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Abstract 22 

In various research fields such as hydrogeology, environmental science and energy engineering, 23 

geological formations with fractures are frequently encountered. Accurately characterizing these 24 

fractured media is of paramount importance when it comes to tasks that demand precise 25 

predictions of liquid flow and the transport of solute and energy within them. Since directly 26 

measuring fractured media poses inherent challenges, data assimilation (DA) techniques are 27 

typically employed to derive inverse estimates of media properties using observed state variables 28 

like hydraulic head, concentration, and temperature. Nonetheless, the considerable difficulties 29 

arising from the strong heterogeneity and non-Gaussian nature of fractured media have 30 

diminished the effectiveness of existing DA methods. In this study, we formulate a novel DA 31 

approach known as PEDL (parameter estimator with deep learning) that harnesses the 32 

capabilities of DL to capture nonlinear relationships and extract non-Gaussian features. To 33 

evaluate PEDL’s performance, we conduct two numerical case studies with increasing 34 

complexity. Our results unequivocally demonstrate that PEDL outperforms three popular DA 35 

methods: ensemble smoother with multiple DA (ESMDA), iterative local updating ES (ILUES), 36 

and ES with DL-based update (ESDL). Sensitivity analyses confirm PEDL’s validity and 37 

adaptability across various ensemble sizes and DL model architectures. Moreover, even in 38 

scenarios where structural difference exists between the accurate reference model and the 39 

simplified forecast model, PEDL adeptly identifies the primary characteristics of fracture 40 

networks. 41 

1 Introduction 42 

Fractures are narrow openings or mechanical discontinuities in geological formations, typically 43 

found in rocks, soils, and aquifers. The significance of fractures lies in their pivotal role across 44 

numerous processes: they offer preferential pathways for the rapid transport of liquids, and act as 45 

reservoirs for fluid storage and release (Viswanathan et al., 2022). Despite their relatively minor 46 

presence within the subsurface media, fractures hold importance in diverse fields, including 47 

Karst aquifer management (S Li et al., 2020), geothermal energy production (Guo et al., 2022), 48 

hydrocarbon extraction (F Zhang & Emami-Meybodi, 2022), geological sequestration of CO2 49 

(Luo et al., 2022), and nuclear waste disposal (Saceanu et al., 2022). Nonetheless, the complexity 50 
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of fractured media is deeply ingrained in the coexistence of fractures with varying sizes, 51 

orientations, and apertures. This complexity engenders significant heterogeneity, anisotropy, and 52 

discontinuity in the hydraulic characteristics of fractured media, ultimately giving rise to 53 

elevated levels of uncertainty in flow and transport predictions (Neuman, 2005). For achieving 54 

trustworthy process comprehension and simulation outcomes, it is imperative to effectively 55 

characterize the attributes of fractured media and reasonably quantify the associated uncertainty 56 

(Hyman, 2020; Klepikova et al., 2020). 57 

Given the inherently opaque and complex nature of fractured media, the direct observation of 58 

fractures poses a formidable challenge. Although X-ray computed tomography can be employed 59 

to study the structure of fracture in specific scenarios, it is subject to limitations related to 60 

method resolution and sample size (C Jiang et al., 2019; Hao Wu et al., 2019). An alternative 61 

approach to characterizing fractured media involves the use of numerical models that explicitly 62 

represent fracture networks, particularly the major ones (Berre et al., 2019). These models, often 63 

referred to as discrete fracture models (DFMs), encompass a range of methodologies, including 64 

channel networks (Hyman, 2020), discrete fracture networks (Cacas et al., 1990), discrete 65 

fracture-matrix models (Koohbor et al., 2020), and embedded discrete fracture-matrix (EDFM) 66 

models (J Jiang & Younis, 2017). To characterize the inherent structural complexity and scale 67 

disparities within fracture networks, it is often imperative to employ fine spatial resolutions. 68 

Nevertheless, this approach can make simulations prone to griding failures, result in high 69 

computational expenses, and, as a consequence, prove infeasible for extensive, large-scale 70 

problems (Viswanathan et al., 2022). A simpler yet less precise approach for representing 71 

fractures involves utilizing continuum models, where effective parameter values of the matrix 72 

are employed. These models include the stochastic continuum (SC) model (Tsang et al., 1996) 73 

and the dual-permeability model (Presho et al., 2011). While these models may not provide the 74 

same level of accuracy as DFMs, they are known for their ease of implementation and cost-75 

effectiveness in practical applications (National Academies of Sciences, 2020). 76 

In the aforementioned models, a substantial number of parameters are indispensable for 77 

representing complex fractures. However, these parameters remain predominantly unknown, 78 

introducing considerable uncertainty when simulating flow and transport processes happening 79 

within the fractured media. To confront this challenge, researchers have underscored the growing 80 

importance of incorporating diverse data types, encompassing hydraulic, geophysical, and hydro-81 
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chemical measurement data, through the implementation of data assimilation (DA) techniques 82 

(Elahi & Jafarpour, 2018; Y Li et al., 2016; Miskimins, 2009; Ping & Zhang, 2013; Hui Wu et al., 83 

2021). DA is devoted to seamlessly integrating theoretical knowledge, often represented as 84 

numerical models, with observational data to achieve optimized estimations of system states, 85 

parameters, and initial/boundary conditions. It has found extensive applications across various 86 

research domains of geosciences (Carrassi et al., 2018; Fletcher, 2022), and can serve as a 87 

valuable tool for enhancing our understanding of fractures and their properties. 88 

When characterizing fractured media, the prevailing DA approach in use is ensemble Kalman 89 

filter (EnKF) (Evensen, 2009) and its iterative variations, such as ESMDA (Emerick & Reynolds, 90 

2013) and EnRML (Gu & Oliver, 2007). For instance, Vogt et al. (2012) employed EnKF to 91 

assimilate tracer data, aiming to estimate equivalent permeability field of discrete fracture 92 

networks at an enhanced geothermal system reservoir. However, their predictions display a 93 

noticeable degree of uncertainty, which could be attributed to the inherent constraints of EnKF 94 

and its variants in handling non-Gaussian distributions. To tackle this challenge, a viable strategy 95 

involves transforming non-Gaussian distributed variables into Gaussian ones using various 96 

techniques. For example, Hui Wu et al. (2021) applied principal component analysis, Chen et al. 97 

(2023) used deep generative model, Ping & Zhang (2013) utilized level set function, and Lu & 98 

Zhang (2015) employed Hough transformation, respectively, to reparameterize complex 99 

fractured media with Gaussian random variables. These Gaussian distributed variables can be 100 

effectively updated using EnKF or its variants, and then transformed back to non-Gaussian 101 

distributed fracture parameters to make predictions with dynamic models. Nevertheless, it’s 102 

important to note that the reparameterization and updating processes may lead to the loss of 103 

some basic features and continuity of fractures (Yao et al., 2018). Another strategy for 104 

addressing the non-Gaussianity issue entails adopting more theoretically robust DA methods, 105 

such as Markov chain Monte Carlo (MCMC) (Vrugt, 2016) and particle filter (PF) (Djuric et al., 106 

2003). For example, Blaheta et al. (2020) and Xue et al. (2020) respectively employed MCMC 107 

and PF for the characterization of fractured media in subsurface applications. Nevertheless, the 108 

computational costs associated with MCMC and PF can become prohibitive when dealing with 109 

high-dimensional inverse problems. Even with the incorporation of lower-fidelity or surrogate 110 

models to improve efficiency in the two studies, the practical application of MCMC and PF 111 

techniques remains a formidable challenge. In addition to the challenge posed by non-112 
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Gaussianity, another prevalent and complex issue in the realm of DA for subsurface 113 

characterization is equifinality, which refers to the scenario where various model structures and 114 

parameter combinations can yield acceptable reproductions of observed system behaviors (Beven 115 

& Freer, 2001). From the Bayesian perspective, equifinality means that the parameter 116 

distribution is multi-modal in ensemble sense. Several studies have tried to handle multi-modal 117 

distributions in DA by conceptualizing them as a mixture of Gaussian distributions, with each of 118 

these distributions being updated individually (Elsheikh et al., 2013; Sun et al., 2009; J Zhang et 119 

al., 2018). Among them, the iterative local updating ensemble smoother (ILUES) proposed by J 120 

Zhang et al. (2018) has been used as the basic DA method in various subsurface characterization 121 

problems. 122 

Over the past decade, deep learning (DL) has gained substantial attention within the field of 123 

hydrology and water resources (Shen, 2018). DL’s prowess in unveiling complex nonlinear 124 

relationships and intricate patterns from data has endowed it with formidable analytical 125 

capabilities. Moreover, the strong alignment between DL and DA in terms of statistical 126 

principles and methodologies has been well investigated and recognized (Abarbanel et al., 2018; 127 

Berry & Harlim, 2017). In an effort to tackle the challenges posed by high-dimensionality and 128 

non-Gaussianity in DA problems, J Zhang et al. (2020) put forth an innovative approach. They 129 

proposed the utilization of DL to establish a nonlinear updating scheme that supplants the 130 

conventional Kalman updating in EnKF and its variants. Their findings showcased the efficacy 131 

of this DL-based DA method, known as ESDL, in effectively characterizing high-dimensional, 132 

non-Gaussian parameter fields. Due to its capability to address complex DA problems, ESDL 133 

and its variants have found applications in numerous subsurface characterization scenarios 134 

(Godoy et al., 2022; Man et al., 2022; Wang & Yan, 2022; Xiao et al., 2023; J Zhang et al., 135 

2023). 136 

In the present study, we adopt the ESDL method for the first time to characterize fractured media. 137 

While ESDL exhibits improved performance compared to Kalman-based DA methods like 138 

ESMDA and ILUES, it is not without its limitations, as will be demonstrated later in this work. 139 

The fracture networks inferred by ESDL exhibit some irregularities, possibly due to the updating 140 

process from the innovation vector (i.e., the difference between observations and model 141 

predictions) to the update vector (i.e., the difference between posterior and prior parameters). 142 

Based on this finding, we improve ESDL by introducing a new updating rule. This new DA 143 
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method, named parameter estimator with DL (PEDL), establishes a direct update from the multi-144 

sourced observation vector to the posterior parameter vector. To validate PEDL’s effectiveness, 145 

we compare its performance with several existing DA methods, including ESMDA, ILUES, and 146 

ESDL, in a groundwater flow problem within fractured media. As will be demonstrated later, 147 

PEDL outperforms the other three DA methods significantly in characterizing the fractured 148 

media. 149 

The rest of this paper is structured as follows. In Section 2, we present the implementation details 150 

of PEDL, along with three well-known DA methods for comparative analysis, namely ESMDA, 151 

ILUES, and ESDL. Section 3 features two illustrative cases aimed at evaluating the performance 152 

of PEDL in the context of DA within fractured media. Here, we consider two scenarios with and 153 

without considering the model structural error, respectively. Finally, in Section 4, we draw 154 

conclusions and engage in a discussion about the applicability of PEDL in a broader perspective. 155 

2 Methodology 156 

Here, we assume that the process of concern (e.g., groundwater flow within a fractured aquifer) 157 

is simulated by a numerical model ℱ(𝐦) . The true parameters 𝐦∗  describing the media 158 

properties (e.g., permeability) are unknown and can be inferred from noisy measurement data 159 

 𝐝̃ = ℱ(𝐦∗) + 𝛆, (1) 

where 𝛆 ∼ 𝒩(𝟎, 𝐂D)  represent the error terms. Based on the Bayesian theory, our updated 160 

understanding about the parameters can be expressed as the posterior distribution 161 

 𝑝(𝐦|𝐝̃) =
𝑝(𝐦)𝑝(𝐝̃|𝐦)

𝑝(𝐝̃)
, (2) 

where 𝑝(𝐦) is the prior distribution of 𝐦, 𝑝(𝐝̃|𝐦) demotes the likelihood function, and 𝑝(𝐝̃) =162 

∫ 𝑝(𝐝̃|𝐦)𝑝(𝐦)𝑑𝐦 signifies the evidence, a normalization constant. 163 

For complex problems, analytical form of 𝑝(𝐦|𝐝̃) is not available, and Monte Carlo methods 164 

can be employed to approximate the posterior. According to the background knowledge of 𝐦, 𝑁e 165 

random samples can be drawn to form the prior ensemble, 𝐌0 = {𝐦𝑖
0|𝑖 = 1, … , 𝑁e}. With the 166 

numerical model, the corresponding model outputs can be calculated, i.e., 𝐃0 = {𝐝𝑖
0 =167 
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ℱ(𝐦𝑖
0)|𝑖 = 1, … , 𝑁e} . Below we will introduce how to update 𝐌0  from 𝐝̃  with various DA 168 

methods, including ESMDA, ILUES, ESDL and PEDL. 169 

2.1 Ensemble Smoother with Multiple Data Assimilation: ESMDA 170 

Using the Kalman formula, we can update each sample in 𝐌0 as follows: 171 

 𝐦𝑖
1 = 𝐦𝑖

0 + 𝐂MD
0 (𝐂DD

0 + 𝐂D)−1(𝐝̃ + 𝛆𝑖 − 𝐝𝑖
0), (3) 

where 𝐌1 = {𝐦𝑖
1|𝑖 = 1, … , 𝑁e}  is the updated ensemble representing our posterior 172 

understanding about the model parameters, 𝐂MD
0  is the cross-covariance between 𝐌0  and 𝐃0 , 173 

𝐂DD
0  is the auto-covariance of 𝐃0 , and 𝛆𝑖  is a random realization of measurement errors, 174 

respectively. For highly nonlinear problems, iterative application of the Kalman updating of 175 

equation (3) can be adopted: 176 

 𝐦𝑖
𝑡 = 𝐦𝑖

𝑡−1 + 𝐂MD
𝑡−1(𝐂DD

𝑡−1 + 𝛼𝑡𝐂D)−1 (𝐝̃ + √𝛼𝑡𝛆𝑖 − 𝐝𝑖
𝑡−1), (4) 

where 𝑡 = 1, … , 𝑁iter , 𝛼𝑡  is the inflation factor that satisfies ∑ 1/𝛼𝑡𝑁iter
𝑡=1 = 1, and 𝑁iter  is the 177 

iteration number. Finally, we use 𝐌𝑁iter = {𝐦𝑖
𝑁iter|𝑖 = 1, … , 𝑁e} to approximate the posterior 178 

distribution of 𝐦 . For the theory and implementation details of ESMDA, one can refer to 179 

(Emerick & Reynolds, 2013). 180 

2.2 Iterative Local Updating Ensemble Smoother: ILUES 181 

When the posterior distribution of parameters 𝐦 exhibits multiple modes, signifying that distinct 182 

parameter sets can equally reproduce the measurement data, the straightforward application of 183 

ESMDA may lead to biased results. This phenomenon, known as the equifinality issue, is a 184 

common challenge encountered in DA for complex systems, particularly when the available 185 

information contained in the measurement data is insufficient. To reasonably represent the multi-186 

modal posterior distribution, J Zhang et al. (2018) proposed to identify and update the local 187 

ensemble of each sample 𝐦𝑖
𝑡−1  in 𝐌𝑡−1 independently at iteration 𝑡 = 1, … , 𝑁iter . The local 188 

ensemble of 𝐦𝑖
𝑡−1 is based on the following measure: 189 

 𝒥(𝐦) = 𝒥1(𝐦)/𝒥1
max + 𝒥2(𝐦)/𝒥2

max, (5) 
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where 𝒥1(𝐦) = (𝐦 − 𝐦𝑖
𝑡−1)𝐂MM

−1 (𝐦 − 𝐦𝑖
𝑡−1)T, 𝒥2(𝐦) = (ℱ(𝐦) − 𝐝̃)𝐂D

−1(ℱ(𝐦) − 𝐝̃)
T

, 𝐂MM 190 

is the auto-covariance of model parameters, 𝒥1
max is the maximum value of 𝒥1, and 𝒥2

max is the 191 

maximum value of 𝒥2, respectively. The local ensemble of 𝐦𝑖
𝑡−1 is the 𝑁L = 𝛽𝑁e (0 < 𝛽 ≤ 1) 192 

samples in 𝐌𝑡−1 with the smallest 𝒥 values, i.e., 𝐌𝑖
𝑡−1 = {𝐦𝑖,𝑗

𝑡−1|𝑗 = 1, … , 𝑁L}. Each sample in 193 

𝐌𝑖
𝑡−1 can be updated as: 194 

 𝐦𝑖,𝑗
𝑡 = 𝐦𝑖,𝑗

𝑡−1 + 𝐂𝑖,MD
𝑡−1 (𝐂𝑖,DD

𝑡−1 + 𝛼𝑡𝐂D)
−1

(𝐝̃ + √𝛼𝑡𝛆𝑗 − 𝐝𝑖,𝑗
𝑡−1), (6) 

where 𝐂𝑖,MD
𝑡−1  is the cross-covariance between 𝐌𝑖

𝑡−1 and 𝐃𝑖
𝑡−1 = {𝐝𝑖,𝑗

𝑡−1 = ℱ(𝐦𝑖,𝑗
𝑡−1)|𝑗 = 1, … , 𝑁L}, 195 

𝐂𝑖,DD
𝑡−1  is the auto-covariance of 𝐃𝑖

𝑡−1, respectively. The updated sample of 𝐦𝑖
𝑡−1, i.e., 𝐦𝑖

𝑡, can be 196 

randomly drawn from the updated local ensemble, 𝐌𝑖
𝑡 = {𝐦𝑖,𝑗

𝑡 |𝑗 = 1, … , 𝑁L}. Finally, we use 197 

𝐌𝑁iter = {𝐦𝑖
𝑁iter|𝑖 = 1, … , 𝑁e}  to approximate the posterior distribution of 𝐦  with possible 198 

multi-modes. More details about ILUES can be found in (J Zhang et al., 2018). 199 

2.3 Ensemble Smoother with Deep Learning-based Update: ESDL 200 

Essentially, the Kalman update used in ESMDA and ILUES builds a linear relationship between 201 

the innovation vector, Δ𝐝𝑖
𝑡 = 𝐝̃ + √𝛼𝑡𝛆𝑖 − 𝐝𝑖

𝑡−1, and the update vector, Δ𝐦𝑖
𝑡 = 𝐦𝑖

𝑡 − 𝐦𝑖
𝑡−1: 202 

 Δ𝐦𝑖
𝑡 = 𝐊𝑡Δ𝐝𝑖

𝑡, (7) 

where 𝐊𝑡 = 𝐂MD
𝑡−1(𝐂DD

𝑡−1 + 𝛼𝑡𝐂D)−1 is the so-called Kalman gain matrix. As the above calculation 203 

is only based on the mean and covariance, the Kalman-based DA is subjected to the Gaussian 204 

assumption. Inspired by the universal approximation and pattern recognition abilities of DL, J 205 

Zhang et al. (2020) proposed to supplant the Kalman-based update in EnKF and its variants with 206 

a DL-based counterpart: 207 

 Δ𝐦𝑖
𝑡 = 𝒢DL

𝑡 (Δ𝐝𝑖
𝑡), (8) 

where 𝒢DL
𝑡 (∙) is a nonlinear mapping from the innovation vector to the update vector based on 208 

DL. The effective training of 𝒢DL
𝑡 (∙)  can be facilitated by the vast amount of data directly 209 

generated from 𝐌𝑡−1  and 𝐃𝑡−1 , i.e., 𝐗𝑡 = {𝐱input = 𝐝𝑖
𝑡−1 + √𝛼𝑡𝛆𝑖𝑗 − 𝐝𝑗

𝑡−1, 𝐱target = 𝐦𝑖
𝑡−1 −210 

𝐦𝑗
𝑡−1|𝑖 = 1, … , 𝑁e − 1, 𝑖 < 𝑗 ≤ 𝑁e}. Here, we treat {𝐦𝑖

𝑡−1, 𝐝𝑖
𝑡−1} as the synthetic truth and can 211 
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produce 𝑁e − 1 pairs of innovation and update vectors from the rest ensemble members. In total, 212 

there are C𝑁e

2 = 𝑁e(𝑁e − 1)/2 training samples in 𝐗𝑡. Results shown that ESDL can better solve 213 

DA problems involving high-dimensional and non-Gaussian distributed parameters than its 214 

Kalman-based counterpart (J Zhang et al., 2020). 215 

2.4 Parameter Estimator with Deep Learning: PEDL 216 

In ESDL, what 𝒢DL
𝑡 (⋅) tries to capture is the relationship between the increment in parameters, 217 

i.e., Δ𝐦𝑖
𝑡, and the displacement in model responses, i.e., Δ𝐝𝑖

𝑡, and the updated parameters are 218 

obtained as: 219 

 𝐦𝑖
𝑡 = 𝐦𝑖

𝑡−1 + Δ𝐦𝑖
𝑡 . (9) 

In the context of fractured media, 𝐦 describe the spatial distribution of hydraulic properties, 220 

encompassing distinct parameter values (high values for the fractures, and low values for the 221 

matrix). During the training of 𝒢DL
𝑡 (⋅), the information about the starting point of Δ𝐦𝑖

𝑡, i.e., 𝐦𝑖
𝑡−1, 222 

is not considered. Consequently, there is a potential mismatch between the regions with high and 223 

low values in 𝐦𝑖
𝑡−1 and Δ𝐦𝑖

𝑡, as the inferences made by 𝒢DL
𝑡 (⋅) are not flawless. When 𝐦𝑖

𝑡−1 and 224 

Δ𝐦𝑖
𝑡 are added up, this imperfection can lead to irregularities in the fracture networks inferred by 225 

ESDL, as illustrated in Figure 5 (Section 3.1.2), highlighting this limitation. 226 

To tackle this concern, here we modify ESDL by shifting the target of DL from the update vector 227 

Δ𝐦𝑖
𝑡 to the target parameter set 𝐦𝑖

𝑡 directly: 228 

 𝐦𝑖
𝑡 = 𝒢DL

𝑡 (𝐦𝑖
𝑡−1, 𝐝̃ + √𝛼𝑡𝛆𝑖 , 𝐝𝑖

𝑡−1). (10) 

To distinguish it from ESDL, we have named the new method PEDL (parameter estimator with 229 

DL). PEDL avoids the use of the difference vectors in ESMDA, ILUES and ESDL. Thus, the 230 

mismatches between 𝐦𝑖
𝑡−1 and Δ𝐦𝑖

𝑡 in ESDL will not affect the results anymore. However, the 231 

implementation of PEDL as described in equation (10) is ambiguous. After comprehensive 232 

testing, we suggest to adopt a simplified form of equation (10), i.e., 233 

 𝐦𝑖
𝑡 = 𝒢DL

𝑡 (𝐝̃ + √𝛼𝑡𝛆𝑖). (11) 
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Here, the training data for the DL model are {𝐱input = 𝐝𝑖
𝑡−1 + √𝛼𝑡𝛆𝑖, 𝐱target = 𝐦𝑖

𝑡−1|𝑖 =234 

1, … , 𝑁e}. As will be demonstrated in latter part of this work, this new method is very easy to 235 

implement, and can obtain more reliable estimations of fractured media than the other three DA 236 

methods, i.e., ESMDA, ILUES, and ESDL. 237 

3 Illustrative Case Studies 238 

3.1 Case 1: Data Assimilation without Considering Model Structural Error 239 

3.1.1 Model Settings 240 

In this section, we set up a case study involving transient groundwater flow in a two-dimensional 241 

(2-D) fractured aquifer to evaluate the performance of PEDL. We employ the SC model (Tsang 242 

et al., 1996) as both the reference model providing the ground truth and the forecast model used 243 

in DA. In this context, we can disregard the error stemming from model structures, allowing us 244 

to directly compare the performance of PEDL with ESMDA, ILUES, and ESDL. 245 

The flow domain is 205[L]×205[L] (in unit of length) and is discretized into 41×41 grids with a 246 

uniform spacing of 5[L] in the numerical model. All four lateral boundaries are impermeable. 247 

The domain predominantly consists of a matrix with permeability of 𝑘m = 10−13[L2], but there 248 

exist regions with considerably higher permeability values due to the presence of fractures. 249 

Figure 1 illustrates the reference distribution of the fractured zones, with isotropic permeability 250 

of 𝑘f = 90𝑘m . The simulation period spans 𝑇s = 86400 [T] (in unit of time) and is evenly 251 

divided into 20 timesteps. The initial pressure across the entire domain is 𝑝0 = 107[ML−1T−2], 252 

where [M] represents any consistent unit of mass. An injection well (I) at the center of the 253 

domain conducts water injection at a constant rate of 𝑄0 = 0.1[L2T−1], and eight pumping wells 254 

(P1-P8) initiate pumping at a constant pressure of 0.5𝑝0. The pressure dynamics are described by 255 

the following equation: 256 

 𝜙𝑐rw

𝜕𝑝

𝜕𝑡
= ∇ ⋅ (

𝐤

𝜇
∇𝑝) + 𝑞, (12) 

where 𝜙  is the porosity of medium (-), 𝑐rw  is the total compressibility of rock and water 257 

[M−1LT2], 𝑝 is the hydraulic pressure [ML−1T−2], 𝑡 is the time [T], 𝐤 is the permeability tensor 258 

[L2], 𝜇 is the water viscosity [ML−1T−1], and 𝑞 is the source/sink term [T−1], respectively. Here, 259 
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𝜙 = 0.3, 𝑐rw =  6 × 10−10[M−1LT2], and 𝜇 = 10−3[ML−1T−1]. In this scenario, the tensor 𝐤 260 

are simplified into a location-dependent scalar function, 𝑘(𝑥, 𝑦), where the values within the 261 

1681 cells constitute the sole unknown parameters that need calibration. The governing equation 262 

is numerically solved with the MATLAB Reservoir Simulation Toolbox (Lie & Møyner, 2021). 263 

 

Figure 1. (a) Schematic overview of the model settings in Case 1. All four boundaries are 

impermeable. An injection well is positioned at the domain’s center, and eight pumping wells 

(P1-P8) are situated near the boundaries. The blue cells indicate locations where 

measurements of 𝑘 and 𝑝 are acquired. The yellow cells depict the reference distribution of 

fractures. (b) Distribution of pressure (𝑝) at the last timestep, highlighting the influence of 

fractured cells. 

The observational dataset employed for inferring the distribution of 𝑘(𝑥, 𝑦)  includes 49 264 

permeability (𝑘) values at the blue nodes (as shown in Figure 1a), 49 pressure (𝑝) values at the 265 

same nodes at 21 timesteps (49×21 values in total), and 9 flowrates (𝑄) values at the single 266 

injection well and eight pumping wells at the 21 timesteps (9×21 values in total). The 267 

observation errors associated with 𝑘, 𝑝, and 𝑄 are modeled with Gaussian distributions, i.e., 𝜀𝑘 ∼268 

𝒩(0, 𝜎𝑘
2) , 𝜀𝑝 ∼ 𝒩(0, 𝜎𝑝

2) , and 𝜀𝑄 ∼ 𝒩(0, 𝜎𝑄
2) , where 𝜎𝑘 = 5𝑘m , 𝜎𝑝 = 0.05𝑝0 , and 𝜎𝑄 =269 

0.005𝑄0 , respectively. In the reference model, there are 106 fractured cells, comprising 270 

approximately 6.3% of the total cells. These high-permeability fracture zones are indicated by 271 

the yellow cells in Figure 1(a). Figure 1(b) illustrates the pressure distribution in the reference 272 

model at the last timestep, clearly demonstrating the impact of these high-permeability fractured 273 

zones. 274 
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Figure 2. (a) The training image used to generate random realizations of the 𝑘 field; (b-c) two 

realizations of the 𝑘 field, and (d-e) the mean and standard deviation (std) of the 𝑘 field. 

The direct sampling method, as described by Mariethoz et al. (2010), is utilized to generate 275 

random realizations of the 𝑘(𝑥, 𝑦) field, each field having a dimension of 𝑁k = 41 × 41. These 276 

realizations are generated based on a training image that includes background information about 277 

fractures, such as potential orientation and density (as shown in Figure 2a). In the generated 𝑘 278 

realizations, black cells are designated as 𝑘m, representing the matrix category, while white cells 279 

are designated as 𝑘f, signifying the fracture category. In Figures 2(b-c), we present two random 280 

samples of the generated 𝑘 fields. The sample mean and standard deviation (std) fields calculated 281 

from all the realizations are depicted in Figures 2(d-e). 282 

3.1.2 Results from Four DA Methods 283 

Four DA methods, namely ESMDA, ILUES, ESDL, and PEDL, are applied to estimate the 𝑘 284 

field across the flow domain. All methods, except for PEDL (without iteration, 𝑁e = 5000), 285 

undergo five iterations with an ensemble size of 𝑁e = 5000. In the case of ILUES, the hyper-286 

parameter 𝛽, which dictates the selection of the local ensemble, is set to 0.1. For both ESDL and 287 

PEDL, we have adopted the U-net architecture initially proposed by Ronneberger et al. (2015), 288 

as depicted in Figure 7(a). Given the presence of three distinct types of measurement data—289 

permeability (𝑘), flowrate (𝑄), and pressure (𝑝)—each with varying dimensionalities, we employ 290 

three U-net blocks to process each data type. Subsequently, we concatenate and further process 291 

these data streams until the target (the 41 × 41 𝑘 field) is reached. In both ESDL and PEDL, the 292 
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DL model is trained using the Adam optimizer with a consistent learning rate of 0.001. The 293 

training process consists of 100 epochs, with a batch size of 256. 294 

 

Figure 3. (a-d) Mean and (e-h) standard deviation (std) of the estimated 𝑘 fields obtained by 

ESMDA, ILUES, ESDL, and PEDL, respectively. Note that all the means and stds are 

expressed as multiples of 𝑘m. 

The normalized root-mean-square errors (NRMSEs) relative to the matrix permeability 𝑘m , 295 

between the estimated mean (𝑘̅) and the reference (𝑘∗) fields, i.e., 296 

 NRMSE =
1

𝑘m

√
1

𝑁k
∑(𝑘̅𝑖 − 𝑘𝑖

∗)
2

𝑁k

𝑖=1

, (13) 

are obtained as follows: ESMDA (32.31), ILUES (30.03), ESDL (15.89), and PEDL (12.11). It is 297 

worth noting that the NRMSE value between the initial mean 𝑘 field and the reference 𝑘 field is 298 

22.35. The NRMSE values for ESMDA and ILUES exceed that of the initial mean field, 299 

indicating the occurrence of filter divergence in these two methods. With the DL-based update, 300 

ESDL can obtain improved estimation of 𝑘, but the reduction in NRMSE from the initial field is 301 

not very large. Without requiring iterations, PEDL can obtain the best match of the highly 302 

complex parameter field. 303 

Figure 3 illustrates the mean and standard deviation (std) of the 𝑘 fields estimated by these four 304 

DA methods. It is evident that PEDL effectively captures the distribution of fracture cells (highly 305 

permeable zones) with low uncertainty, albeit with some minor details missing. Conversely, 306 
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neither ESMDA nor ILUES provide a satisfactory estimation of 𝑘. On the other hand, ESDL 307 

partially recognizes the fracture structure. Specifically, ESDL tends to overestimate the 𝑘 values 308 

in non-fractured areas near the upper-right and lower-right corners, and the standard deviation of 309 

the 𝑘 field obtained by ESDL is significantly higher than those obtained using other methods. 310 

 

Figure 4. Cumulative distribution functions (cdfs) for the reference k field, initial k 

realizations, and estimated 𝑘 fields from PEDL, ESMDA, ILUES, and ESDL, respectively. 

Given the strong non-Gaussian nature of this problem, it is necessary to consider more 311 

information beyond the mean and standard deviation to thoroughly evaluate the results. Figure 4 312 

displays the cumulative distribution functions (cdfs) of the updated 𝑘 fields for all four methods, 313 

as well as the reference and initial 𝑘 fields. It is evident that PEDL produces a cdf of 𝑘 field that 314 

closely resembles the stepwise cdf of the reference 𝑘  field, demonstrating PEDL’s ability to 315 

handle strong non-Gaussianity. 316 

Moreover, to monitor the evolution of individual 𝑘 field samples before and after the various 317 

updates, we compare four randomly selected realizations in Figure 5. It reveals that initially 318 

distinct realizations (the first row of Figure 5) tend to converge and approach the reference 𝑘 319 

field after the update with PEDL (the last row of Figure 5). This consistency aligns with the 320 

observed low 𝑘  standard deviation values across the entire domain (as seen in Figure 3h). 321 

Conversely, the first three rows of Figure 5 demonstrate that in both ESMDA and ILUES, the 322 

updated realizations do exhibit some degree of convergence among them, but they do not 323 

resemble the reference 𝑘 field. This suggests the occurrence of filter divergence. In the case of 324 
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ESDL (the fourth row), while high-permeability stripes akin to the reference field do emerge in 325 

the updated 𝑘 realizations, the initial random structures of fracture in the four realizations largely 326 

persist, resulting in substantial irregularities within the final realizations. One possible 327 

explanation for this behavior is that the {Δ𝐦𝑡, Δ𝐝𝑡} pairs may vary significantly for different 328 

{𝐦𝑡−1, 𝐝𝑡−1}  in nonlinear problems, yet they are not considered during the model training 329 

process. The high values in 𝐦𝑡−1 only partially cancel out the values at the same locations in 330 

Δ𝐦𝑡, causing the unwanted irregularities in each realization. Although these irregularities can be 331 

averaged out in the ensemble mean, as shown in Figure 3(c), the large uncertainty do exist in the 332 

standard deviation field (Figure 3g). 333 

 

Figure 5. Four randomly sampled initial 𝑘 fields and the corresponding updated ones with 

ESMDA, ILUES, ESDL, and PEDL, respectively. All 𝑘 fields are expressed as multiples of 

𝑘m. 
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From the results above, it is concluded that while ESMDA, ILUES and ESDL encounter 334 

significant difficulties in this problem, PEDL yields much better estimation results from the 335 

perspective of ensemble behavior and individual realization performance. 336 

3.1.3 Impact of Ensemble Size and Network Architecture 337 

To assess the influence of ensemble size on PEDL’s performance, we further conduct 338 

experiments using ensembles with various sizes (𝑁e = 102 to 105, as depicted in Figure 6). To 339 

ensure the statistical reliability of the results, we carried out twenty parallel tests for each 340 

ensemble size. Notably, Figure 6 highlights that the NRMSE values begin to decline when 𝑁e 341 

exceeds 500 and stabilize as 𝑁e surpasses 5,000. This observation is intriguing, as deep neural 342 

networks (DNNs) are typically associated with a demand for an extensive volume of training 343 

data. 344 

 

Figure 6. NRMSEs of results obtained by PEDL with various ensemble sizes. 

In our prior experiment, PEDL utilized a U-net architecture for DL. However, it’s natural to 345 

question whether alternative types of adequate DNNs can deliver comparable results within the 346 

PEDL framework. To investigate the impact of network architecture, we decide to substitute the 347 

U-net with a residual neural network (ResNet, shown in Figure 7b), while maintaining the 348 

ensemble size of 𝑁e = 5000. The training settings for the ResNet model remain identical to 349 

those applied to U-net. Remarkably, the resulting NRMSE in this instance is 12.66, a value that 350 

closely aligns with the NRMSE of 12.11 achieved by PEDL with U-net. 351 
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Figure 7. DL model architectures used in this study: (a) U-net, (b) ResNet, and (c) basic blocks 

used in U-net and ResNet, respectively. Here, 𝑄 , 𝑝 , 𝑘  represent flowrate, pressure, and 

permeability, as input or output, respectively. Conv and ConvT mean the 2-D convolution and 

the transposed 2-D convolution layers, ReLU denotes the rectified linear unit, and BN 

signifies the batch normalization layer, respectively. 

In Figure 8, we present the spatial distributions of the mean and standard deviation of 𝑘 fields 353 

obtained through the ResNet-based PEDL, along with four random realizations of updated 𝑘 354 

field. The results closely resemble the PEDL approach applied with the U-net (as seen in Figures 355 

3 and 5). This observation underscores the fact that PEDL demonstrates satisfactory performance 356 

with both U-net and ResNet architectures. It is likely that using a better designed DL model can 357 

produce enhanced estimation of fractured media properties. Yet, the searching for the optimal 358 

DL model and training options are beyond the scope of the current work. 359 
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Figure 8. Results obtained by PEDL using ResNet: (a) mean of the updated 𝑘  fields, (b) 

standard deviation of the updated 𝑘 fields, and (c-f) four random realizations of the updated 𝑘 

fields. 

3.2 Case 2: Data Assimilation Considering Model Structural Error 360 

In the previous section, the model structural error is not considered, and both the reference model 361 

and forecast model are based on the SC model. However, fractured media in the natural world 362 

often showcase significantly more pronounced complex and non-Gaussian behaviors than what 363 

can be accurately represented by the simplistic SC model. In this section, we shift our focus to 364 

the more accurate EDFM model, which serves as the reference model, to thoroughly assess the 365 

effectiveness of PEDL in addressing more complex scenarios. It’s worth noting that when 366 

estimating the properties of the media through DA, we still employ the SC model, albeit 367 

introducing some degree of structural error into the model. In this section, we will subject PEDL 368 

to further testing within the context of model structural error to evaluate its robustness. 369 

As the name implies, the EDFM model incorporates discrete fractures into the matrix as lower-370 

dimensional entities, such as fracture lines within a 2-D matrix or fracture planes within a 3-D 371 

matrix. The EDFM model describes the flow within the matrix as follows: 372 

 
𝜕(𝜙𝜌)

𝜕𝑡
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𝜇
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where 𝜌 means the density of water, 𝑔 is the gravitational constant, 𝑧 signifies the depth, 𝑞(m) 373 

denotes the source/sink term in the matrix cell, and 𝑞𝑗
(mf)

 represents the exchange term from the 374 

matrix cell to the j-th fracture (set as zero if matrix cell and fracture are nonadjacent), 375 

respectively. The flow equation in the j-th fracture can be expressed as: 376 

 

𝜕(𝜙𝑗
(f)

𝜌)

𝜕𝑡
= ∇ ⋅ (

𝐤𝑗

𝜇
∇(𝑝𝑗

(f)
− 𝜌𝑔𝑧)) +

1

𝑎𝑗
(𝑞(f) − 𝑞𝑗

(fm)
− ∑ 𝑞𝑗,𝑖

(ff)

𝑖≠𝑗

), (15) 

where 𝜙𝑗
(f)  and 𝐤𝑗  are the porosity and permeability of the j-th fracture, 𝑝𝑗

(f)
 is the hydraulic 377 

pressure in the current cell of the j-th fracture, 𝑞(f) is the source/sink term in the fracture cell, 378 

𝑞𝑗
(fm)

 is the exchange from the j-th fracture to the surrounding matrix cell, 𝑞𝑗,𝑖
(ff)

 is the exchange 379 

from the j-th fracture to other fractures (set as zero if they don’t intersect in the current cell), and 380 

𝑎𝑗 is the aperture of the j-th fracture, respectively. 381 

The matrix-fracture exchanges 𝑞𝑗
(mf)

 and 𝑞𝑗
(fm)

, when calculated on cells, can be expressed as: 382 

 𝑄𝑗
(mf)

= ∫ 𝑞𝑗
(mf)

𝑑𝑉
𝑉m

= 𝑇(mf) (𝑝 − 𝑝𝑗
(f)

), (16) 

and 383 

 𝑄𝑗
(fm)

= ∫ 𝑞𝑗
(fm)

𝑑𝐴
𝐴m

= 𝑇(mf) (𝑝𝑗
(f)

− 𝑝) = −𝑄𝑗
(mf)

, (17) 

respectively. In the above equations, 𝑇(mf) =
𝑘(mf)𝐴(mf)

𝑑(mf)
 is the transmissivity between matrix and 384 

fracture, 𝑘(mf) is the volume-weighted harmonic mean of fracture and matrix permeability, 𝐴(mf) 385 

is the exchange area between matrix and fracture cells, and 𝑑(mf) is the characteristic distance 386 

between matrix cell and fracture plane, respectively. The matrix-fracture exchanges calculated 387 

with equations (15-17) are sometimes called “non-neighboring connections” since the matrix and 388 

fracture cells are not neighbors in griding but connected by extra relations. For more details 389 

about the EDFM model, interested readers can refer to (Lie & Møyner, 2021; Moinfar et al., 390 

2014). 391 
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Figure 9. (a) Model settings of Case 2; (b) Computational grids of the EDFM model (colored 

cells are linked to fracture cells appended through non-neighboring connections); (c) Spatial 

distribution of pressure calculated with the EDFM model at the last timestep; (d) Effective 

permeability field found by an optimization method based on 𝑝 and 𝑄 at all timesteps in the 

EDFM model. 

In Case 2, we examine a fractured aquifer similar to the one in Case 1 (depicted in Figure 1), 392 

with the exception of the fracture part. In this aquifer, there are no high-permeability matrix cells. 393 

Instead, there are three fractures with permeability of 𝑘f
∗ = 100𝑘m, porosity of 𝜙 = 0.8, and 394 

aperture of 𝑎 = 0.2[L] (as illustrated in Figure 9a). As in Case 1, the simulation period is set to 395 

be 𝑇s =86400 [T], evenly divided into 20 timesteps. At 𝑡 = 0[T], the pressure is uniformly set as 396 

𝑝0 = 107[ML−1T−2] across the domain. The injection and pumping wells are managed in the 397 

same manner as Case 1, i.e., one injection well located at the center of the domain with the rate 398 

of 0.1[L2T−1], and eight pumping wells (P1-P8) extracting water at a fixed pressure of 0.5𝑝0. As 399 
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shown in Figure 9(b), the matrix is discretized into 41×41 uniform grids, which divides the 400 

fractures into 106 fracture cells. In total, there are 109 identified non-neighboring connections, 401 

including three fracture-fracture connections. The pressure distribution calculated with the 402 

EDFM model at the last timestep is displayed in Figure 9(c). In this case, the EDFM model, 403 

acting as the reference model, is used to generate measurement data. 404 

 

Figure 10. Results of permeability estimation in Case 2 using U-net-based PEDL (top row) and 

ResNet-based PEDL (bottom row), respectively. The mean estimates for the two methods are 

presented in subfigures (a) and (e), the estimation uncertainty measured by the standard deviation 

(std) are given in (b) and (f), and some random realizations are depicted in (c-d) and (g-h), 

respectively. 

In the implementation of DA, the simpler SC model with 41×41 grids is adopted to calculate the 405 

model responses, due to its ease of implementation and prevalence in fractured aquifer 406 

characterization practices (National Academies of Sciences, 2020). Unlike the EDFM model, the 407 

SC model has no fracture cells or non-neighboring connections. The impact of actual fractures is 408 

reflected in the effective permeability field (EPF) of matrix. To evaluate the performance of 409 

PEDL, a “pseudo-reference” of EPF for the SC model is found by solving a nonlinear data fitting 410 

problem with the trust-region-reflective algorithm (Coleman & Li, 1996) based on the complete 411 

data of 𝑝 and 𝑄 at all grids and timesteps from the EDFM model simulation. At each timestep, 412 

there are 1681 𝑝 values and nine 𝑄 values. The obtained EPF is shown in Figure 10(d), which is 413 

used to calculate the NRMSE values of the updated 𝑘 fields obtained by PEDL. 414 

200

0

200

0

2000 2000 2000 2000 

100

100

100 100 100 100

y

y

x x x x

100
mean / km

7010 40 100
k / km

7010 40 100
k / km

7010 4030
std / km

200 10

mean std Realization 1 Realization 3

U
-n

e
t

R
e

s
N

e
t

(a) (b) (c) (d)

(e) (f) (g) (h)



 

Manuscript submitted to Water Resources Research 

22 

 

The measurement data from the same observation network (Figure 9a) as in Case 1 are used in 415 

the estimation of 𝑘 field here, i.e., 49 𝑘 values and 49×21 𝑝 values at the 7 × 7 blue nodes, and 416 

9×21 𝑄  values at the single injection well and eight pumping wells. Figure 10 shows the 417 

estimated mean, std and two arbitrarily picked realizations of 𝑘 field by U-net-based PEDL (top 418 

row) and ResNet-based PEDL (bottom row). Evidently, PEDL demonstrates the capacity to 419 

capture the fundamental structure of fractures, employing either the U-net or ResNet architecture. 420 

Notably, there are no remarkable distinctions between the mean estimate and individual 421 

realizations, underscoring the consistency of PEDL’s performance. Additionally, PEDL exhibits 422 

NRMSE values of 16.02 for U-net and 15.07 for ResNet. While these NRMSEs may not reach 423 

the levels observed in Case 1 (with NRMSE values close to 12), they remain quite acceptable, 424 

given the presence of model structural error introduced by adopting the simplified SC model in 425 

DA. 426 

4 Conclusions and Discussions 427 

Water flow and solute transport in fractured media exhibit distinct characteristics, characterized 428 

by the notable non-Gaussian distribution of media properties and the substantial non-linearity in 429 

the underlying processes. Accurately estimating the heterogeneous hydraulic parameters of 430 

fractured media is of utmost importance for reliable predictions and well-informed decision-431 

making. Nevertheless, the complexities arising from the high dimensionality and non-Gaussian 432 

nature of fractured media present substantial challenges for traditional DA methods, such as 433 

MCMC and EnKF, when aiming to achieve a robust estimation of these intricate properties. 434 

Previous attempts to facilitate the effective application of these DA methods have primarily 435 

relied on reparameterization techniques, involving the transformation of non-Gaussian variables 436 

into Gaussian ones. However, the use of these techniques can result in the loss of essential 437 

information related to the true nature of fractured media. 438 

DL, known for its proficiency in modeling complex, nonlinear relationships and identifying 439 

intricate patterns within data, can improve DA by addressing the challenges arising from high-440 

dimensionality and non-Gaussianity concurrently. J Zhang et al. (2020) proposed the innovative 441 

use of DL to create a nonlinear updating scheme, replacing the traditional linear Kalman 442 

formulation widely employed across various research domains. This DA method, named ESDL, 443 
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offers a superior capacity to capture the non-Gaussian characteristics of subsurface media’s 444 

parameter fields compared to its Kalman-based counterparts. In our study, we applied ESDL for 445 

the first time to estimate hydraulic parameter fields within fractured media, comparing it with 446 

two Kalman-based DA methods, ESMDA(Emerick & Reynolds, 2013) and ILUES (J Zhang et 447 

al., 2018). Our findings demonstrate that ESDL significantly enhances the characterization of 448 

fractured media over ESMDA and ILUES. However, we observed some irregularities in the 449 

fracture networks inferred by ESDL, potentially attributable to the transition process from the 450 

innovation vector (the difference between observations and model predictions) to the update 451 

vector (the difference between posterior and prior parameters). Based on this insight, we 452 

enhanced ESDL by introducing a new updating scheme. The resulting DA method, named 453 

parameter estimator with DL (PEDL), establishes a direct update from the multi-source 454 

observation vector to the posterior parameter vector. PEDL surpasses ESDL in the same fracture 455 

characterization problem. In our sensitivity analysis regarding ensemble size, we observed that 456 

PEDL improves permeability estimates when utilizing ensemble sizes up to 5000. This is 457 

noteworthy, as DL models typically require a substantial volume of training data. Thus, an 458 

ensemble size not exceeding 10,000 appears as a reasonable compromise between inference 459 

accuracy and computational efficiency. Furthermore, PEDL’s adaptability is evident in its 460 

flexibility regarding the architecture of the DL model employed. We verified this by testing two 461 

distinct model architectures, U-net and ResNet, within the PEDL framework, both of which yield 462 

similar estimation results in two case studies with increasing complexity. Additionally, we 463 

evaluated PEDL’s performance in the presence of structural model error. Specifically, we used 464 

the sophisticated EDFM model as the reference model to generate measurement data but adopted 465 

the simplified SC model as the forecast model in DA. In this scenario, the ground truth exhibited 466 

heightened non-Gaussian and nonlinear characteristics, mirroring the complexities typically 467 

encountered in practical applications. Although PEDL, utilizing either U-net or ResNet, could 468 

not achieve an exact match between the forecast model and the ground truth, it displayed the 469 

ability to discern the fundamental structure of actual fractures, albeit with slightly reduced 470 

performance in comparison to Case 1, due to the presence of model structural error. 471 

In the current study, we investigate two cases featuring only three fractures. While our tests have 472 

unequivocally demonstrated the effectiveness of PEDL, it is imperative to address more intricate 473 

scenarios in future research endeavors. The presence of more fractures introduces formidable 474 
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challenges to both modeling and DA techniques. To construct an adequate numerical model, it is 475 

essential to enhance the discretization in both spatial and temporal domains. Naturally, this will 476 

lead to a substantial increase in simulation time. To bolster simulation efficiency, one can 477 

consider adopting surrogate models or low-fidelity approximations. Striking a balance between 478 

efficiency and accuracy, a promising solution may involve leveraging multi-fidelity simulations 479 

underpinned by DL techniques, as suggested by Chakraborty (2021). Furthermore, to 480 

comprehensively characterize more complex geological media, we must expand our data 481 

collection efforts to improve information content. This entails considering various types of 482 

measurements, including electromagnetic and electrical resistivity tomography data. The 483 

intricate nature of the models and the data necessitates the development of a more sophisticated 484 

DL model and an updated formula for PEDL. 485 
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