References
Abbott, L. C., & Nigussie, F. (2020). Adult neurogenesis in the
mammalian dentate gyrus. Anatomia, histologia, embryologia, 49(1), 3-16.
Abrahao, K.P., Salinas, A.G., Lovinger, D.M., 2017. Alcohol and the
Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 96,
1223–1238.
Aglawe, M.M., Kale, M.B., Rahangdale, S.R., Kotagale, N.R., Umekar,
M.J., Taksande, B.G.2021.
Agmatine improves the
behavioral and cognitive impairments associated with chronic gestational
ethanol exposure in rats. Brain Res. Bull. 167, 37-47.
Amaral, D.G. and Witter, M.P., 1989. The three-dimensional organization
of the hippocampal formation: a review of anatomical data. Neuroscience
31.3, 571–591.
Augier, E., Flanigan, M., Dulman, R.S., Pincus, A., Schank, J.R., Rice,
K.C., Kejun, C., Heilig, M., Tapocik, J.D., 2014. Wistar rats acquire
and maintain self-administration of 20 % ethanol without water
deprivation, saccharin/sucrose fading, or extended access training.
Psychopharmacology (Berl). 231, 4561–4568.
Bird, C.W., Taylor, D.H., Pinkowski, N.J., Chavez, G.J., Valenzuela,
C.F., 2018. Long-term Reductions in the Population of GABAergic
Interneurons in the Mouse Hippocampus following Developmental Ethanol
Exposure. Neuroscience 383, 60–73.
Birot, G., Kachenoura, A., Albera, L., Bénar, C., Wendling, F., 2013.
Automatic detection of fast ripples. J. Neurosci. Methods 213, 236–249.
Blanco, J.A., Stead, M., Krieger, A., Viventi, J., Marsh, W.R., Lee,
K.H., Worrell, G.A., Litt, B., 2010. Unsupervised Classification of
High-Frequency Oscillations in Human Neocortical Epilepsy and Control
Patients. J. Neurophysiol. 104, 2900–2912.
Burnos, S., Hilfiker, P., Sürücü, O., Scholkmann, F., Krayenbühl, N.,
Grunwald, T., Sarnthein., J., 2014. Human Intracranial High Frequency
Oscillations (HFOs) Detected by Automatic Time-Frequency Analysis. PLoS
One 9.
Buzsáki, G., Leung, L.S., Vanderwolf, C.H., 1983. Cellular bases of
hippocampal EEG in the behaving rat. Brain research reviews 6.2,
139–171.
Buzsáki G. 1989.
Two-stage model of
memory trace formation: a role for ”noisy” brain states. Neuroscience.
31, 551-70.
Buzsáki, G., Logothetis, N., & Singer, W. (2013). Scaling brain size,
keeping timing: evolutionary preservation of brain rhythms. Neuron,
80(3), 751-764.
Buzsáki, G., 2015. Hippocampal sharp wave-ripple: A cognitive biomarker
for episodic memory and planning. Hippocampus 25, 1073–1188.
Caccavano, A., Bozzelli, P. L., Forcelli, P. A., Pak, D. T., Wu, J. Y.,
Conant, K., & Vicini, S. (2020). Inhibitory parvalbumin basket cell
activity is selectively reduced during hippocampal sharp wave ripples in
a mouse model of familial Alzheimer’s disease. Journal of Neuroscience,
40(26), 5116-5136.
Carson, E.J., Pruett, S.B., 1996. Development and Characterization of a
Binge Drinking Model in Mice for Evaluation of the Immunological Effects
of Ethanol. Alcohol. Clin. Exp. Res. 20, 132–138.
Chao, O. Y., de Souza Silva, M. A., Yang, Y. M., & Huston, J. P.
(2020). The medial prefrontal cortex-hippocampus circuit that integrates
information of object, place and time to construct episodic memory in
rodents: Behavioral, anatomical and neurochemical properties.
Neuroscience & Biobehavioral Reviews, 113, 373-407.
Charupanit, K., Lopour, B.A., 2017. A Simple Statistical Method for the
Automatic Detection of Ripples in Human Intracranial EEG. Brain Topogr.
30, 724–738.
Clark, R.E., Squire, L.R., 2013. Similarity in form and function of the
hippocampus in rodents, monkeys, and humans. Proc. Natl. Acad. Sci. 110,
10365 LP – 10370.
Cowen, S.L., Gray, D.T., Wiegand, J.-P.L., Schimanski, L.A., Barnes,
C.A., 2020. Age-associated changes in waking hippocampal sharp-wave
ripples. Hippocampus 30, 28–38.
Crabbe, J.C., 2014. Use of animal models of alcohol-related behavior.
Handb. Clin. Neurol. 125, 71–86.
Creery, J.D., Brang, D.J., Arndt, J.D., Bassard, A., Towle, V.L., Tao,
J.X., Wu, S., Rose, S., Warnke, P.C., Issa, N.P. and Paller, K.A., 2022.
Electrophysiological markers of memory consolidation in the human brain
when memories are reactivated during sleep. Proceedings of the National
Academy of Sciences, 119(44), p.e2123430119.
Crépon, B., Navarro, V., Hasboun, D., Clemenceau, S., Martinerie, J.,
Baulac, M., Adam, C., le Van Quyen, M., 2010. Mapping interictal
oscillations greater than 200 Hz recorded with intracranial
macroelectrodes in human epilepsy. Brain 133, 33–45.
de La Prida, L.M 2020. Potential factors influencing replay across CA1
during sharp-wave ripples. Philos. Trans. R. Soc. Lond. B. Biol. Sci.
75, 20190236.
Dubowski, K. M. (1980). Alcohol determination in the clinical
laboratory. American journal of clinical pathology, 74(5), 747-750.
Duff, M. C., Covington, N. V., Hilverman, C., & Cohen, N. J. (2020).
Semantic memory and the hippocampus: Revisiting, reaffirming, and
extending the reach of their critical relationship. Frontiers in human
neuroscience, 13, 471.
Ellenrieder, N.V., Andrade-Valença, L.P., Dubeau, F., Gotman, J., 2012.
Automatic detection of fast oscillations (40-200Hz) in scalp EEG
recordings. Clin. Neurophysiol. 123, 670–680.
Evangelista, R., Cano, G., Cooper, C., Schmitz, D., Maier, N., Kempter,
R., 2020. Generation of Sharp Wave-Ripple Events by Disinhibition. J.
Neurosci. 40, 7811–7836.
Feng, Q., Song, Q., Wang, M., Pang, P., Liao, Z., Jiang, H., Shen, D.,
Ding, Z., 2019. Hippocampus Radiomic Biomarkers for the Diagnosis of
Amnestic Mild Cognitive Impairment: A Machine Learning Method. Front.
Aging Neurosci. 11, 323.
Finegersh, A. and Homanics, G.E., 2014. Paternal alcohol exposure
reduces alcohol drinking and increases behavioral sensitivity to alcohol
selectively in male offspring. PloS one, 9(6), p.e99078.
Fleming, W., Jones, Q., Chandra, U., Saini, A., Walker, D., Francis, R.,
Ocampo, G. and Kuhn, C., 2019. Withdrawal from brief repeated alcohol
treatment in adolescent and adult male and female rats. Alcoholism:
clinical and experimental research, 43(2), pp.204-211.
Ford, M.M., 2014. Applications of schedule-induced polydipsia in rodents
for the study of an excessive ethanol intake phenotype. Alcohol, 48(3),
pp.265-276.
García-Pérez, M. A., Irani, M., Tiznado, V., Bustamante, T., Inostroza,
M., Maldonado, P. E., & Valdés, J. L. (2022). Cortico-Hippocampal
Oscillations Are Associated With the Developmental Onset of
Hippocampal-Dependent Memory. Frontiers in Neuroscience, 16:891523.
Gilpin, N.W., Richardson, H.N., Cole, M. and Koob, G.F., 2008. Vapor
inhalation of alcohol in rats. Current Protocols in Neuroscience, 44(1),
pp.9-29.
Girardeau, G. and Lopes-Dos-Santos, V., 2021. Brain neural patterns and
the memory function of sleep. Science, 374(6567), pp.560-564.
Goldstein, D. B. (1972). Relationship of alcohol dose to intensity of
withdrawal signs in mice. Journal of Pharmacology and Experimental
Therapeutics, 180(2), 203-215.
González-Burgos, I., Alejandre-Gómez, M., Olvera-Cortés, M.E.,
Pérez-Vega, M.I., Evans, S., Feria-Velasco, A., 2006.
Prenatal-through-postnatal exposure to moderate levels of ethanol leads
to damage on the hippocampal CA1 field of juvenile rats: A stereology
and Golgi study. Neurosci. Res. 56, 400–408.
Guzman, S.J., Schlögl, A., Frotscher, M., Jonas, P., 2016. Synaptic
mechanisms of pattern completion in the hippocampal CA3 network”.
Science 353.6304, 1117–1123.
Hamel, R., Demers, O., Lepage, J. F., & Bernier, P. M. (2022). The
effects of post‐learning alcohol ingestion on human motor memory
consolidation. European Journal of Neuroscience, 56(5), 4600-4618.
Härtl, G., Garwood, P., 2018. Harmful use of alcohol kills more than 3
million people each year, most of them men. World Heal. Organ.
Heroux, N.A., Robinson-Drummer, P.A., Kawan, M., Rosen, J.B., Stanton,
M.E., 2019. Neonatal ethanol exposure impairs long-term context memory
formation and prefrontal immediate early gene expression in adolescent
rats. Behav. Brain Res. 359, 386–395.
Ho, A.M., Peyton, M.P., Scaletty, S.J., Trapp, S., Schreiber, A.,
Madden, B.J., Choi, D.S., Matthews, D.B. 2022.
Chronic Intermittent
Ethanol Exposure Alters Behavioral Flexibility in Aged Rats Compared to
Adult Rats and Modifies Protein and Protein Pathways Related to
Alzheimer’s Disease. ACS Omega. 7, 46260-46276.
Hwa, L.S., Chu, A., Levinson, S.A., Kayyali, T.M., DeBold, J.F. and
Miczek, K.A., 2011. Persistent escalation of alcohol drinking in
C57BL/6J mice with intermittent access to 20% ethanol. Alcoholism:
Clinical and Experimental Research, 35(11), pp.1938-1947.
Ieraci, A., Herrera, D.G., 2007. Single alcohol exposure in early life
damages hippocampal stem/progenitor cells and reduces adult
neurogenesis. Neurobiol. Dis. 26, 597–605.
Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake
hippocampal sharp-wave ripples support spatial memory. Science,
336(6087), 1454-1458.
Jones, E.A., Gillespie, A.K., Yoon, S.Y., Frank, L.M., Huang, Y., 2019.
Early Hippocampal Sharp-Wave Ripple Deficits Predict Later Learning and
Memory Impairments in an Alzheimer’s Disease Mouse Model. Cell Rep. 29,
2123-2133.e4.
Kibble, J.D., Halsey, C.R., 2015. Neurophysiology. In: Med. Physiol. Big
Pict. McGraw-Hill Education, New York, NY.
Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D. B.,
Cobden, P. M., Buzsáki, G., & Somogyi, P. (2003). Brain-state-and
cell-type-specific firing of hippocampal interneurons in vivo. Nature,
421(6925), 844-848.
Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal
dynamics: the unity of hippocampal circuit operations. Science,
321(5885), 53-57.
Kliethermes, C.L., 2005. Anxiety-like behaviors following chronic
ethanol exposure. Neurosci. Biobehav. Rev. 28, 837–850.
Klintsova, A.Y., Helfer, J.L., Calizo, L.H., Dong, W.K., Goodlett, C.R.,
Greenough, W.T., 2007. Persistent impairment of hippocampal neurogenesis
in young adult rats following early postnatal alcohol exposure. Alcohol.
Clin. Exp. Res. 31, 2073–2082.
Klinzing, J. G., Niethard, N., & Born, J. (2019). Mechanisms of systems
memory consolidation during sleep. Nature neuroscience, 22(10),
1598-1610.
Krawczyk, M., Ramani, M., Dian, J., Florez, C. M., Mylvaganam, S.,
Brien, J., Reynolds, J., Kapur, B., Zoidl, G., Poulter, M.O., & Carlen,
P. L. (2016). Hippocampal hyperexcitability in fetal alcohol spectrum
disorder: Pathological sharp waves and excitatory/inhibitory synaptic
imbalance. Experimental neurology, 280, 70-79
Krsiak, M., & Borgesova, M. (1973). Effect of alcohol on behaviour of
pairs of rats. Psychopharmacologia.
Kumar, A. A. (2021). Semantic memory: A review of methods, models, and
current challenges. Psychonomic Bulletin & Review, 28, 40-80.
Kuntsche, E., Knibbe, R., Gmel, G., Engels, R., 2005. Why do young
people drink? A review of drinking motives. Clin. Psychol. Rev. 25,
841–861.
Lee, D.H., Moon, J., Ryu, J., Jeong, J.Y., Roh, G.S., Kim, H.J., Cho,
G.J., Choi, W.S., Kang, S.S., 2015. Effects of postnatal alcohol
exposure on hippocampal gene expression and learning in adult mice.
Genes Genet. Syst. 90, 335–342.
Liu, X., Hu, L., Xu, C., Xu, S., Wang, S., Chen, Z., Shen, J., 2021. An
Automatic HFO Detection Method Combining Visual Inspection Features with
Multi-Domain Features. Neurosci. Bull. 37, 777–788.
Livy, D.J., Miller, E.K., Maier, S.E., West, J.R., 2003. Fetal alcohol
exposure and temporal vulnerability: effects of binge-like alcohol
exposure on the developing rat hippocampus. Neurotoxicol. Teratol. 25,
447–458.
Lundqvist, C., Alling, C., Knoth, R., Volk, B., 1995. Intermittent
Ethanol exposure of adult rats: Hippocampal cell loss after one month of
treatment. Alcohol Alcohol. 30, 737–748.
Martin, J.H., 2021. The Limbic System and Cerebral Circuits for Reward,
Emotions, and Memory. In: Neuroanat. Text Atlas. McGraw Hill, New York,
NY.
Matthews, D.B., Scaletty, S., Schreiber, A., Trapp, S. 2020.
Acute ethanol
administration produces larger spatial and nonspatial memory impairments
in 29-33 month old rats compared to adult and 18-24 month old rats.
Pharmacol. Biochem. Behav. 199, 173074.
McBride, W.J., Rodd, Z.A., Bell, R.L., Lumeng, L., Li, T.-K., 2014. The
alcohol-preferring (P) and high-alcohol-drinking (HAD) rats – Animal
models of alcoholism. Alcohol 48, 209–215.
McClain, J.A., Morris, S.A., Marshall, S.A., Nixon, K., 2014. Ectopic
hippocampal neurogenesis in adolescent male rats following alcohol
dependence. Addict. Biol. 19, 687–699.
Mira, R.G., Lira, M., Tapia-Rojas, C., Rebolledo, D.L., Quintanilla,
R.A., Cerpa, W., 2020. Effect of Alcohol on Hippocampal-Dependent
Plasticity and Behavior: Role of Glutamatergic Synaptic Transmission.
Front. Behav. Neurosci. 13.
Miyake, K., Yagi, S., Aoki, Y., Shikano, Y., Ikegaya, Y., Sasaki, T.,
2020. Acute Effects of Ethanol on Hippocampal Spatial Representation and
Offline Reactivation. Front. Cell. Neurosci. 14.
Mooij, A. H., Huiskamp, G. J., Aarts, E., Ferrier, C. H., Braun, K. P.,
& Zijlmans, M. (2022). Accurate differentiation between physiological
and pathological ripples recorded with scalp-EEG. Clinical
Neurophysiology, 143, 172-181.
Nakashiba, Buhl, D.L., McHugh, T.J., Tonegawa, S., 2009. Hippocampal CA3
output is crucial for ripple-associated reactivation and consolidation
of memory. Neuron 62.6, 781–787.
Navarrete, M., Alvarado-Rojas, C., le Van Quyen, M., Valderrama, M.,
2016. RIPPLELAB: A Comprehensive Application for the Detection, Analysis
and Classification of High Frequency Oscillations in
Electroencephalographic Signals. PLoS One 11, e0158276-.
Navas-Olive, A., Amaducci, R., Jurado-Parras, M.T., Sebastian, E.R. and
de la Prida, L.M., 2022. Deep learning-based feature extraction for
prediction and interpretation of sharp-wave ripples in the rodent
hippocampus. Elife, 11, p.e77772.
Oliva, A., Fernández-Ruiz, A., Leroy, F., Siegelbaum, S.A., 2020.
Hippocampal CA2 sharp-wave ripples reactivate and promote social memory.
Nature 587, 264–269.
Park, A. J., Harris, A. Z., Martyniuk, K. M., Chang, C. Y., Abbas, A.
I., Lowes, D. C., Kellendonk, C., Gogos, J.A., Gordon, J. A. (2021).
Reset of hippocampal–prefrontal circuitry facilitates learning. Nature,
591(7851), 615-619.
Paula-Barbosa, M.M., Brandão, F., Madeira, M.D., Cadete-Leite, A., 1993.
Structural changes in the hippocampal formation after long-term alcohol
consumption and wit|hdrawal in the rat. Addiction 88, 237–247.
Prince, S. M., Paulson, A. L., Jeong, N., Zhang, L., Amigues, S., &
Singer, A. C. (2021). Alzheimer’s pathology causes impaired inhibitory
connections and reactivation of spatial codes during spatial navigation.
Cell reports, 35(3), 109008.
Reid, H.M.O., Lysenko-Martin, M.R., Snowden, T.M., Thomas, J.D.,
Christie, B.R., 2020. A Systematic Review of the Effects of Perinatal
Alcohol Exposure and Perinatal Marijuana Exposure on Adult Neurogenesis
in the Dentate Gyrus. Alcohol. Clin. Exp. Res. 44, 1164–1174.
Reitz, N.L., Nunes, P.T. and Savage, L.M., 2021. Adolescent binge-type
ethanol exposure in rats mirrors age-related cognitive decline by
suppressing cholinergic tone and hippocampal neurogenesis. Frontiers in
behavioral neuroscience, 15, p.772857.
Rhodes, J.S., Best, K., Belknap, J.K., Finn, D.A. and Crabbe, J.C.,
2005. Evaluation of a simple model of ethanol drinking to intoxication
in C57BL/6J mice. Physiology & behavior, 84(1), pp.53-63.
Risher, M.-L., Fleming, R.L., Risher, W.C., Miller, K.M., Klein, R.C.,
Wills, T., Acheson, S.K., Moore, S.D., Wilson, W.A., Eroglu, C.,
Swartzwelder, H.S., 2015. Adolescent Intermittent Alcohol Exposure:
Persistence of Structural and Functional Hippocampal Abnormalities into
Adulthood. Alcohol. Clin. Exp. Res. 39, 989–997.
Roumis, D.K., Frank, L.M., 2015. Hippocampal sharp-wave ripples in
waking and sleeping states. Curr. Opin. Neurobiol. 35, 6–12.
Sánchez, L.M., Goss, J., Wagner, J., Davies, S., Savage, D.D., Hamilton,
D.A., Clark, B.J., 2019. Moderate prenatal alcohol exposure impairs
performance by adult male rats in an object-place paired-associate task.
Behav. Brain Res. 360, 228–234.
Quadir, S.G., Tanino, S.M., Rohl, C.D., Sahn, J.J., Yao, E.J., dos Reis
Cruz, L., Cottone, P., Martin, S.F. and Sabino, V., 2021. The Sigma-2
receptor/transmembrane protein 97 (σ2R/TMEM97) modulator JVW-1034
reduces heavy alcohol drinking and associated pain states in male mice.
Neuropharmacology, 184, p.108409.
Shield, K.D., Parry, C., Rehm, J., 2013. Chronic diseases and conditions
related to alcohol use. Alcohol Res. Curr. Rev. 35, 155–173.
Shimamoto, S., Waldman, Z.J., Orosz, I., Song, I., Bragin, A., Fried,
I., Engel, J., Staba, R., Sharan, A., Wu, C., Sperling, M.R., Weiss,
S.A., 2018. Utilization of independent component analysis for accurate
pathological ripple detection in intracranial EEG recordings recorded
extra- and intra-operatively. Clin. Neurophysiol. 129, 296–307.
Shin, J.D., Tang, W., Jadhav, S.P., 2019. Dynamics of Awake
Hippocampal-Prefrontal Replay for Spatial Learning and Memory-Guided
Decision Making. Neuron 104, 1110-1125.e7.
Simms, J. A., Steensland, P., Medina, B., Abernathy, K. E., Chandler, L.
J., Wise, R., & Bartlett, S. E., 2008. Intermittent access to 20%
ethanol induces high ethanol consumption in Long–Evans and Wistar rats.
Alcoholism: Clinical and Experimental Research, 32(10), 1816-1823.
Sircar, R., Sircar, D., 2005. Adolescent Rats Exposed to Repeated
Ethanol Treatment Show Lingering Behavioral Impairments. Alcohol. Clin.
Exp. Res. 29, 1402–1410.
Sokolowski, K., Corbin, J., 2012. Wired for behaviors: From development
to function of innate limbic system circuitry. Front. Mol. Neurosci. 5,
55.
Staba, R.J., Wilson, C.L., Bragin, A., Fried, I., 2002. Quantitative
analysis of high-frequency oscillations (80-500 Hz) recorded in human
epileptic hippocampus and entorhinal cortex. J. Neurophysiol. 88,
1743–1752.
Stimac, J.M., 2022. Hippocampus. Salem Press Encycl. Heal.
Stoiljkovic, M., Kelley, C., Stutz, B., Horvath, T. L., & Hajós, M.
(2019). Altered cortical and hippocampal excitability in TgF344-AD rats
modeling Alzheimer’s disease pathology. Cerebral Cortex, 29(6),
2716-2727.
Tabakoff, B., Hoffman, P.L., 2000. Animal models in alcohol research.
Alcohol Res. Health 24, 77–84.
Tonegawa, S., Morrissey, M. D., & Kitamura, T. (2018). The role of
engram cells in the systems consolidation of memory. Nature Reviews
Neuroscience, 19(8), 485-498.
Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative
memory: role of the hippocampus. Hippocampus, 8(3), 198-204.
Varga, C., Golshani, P., & Soltesz, I. (2012). Frequency-invariant
temporal ordering of interneuronal discharges during hippocampal
oscillations in awake mice. Proceedings of the National Academy of
Sciences, 109(40), E2726-E2734.
Vena, A.A., Zandy, S.L., Cofresí, R.U. and Gonzales, R.A., 2020.
Behavioral, neurobiological, and neurochemical mechanisms of ethanol
self-administration: A translational review. Pharmacology &
therapeutics, 212, p.107573.
White, A.M., Matthews, D.B., Best, P.J., 2000. Ethanol, memory, and
hippocampal function: A review of recent findings. Hippocampus 10,
88–93.
Wilson, M.A. and McNaughton, B.L., 1994. Reactivation of hippocampal
ensemble memories during sleep. Science 265.5172, 676–679.
Wittner, L. and Miles, R., 2007. Factors defining a pacemaker region for
synchrony in the hippocampus. The Journal of Physiology, 584, 867-883.
Witton, J., Staniaszek, L. E., Bartsch, U., Randall, A. D., Jones, M.
W., & Brown, J. T. (2016). Disrupted hippocampal sharp‐wave
ripple‐associated spike dynamics in a transgenic mouse model of
dementia. The Journal of physiology, 594(16), 4615-4630.
Wong, S.M., Arski, O.N., Workewych, A.M., Donner, E., Ochi, A., Otsubo,
H., Snead, O.C. and Ibrahim, G.M., 2021. Detection of high-frequency
oscillations in electroencephalography: A scoping review and an
adaptable open-source framework. Seizure-European Journal of Epilepsy,
84, pp.23-33.
Wood RN, D., 2013. Alcohol abuse and alcoholism. Patient Educ. Ref.
Center, EBSCO Publ.
World Heal. Organ., 2018a. Alcohol [WWW Document]. URL
https://www.who.int/news-room/fact-sheets/detail/alcohol (accessed
10.9.20).
World Heal. Organ., 2018b. Glob. status Rep. alcohol and health 2018,
Glob. status Rep. alcohol. Geneva.
Xu, X., Sun, Y., Holmes, T. C., & López, A. J. (2016). Noncanonical
connections between the subiculum and hippocampal CA1. Journal of
Comparative Neurology, 524(17), 3666-3673.
Zelmann, R., Mari, F., Jacobs, J., Zijlmans, M., Chander, R., Gotman,
J., 2010. Automatic detector of high frequency oscillations for human
recordings with macroelectrodes. Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf. 2010, 2329–2333.
Zhen, Z. H., Guo, M. R., Li, H. M., Guo, O. Y., Zhen, J. L., Fu, J., &
Tan, G. J. (2021). Normal and Abnormal Sharp Wave Ripples in the
Hippocampal-Entorhinal Cortex System: Implications for Memory
Consolidation, Alzheimer’s Disease, and Temporal Lobe Epilepsy.
Frontiers in Aging Neuroscience, 13, 683483.