Z., 2019. Hippocampus Radiomic Biomarkers for the Diagnosis of Amnestic Mild Cognitive Impairment: A Machine Learning Method. Front. Aging Neurosci. 11, 323.
Finegersh, A. and Homanics, G.E., 2014. Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PloS one, 9(6), p.e99078.
Fleming, W., Jones, Q., Chandra, U., Saini, A., Walker, D., Francis, R., Ocampo, G. and Kuhn, C., 2019. Withdrawal from brief repeated alcohol treatment in adolescent and adult male and female rats. Alcoholism: clinical and experimental research, 43(2), pp.204-211.
Ford, M.M., 2014. Applications of schedule-induced polydipsia in rodents for the study of an excessive ethanol intake phenotype. Alcohol, 48(3), pp.265-276.
García-Pérez, M. A., Irani, M., Tiznado, V., Bustamante, T., Inostroza, M., Maldonado, P. E., & Valdés, J. L. (2022). Cortico-Hippocampal Oscillations Are Associated With the Developmental Onset of Hippocampal-Dependent Memory. Frontiers in Neuroscience, 16:891523.
Gilpin, N.W., Richardson, H.N., Cole, M. and Koob, G.F., 2008. Vapor inhalation of alcohol in rats. Current Protocols in Neuroscience, 44(1), pp.9-29.
Girardeau, G. and Lopes-Dos-Santos, V., 2021. Brain neural patterns and the memory function of sleep. Science, 374(6567), pp.560-564.
Goldstein, D. B. (1972). Relationship of alcohol dose to intensity of withdrawal signs in mice. Journal of Pharmacology and Experimental Therapeutics, 180(2), 203-215.
González-Burgos, I., Alejandre-Gómez, M., Olvera-Cortés, M.E., Pérez-Vega, M.I., Evans, S., Feria-Velasco, A., 2006. Prenatal-through-postnatal exposure to moderate levels of ethanol leads to damage on the hippocampal CA1 field of juvenile rats: A stereology and Golgi study. Neurosci. Res. 56, 400–408.
Guzman, S.J., Schlögl, A., Frotscher, M., Jonas, P., 2016. Synaptic mechanisms of pattern completion in the hippocampal CA3 network”. Science 353.6304, 1117–1123.
Hamel, R., Demers, O., Lepage, J. F., & Bernier, P. M. (2022). The effects of post‐learning alcohol ingestion on human motor memory consolidation. European Journal of Neuroscience, 56(5), 4600-4618.
Härtl, G., Garwood, P., 2018. Harmful use of alcohol kills more than 3 million people each year, most of them men. World Heal. Organ.
Heroux, N.A., Robinson-Drummer, P.A., Kawan, M., Rosen, J.B., Stanton, M.E., 2019. Neonatal ethanol exposure impairs long-term context memory formation and prefrontal immediate early gene expression in adolescent rats. Behav. Brain Res. 359, 386–395.
Ho, A.M., Peyton, M.P., Scaletty, S.J., Trapp, S., Schreiber, A., Madden, B.J., Choi, D.S., Matthews, D.B. 2022. Chronic Intermittent Ethanol Exposure Alters Behavioral Flexibility in Aged Rats Compared to Adult Rats and Modifies Protein and Protein Pathways Related to Alzheimer’s Disease. ACS Omega. 7, 46260-46276.
Hwa, L.S., Chu, A., Levinson, S.A., Kayyali, T.M., DeBold, J.F. and Miczek, K.A., 2011. Persistent escalation of alcohol drinking in C57BL/6J mice with intermittent access to 20% ethanol. Alcoholism: Clinical and Experimental Research, 35(11), pp.1938-1947.
Ieraci, A., Herrera, D.G., 2007. Single alcohol exposure in early life damages hippocampal stem/progenitor cells and reduces adult neurogenesis. Neurobiol. Dis. 26, 597–605.
Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal sharp-wave ripples support spatial memory. Science, 336(6087), 1454-1458.
Jones, E.A., Gillespie, A.K., Yoon, S.Y., Frank, L.M., Huang, Y., 2019. Early Hippocampal Sharp-Wave Ripple Deficits Predict Later Learning and Memory Impairments in an Alzheimer’s Disease Mouse Model. Cell Rep. 29, 2123-2133.e4.
Kibble, J.D., Halsey, C.R., 2015. Neurophysiology. In: Med. Physiol. Big Pict. McGraw-Hill Education, New York, NY.
Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D. B., Cobden, P. M., Buzsáki, G., & Somogyi, P. (2003). Brain-state-and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421(6925), 844-848.
Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 321(5885), 53-57.
Kliethermes, C.L., 2005. Anxiety-like behaviors following chronic ethanol exposure. Neurosci. Biobehav. Rev. 28, 837–850.
Klintsova, A.Y., Helfer, J.L., Calizo, L.H., Dong, W.K., Goodlett, C.R., Greenough, W.T., 2007. Persistent impairment of hippocampal neurogenesis in young adult rats following early postnatal alcohol exposure. Alcohol. Clin. Exp. Res. 31, 2073–2082.
Klinzing, J. G., Niethard, N., & Born, J. (2019). Mechanisms of systems memory consolidation during sleep. Nature neuroscience, 22(10), 1598-1610.
Krawczyk, M., Ramani, M., Dian, J., Florez, C. M., Mylvaganam, S., Brien, J., Reynolds, J., Kapur, B., Zoidl, G., Poulter, M.O., & Carlen, P. L. (2016). Hippocampal hyperexcitability in fetal alcohol spectrum disorder: Pathological sharp waves and excitatory/inhibitory synaptic imbalance. Experimental neurology, 280, 70-79
Krsiak, M., & Borgesova, M. (1973). Effect of alcohol on behaviour of pairs of rats. Psychopharmacologia.
Kumar, A. A. (2021). Semantic memory: A review of methods, models, and current challenges. Psychonomic Bulletin & Review, 28, 40-80.
Kuntsche, E., Knibbe, R., Gmel, G., Engels, R., 2005. Why do young people drink? A review of drinking motives. Clin. Psychol. Rev. 25, 841–861.
Lee, D.H., Moon, J., Ryu, J., Jeong, J.Y., Roh, G.S., Kim, H.J., Cho, G.J., Choi, W.S., Kang, S.S., 2015. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice. Genes Genet. Syst. 90, 335–342.
Liu, X., Hu, L., Xu, C., Xu, S., Wang, S., Chen, Z., Shen, J., 2021. An Automatic HFO Detection Method Combining Visual Inspection Features with Multi-Domain Features. Neurosci. Bull. 37, 777–788.
Livy, D.J., Miller, E.K., Maier, S.E., West, J.R., 2003. Fetal alcohol exposure and temporal vulnerability: effects of binge-like alcohol exposure on the developing rat hippocampus. Neurotoxicol. Teratol. 25, 447–458.
Lundqvist, C., Alling, C., Knoth, R., Volk, B., 1995. Intermittent Ethanol exposure of adult rats: Hippocampal cell loss after one month of treatment. Alcohol Alcohol. 30, 737–748.
Martin, J.H., 2021. The Limbic System and Cerebral Circuits for Reward, Emotions, and Memory. In: Neuroanat. Text Atlas. McGraw Hill, New York, NY.
Matthews, D.B., Scaletty, S., Schreiber, A., Trapp, S. 2020. Acute ethanol administration produces larger spatial and nonspatial memory impairments in 29-33 month old rats compared to adult and 18-24 month old rats. Pharmacol. Biochem. Behav. 199, 173074.
McBride, W.J., Rodd, Z.A., Bell, R.L., Lumeng, L., Li, T.-K., 2014. The alcohol-preferring (P) and high-alcohol-drinking (HAD) rats – Animal models of alcoholism. Alcohol 48, 209–215.
McClain, J.A., Morris, S.A., Marshall, S.A., Nixon, K., 2014. Ectopic hippocampal neurogenesis in adolescent male rats following alcohol dependence. Addict. Biol. 19, 687–699.
Mira, R.G., Lira, M., Tapia-Rojas, C., Rebolledo, D.L., Quintanilla, R.A., Cerpa, W., 2020. Effect of Alcohol on Hippocampal-Dependent Plasticity and Behavior: Role of Glutamatergic Synaptic Transmission. Front. Behav. Neurosci. 13.
Miyake, K., Yagi, S., Aoki, Y., Shikano, Y., Ikegaya, Y., Sasaki, T., 2020. Acute Effects of Ethanol on Hippocampal Spatial Representation and Offline Reactivation. Front. Cell. Neurosci. 14.
Mooij, A. H., Huiskamp, G. J., Aarts, E., Ferrier, C. H., Braun, K. P., & Zijlmans, M. (2022). Accurate differentiation between physiological and pathological ripples recorded with scalp-EEG. Clinical Neurophysiology, 143, 172-181.
Nakashiba, Buhl, D.L., McHugh, T.J., Tonegawa, S., 2009. Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron 62.6, 781–787.
Navarrete, M., Alvarado-Rojas, C., le Van Quyen, M., Valderrama, M., 2016. RIPPLELAB: A Comprehensive Application for the Detection, Analysis and Classification of High Frequency Oscillations in Electroencephalographic Signals. PLoS One 11, e0158276-.
Navas-Olive, A., Amaducci, R., Jurado-Parras, M.T., Sebastian, E.R. and de la Prida, L.M., 2022. Deep learning-based feature extraction for prediction and interpretation of sharp-wave ripples in the rodent hippocampus. Elife, 11, p.e77772.
Oliva, A., Fernández-Ruiz, A., Leroy, F., Siegelbaum, S.A., 2020. Hippocampal CA2 sharp-wave ripples reactivate and promote social memory. Nature 587, 264–269.
Park, A. J., Harris, A. Z., Martyniuk, K. M., Chang, C. Y., Abbas, A. I., Lowes, D. C., Kellendonk, C., Gogos, J.A., Gordon, J. A. (2021). Reset of hippocampal–prefrontal circuitry facilitates learning. Nature, 591(7851), 615-619.
Paula-Barbosa, M.M., Brandão, F., Madeira, M.D., Cadete-Leite, A., 1993. Structural changes in the hippocampal formation after long-term alcohol consumption and wit|hdrawal in the rat. Addiction 88, 237–247.
Prince, S. M., Paulson, A. L., Jeong, N., Zhang, L., Amigues, S., & Singer, A. C. (2021). Alzheimer’s pathology causes impaired inhibitory connections and reactivation of spatial codes during spatial navigation. Cell reports, 35(3), 109008.
Reid, H.M.O., Lysenko-Martin, M.R., Snowden, T.M., Thomas, J.D., Christie, B.R., 2020. A Systematic Review of the Effects of Perinatal Alcohol Exposure and Perinatal Marijuana Exposure on Adult Neurogenesis in the Dentate Gyrus. Alcohol. Clin. Exp. Res. 44, 1164–1174.
Reitz, N.L., Nunes, P.T. and Savage, L.M., 2021. Adolescent binge-type ethanol exposure in rats mirrors age-related cognitive decline by suppressing cholinergic tone and hippocampal neurogenesis. Frontiers in behavioral neuroscience, 15, p.772857.
Rhodes, J.S., Best, K., Belknap, J.K., Finn, D.A. and Crabbe, J.C., 2005. Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiology & behavior, 84(1), pp.53-63.
Risher, M.-L., Fleming, R.L., Risher, W.C., Miller, K.M., Klein, R.C., Wills, T., Acheson, S.K., Moore, S.D., Wilson, W.A., Eroglu, C., Swartzwelder, H.S., 2015. Adolescent Intermittent Alcohol Exposure: Persistence of Structural and Functional Hippocampal Abnormalities into Adulthood. Alcohol. Clin. Exp. Res. 39, 989–997.
Roumis, D.K., Frank, L.M., 2015. Hippocampal sharp-wave ripples in waking and sleeping states. Curr. Opin. Neurobiol. 35, 6–12.
Sánchez, L.M., Goss, J., Wagner, J., Davies, S., Savage, D.D., Hamilton, D.A., Clark, B.J., 2019. Moderate prenatal alcohol exposure impairs performance by adult male rats in an object-place paired-associate task. Behav. Brain Res. 360, 228–234.
Quadir, S.G., Tanino, S.M., Rohl, C.D., Sahn, J.J., Yao, E.J., dos Reis Cruz, L., Cottone, P., Martin, S.F. and Sabino, V., 2021. The Sigma-2 receptor/transmembrane protein 97 (σ2R/TMEM97) modulator JVW-1034 reduces heavy alcohol drinking and associated pain states in male mice. Neuropharmacology, 184, p.108409.
Shield, K.D., Parry, C., Rehm, J., 2013. Chronic diseases and conditions related to alcohol use. Alcohol Res. Curr. Rev. 35, 155–173.
Shimamoto, S., Waldman, Z.J., Orosz, I., Song, I., Bragin, A., Fried, I., Engel, J., Staba, R., Sharan, A., Wu, C., Sperling, M.R., Weiss, S.A., 2018. Utilization of independent component analysis for accurate pathological ripple detection in intracranial EEG recordings recorded extra- and intra-operatively. Clin. Neurophysiol. 129, 296–307.
Shin, J.D., Tang, W., Jadhav, S.P., 2019. Dynamics of Awake Hippocampal-Prefrontal Replay for Spatial Learning and Memory-Guided Decision Making. Neuron 104, 1110-1125.e7.
Simms, J. A., Steensland, P., Medina, B., Abernathy, K. E., Chandler, L. J., Wise, R., & Bartlett, S. E., 2008. Intermittent access to 20% ethanol induces high ethanol consumption in Long–Evans and Wistar rats. Alcoholism: Clinical and Experimental Research, 32(10), 1816-1823.
Sircar, R., Sircar, D., 2005. Adolescent Rats Exposed to Repeated Ethanol Treatment Show Lingering Behavioral Impairments. Alcohol. Clin. Exp. Res. 29, 1402–1410.
Sokolowski, K., Corbin, J., 2012. Wired for behaviors: From development to function of innate limbic system circuitry. Front. Mol. Neurosci. 5, 55.
Staba, R.J., Wilson, C.L., Bragin, A., Fried, I., 2002. Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J. Neurophysiol. 88, 1743–1752.
Stimac, J.M., 2022. Hippocampus. Salem Press Encycl. Heal.
Stoiljkovic, M., Kelley, C., Stutz, B., Horvath, T. L., & Hajós, M. (2019). Altered cortical and hippocampal excitability in TgF344-AD rats modeling Alzheimer’s disease pathology. Cerebral Cortex, 29(6), 2716-2727.
Tabakoff, B., Hoffman, P.L., 2000. Animal models in alcohol research. Alcohol Res. Health 24, 77–84.
Tonegawa, S., Morrissey, M. D., & Kitamura, T. (2018). The role of engram cells in the systems consolidation of memory. Nature Reviews Neuroscience, 19(8), 485-498.
Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus, 8(3), 198-204.
Varga, C., Golshani, P., & Soltesz, I. (2012). Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proceedings of the National Academy of Sciences, 109(40), E2726-E2734.
Vena, A.A., Zandy, S.L., Cofresí, R.U. and Gonzales, R.A., 2020. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacology & therapeutics, 212, p.107573.
White, A.M., Matthews, D.B., Best, P.J., 2000. Ethanol, memory, and hippocampal function: A review of recent findings. Hippocampus 10, 88–93.
Wilson, M.A. and McNaughton, B.L., 1994. Reactivation of hippocampal ensemble memories during sleep. Science 265.5172, 676–679.
Wittner, L. and Miles, R., 2007. Factors defining a pacemaker region for synchrony in the hippocampus. The Journal of Physiology, 584, 867-883.
Witton, J., Staniaszek, L. E., Bartsch, U., Randall, A. D., Jones, M. W., & Brown, J. T. (2016). Disrupted hippocampal sharp‐wave ripple‐associated spike dynamics in a transgenic mouse model of dementia. The Journal of physiology, 594(16), 4615-4630.
Wong, S.M., Arski, O.N., Workewych, A.M., Donner, E., Ochi, A., Otsubo, H., Snead, O.C. and Ibrahim, G.M., 2021. Detection of high-frequency oscillations in electroencephalography: A scoping review and an adaptable open-source framework. Seizure-European Journal of Epilepsy, 84, pp.23-33.
Wood RN, D., 2013. Alcohol abuse and alcoholism. Patient Educ. Ref. Center, EBSCO Publ.
World Heal. Organ., 2018a. Alcohol [WWW Document]. URL https://www.who.int/news-room/fact-sheets/detail/alcohol (accessed 10.9.20).
World Heal. Organ., 2018b. Glob. status Rep. alcohol and health 2018, Glob. status Rep. alcohol. Geneva.
Xu, X., Sun, Y., Holmes, T. C., & López, A. J. (2016). Noncanonical connections between the subiculum and hippocampal CA1. Journal of Comparative Neurology, 524(17), 3666-3673.
Zelmann, R., Mari, F., Jacobs, J., Zijlmans, M., Chander, R., Gotman, J., 2010. Automatic detector of high frequency oscillations for human recordings with macroelectrodes. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf. 2010, 2329–2333.
Zhen, Z. H., Guo, M. R., Li, H. M., Guo, O. Y., Zhen, J. L., Fu, J., & Tan, G. J. (2021). Normal and Abnormal Sharp Wave Ripples in the Hippocampal-Entorhinal Cortex System: Implications for Memory Consolidation, Alzheimer’s Disease, and Temporal Lobe Epilepsy. Frontiers in Aging Neuroscience, 13, 683483.