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Abstract 33 

 34 

In Numerical Weather Prediction (NWP) models, such as the Weather Research and 35 

Forecasting (WRF) model, parameter uncertainty in physics parameterization schemes 36 

significantly impacts model output. Our study adopts a Bayesian probabilistic approach, 37 

building on prior research that identified temperature (T) and relative humidity (Rh) as 38 

sensitive to three key WRF parameters during southeast Australia’s extreme heat events. Using 39 

Gaussian process regression-based Bayesian Optimisation (G-BO), we accurately estimated 40 

the optimal distributions for these parameters. Results show that the default values are outside 41 

their corresponding optimal distribution bounds for two of the three parameters, suggesting the 42 

need to reconsider these default values. Additionally, the robustness of the optimal parameter 43 

distributions is validated by their application to an independent extreme heat event, not 44 

included in the optimisation process. In this test, the optimised parameters substantially 45 

improved the simulation of T and Rh, highlighting their effectiveness in enhancing simulation 46 

accuracy during extreme heat conditions. 47 

 48 

Plain Language Summary 49 

 50 

This study aims to enhance the accuracy of a numerical weather model called the Weather 51 

Research and Forecasting (WRF) model, especially for simulating extreme heat events in 52 

Southeast Australia. Typically, the accuracy of such models depends on specific settings, which 53 

are often set to default values. Our research used a method known as Gaussian process 54 

regression-based Bayesian Optimisation (G-BO) to determine the best range of values for these 55 

settings. We found that the default settings were not optimal. By applying G-BO, we identified 56 

more effective values that substantially improved the model’s simulations of temperature and 57 

humidity during heat extremes. This improvement was consistent even when tested on an 58 

independent extreme heat event. These advancements are vital for more accurate weather 59 

forecasting, which is essential for emergency services, electricity management, and agriculture 60 

planning during extreme heat conditions. 61 

 62 

1 Introduction 63 

 64 

Recent studies highlight a significant increase in extreme weather globally, including 65 

intensified heatwaves that impact human and natural systems, especially in Southeast Australia 66 

(Reddy et al., 2021a; Masson-Delmotte et al., 2021; Perkins-Kirkpatrick and Lewis, 2020). 67 

Accurate heatwave simulations using Numerical Weather Prediction (NWP) models are 68 

essential in this context. The success of these models depends on their initial conditions and 69 

the representation of atmospheric processes, despite computational limitations (Bjerknes, 70 

1910). Parameterisation in NWP models is a technique used to represent complex atmospheric 71 

processes that are too small-scale or intricate to directly resolve by the model. It involves 72 

simplifying these processes into manageable mathematical forms, often employing empirical 73 

or theoretical relationships. For example, processes like cloud formation and convection are 74 
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represented through parameterization schemes, which use a set of tuneable parameters. These 75 

parameters, often constants or exponents in model equations, are critical for the accuracy of 76 

simulations (Di et al., 2015; Yang et al., 2012). The Weather Research and Forecasting (WRF) 77 

model, noted for its adaptability and high-resolution capabilities (Evans et al., 2014; 78 

Skamarock et al., 2021), is widely used in Southeast Australia for forecasting and simulating 79 

extreme events. While the sensitivity of various physics parameterization schemes in these 80 

simulations has been explored (Evans et al., 2012; Ji et al., 2022), the specific influence of 81 

parameter values within these schemes is an area of active research, with the potential to further 82 

refine and improve model simulations. 83 

Parameter optimisation is a process in which the model parameters are tuned to match the 84 

simulated output variables with respective observations. One of the primary challenges with 85 

optimisation is the exponential increase in complexity with an increase in the number of 86 

tuneable parameters, resulting in a “curse of dimensionality” (Duan et al., 2017, 2006). Another 87 

challenge is the number of output variables considered in the optimisation's objective function. 88 

These complexities make the optimisation process computationally demanding by making 89 

observational constraints inconsistent, by causing the parameters to be correlated and making 90 

the parameters poorly constrained (Matear, 1995). Therefore, several studies (Baki et al., 91 

2022a; Chinta et al., 2021; Di et al., 2017, 2015; Ji et al., 2018; Quan et al., 2016; Yang et al., 92 

2012) first performed a sensitivity analysis to identify the sensitive parameters that influence 93 

the output variables of interest. This helps reduce the number of parameters optimise, thereby 94 

reducing the computational costs.  95 

Several studies (Baki et al., 2022b; Chinta and Balaji, 2020; Di et al., 2018) performed 96 

optimisation of WRF model parameters either for a single variable (single objective) using 97 

adaptive surrogate model-based optimisation (ASMO) (Wang et al., 2014) or for multiple 98 

variables using Multi-Objective ASMO (Gong et al., 2016) and knee point-based multi-99 

objective optimisation (KMO) (Wang et al., 2023) algorithms. The main goal of these studies 100 

was to identify a single optimum value for each parameter that minimizes the simulation error 101 

with respect to observations. However, this approach often overlooks the natural predictive 102 

uncertainties and erroneously presumes that a unique, ideal set of parameter values is always 103 

applicable for all scenarios (Hoversten et al., 2006). It's important to recognize that a single 104 

optimal parameter value might not always be attainable but even when it is, the uncertainties 105 

involved could be substantial. Moreover, while approaches like Pareto front analysis in multi-106 

objective optimisation reveal multiple near-optimal solutions, they too have limitations. 107 

Specifically, Pareto optimality focuses on finding a balance among competing objectives, 108 

which might not effectively capture the underlying uncertainties or the complexity of the 109 

parameter space (Gupta et al., 1998; Van Straten and Keesman, 1991). In this context, Bayesian 110 

optimisation offers a significant advantage. It provides a probabilistic framework that accounts 111 

for uncertainties and explores the parameter space more comprehensively, offering a range of 112 

solutions with quantified uncertainties (Beven and Binley, 1992). This approach not only 113 

acknowledges the complexity inherent in such models but also adapts more fluidly to varying 114 

scenarios, making it a more robust and flexible method for parameter optimisation. 115 

Bayesian optimisation employs probabilistic methods to account for parameter uncertainties in 116 

models (Issan et al., 2023; Reiker et al., 2021; Xu et al., 2022; Chinta et al., 2023a). This 117 

approach represents input parameters as probability distributions from which multiple samples 118 

are drawn. These samples facilitate ensemble simulations, allowing the model to generate a 119 
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range of predictions. The model's outputs are then compared with actual observations using an 120 

objective function, refining the parameter distributions into more accurate posterior 121 

distributions. Subsequently, simulations based on these refined distributions align more closely 122 

with observed data. However, this method demands significant computational resources, as it 123 

involves numerous simulations of the WRF model. To address this, machine learning (ML) 124 

strategies, particularly ML-based surrogate models, are increasingly vital (Chinta et al., 2023b; 125 

Reddy et al., 2024; Wang et al., 2020). Once trained on a subset of existing simulations to 126 

understand the complex relationships between input parameters and outputs, surrogate models 127 

efficiently help explore the parameter space for Bayesian optimisation. 128 

This study aims to optimise the WRF model parameters that influence different output variables 129 

corresponding to heat extremes using Bayesian optimisation. We do this by focussing on 130 

Southeast Australia during two extreme heat events. This study is organized as follows: Section 131 

2 describes the data, events selected, WRF model configuration, introduces how surrogate 132 

models were developed, and presents the methodology of Bayesian optimisation. Section 3 133 

presents the results and a detailed discussion of the optimised parameters. Section 4 134 

summarises the conclusions from this study. 135 

 136 

2 Methods 137 

2.1  WRF model configuration and selected extreme heat events 138 

 139 

In the present study, the WRF model v4.4 (Skamarock et al., 2021) is adopted for the numerical 140 

simulations. The simulation domain is configured with a single domain (d01) across southeast 141 

Australia, as shown in Figure S1. The domain consists of 206 × 181 grid points in the 142 

horizontal direction, with a horizontal resolution of 12 km and 40 terrain-following 𝜎 vertical 143 

levels reaching up to the 50 hPa atmospheric level. The simulations are integrated with a time 144 

step of 72 seconds. For initial and lateral boundary conditions, the European Centre for 145 

Medium-Range Weather Forecast Reanalysis 5th generation data set (ERA5) (Hersbach et al., 146 

2020) at a horizontal resolution of 0.25° and a six-hourly interval is employed. The WRF model 147 

output variables, namely temperature at 2m height (T) and relative humidity at 2m height (Rh), 148 

are obtained at hourly intervals. This work extends our previous study (Reddy et al., 2024), 149 

where only three model parameters were identified to influence meteorological variables 150 

significantly during extreme heat events over southeast Australia. Consistent with our previous 151 

work, we adopt the same physics schemes as described in Table 1 of (Reddy et al., 2024). The 152 

description of three sensitive parameters is presented in the supplementary table S1. 153 

The present study selected two southeast Australian extreme heat events like the previous study 154 

(Reddy et al., 2024) for the parameter optimisation. The first event spans 13 days, 155 

encompassing the heatwave period from January 26th, 12 UTC to February 8th, 12 UTC of 156 

2009. The second extreme heat event simulation covers 15 days from December 16th, 12 UTC 157 

to December 31st, 12 UTC of 2019. Further, to assess the robustness of the optimised 158 

parameters, we consider an additional extreme heat event of 2013 covering the heatwave from 159 

01st Jan 12 UTC to 18th Jan 12 UTC over southeast Australia. For all the selected events, a 36-160 

hour model spin-up is considered. The simulation results are compared against hourly data 161 
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from the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for 162 

Australia (BARRA2; (Su et al., 2022)) at 12 km horizontal resolution. 163 

 164 

2.2 Gaussian Process Regression-based Bayesian Optimisation (G-BO) using Markov 165 

Chain Monte Carlo sampling 166 

 167 

We employ the Gaussian Process Regression-based Bayesian Optimisation (G-BO) 168 

methodology to obtain the optimal parameter distributions of sensitive WRF model parameters 169 

in simulating the critical meteorological variables of extreme heat events, such as temperature 170 

(T) and relative humidity (Rh) at 2m height. In this approach, first, we generate 128 parameter 171 

samples across the parameter space of three sensitive parameters utilizing the Quasi Monte-172 

Carlo (QMC) Sobol sequence design, facilitated by the Uncertainty Quantification Python 173 

Laboratory (UQ-PyL) package (Wang et al., 2020). Then, the 128 WRF simulations were 174 

performed based on the generated parameter samples. Next, we compute the mean absolute 175 

error (MAE) of T and Rh between the WRF simulations and BARRA2 data. The MAE is 176 

normalized with respect to the default WRF simulation MAE as follows: 177 

                           𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑀𝐴𝐸 (𝑛𝑀𝐴𝐸) =  
𝑀𝐴𝐸(𝑊𝑅𝐹𝑝−𝑟𝑢𝑛𝑠, 𝐵𝐴𝑅𝑅𝐴2)

𝑀𝐴𝐸(𝑊𝑅𝐹𝑑𝑒𝑓𝑎𝑢𝑙𝑡, 𝐵𝐴𝑅𝑅𝐴2)
                       (1) 178 

where 𝑊𝑅𝐹𝑝−𝑟𝑢𝑛𝑠 is each of the 128 parameter sample WRF runs, and  𝑊𝑅𝐹𝑑𝑒𝑓𝑎𝑢𝑙𝑡 is the 179 

default parameter WRF simulation. Any value of nMAE < 1 implies that the parameter sample 180 

is better than default. 181 

We then train a surrogate model based on the generated parameter sample WRF simulations. 182 

Following the previous studies, we considered the Gaussian Process Regression (GPR; 183 

(Williams and Rasmussen, 1995, 2006)) as a surrogate model training with parameter samples 184 

as input and nMAE as target. The accuracy of the trained GPR model is evaluated through K-185 

fold cross-validation (here, K=8), and the dependence on sample size is illustrated in Figure 186 

S2. The results indicate that the 128 samples are adequate for GPR training in achieving good 187 

accuracy with a goodness of fit (R2) value of 0.99. Subsequently, the trained GPR is used to 188 

estimate the objective function (nMAE) in performing the optimisation of model parameters.  189 

Parameter optimisation is broadly classified into the frequentist deterministic approach and the 190 

Bayesian probabilistic approach. In the frequentist deterministic approach, the goal of 191 

optimisation is to find a single optimal parameter value; however, Bayesian optimisation 192 

estimates the optimal distribution providing the uncertainty associated with the model 193 

parameters. Bayesian parameter optimisation is a process of learning the optimal distributions 194 

of model parameters based on Bayes’ theorem, given the observational data. In the Bayesian 195 

approach, first, we choose the prior distribution; here, we consider it to be a uniform 196 

distribution that provides equal importance to all the values in the parameter range. Smith 197 

(2013) suggests using the non-informative prior (such as uniform distribution) if there isn’t 198 

accurate prior information. Next, the selection of likelihood function, here, it is the normalized 199 

mean absolute error (nMAE) based on the previous studies (Wang et al., 2023). Finally, the 200 

posterior distribution of parameters is estimated by Bayes’ theorem: 201 
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                                                                𝑃(𝑥 𝑧⁄ ) =  
𝑝(𝑧 𝑥⁄ ) 𝑝(𝑥)

𝑝(𝑧)
                                                      (2)  202 

where 𝑝(𝑥) is the prior, 𝑝(𝑧 𝑥⁄ ) is the likelihood, 𝑝(𝑧) is the marginal likelihood or normalising 203 

constant, 𝑥 is the parameter sample of the random variable X, and 𝑧 is the observation sample 204 

of the random variable Z. In the Bayesian framework, directly computing the marginal 205 

likelihood, 𝑝(𝑧), is often impractical due to its complexity, but this does not compromise the 206 

estimation of the posterior distribution. The focus, instead, is on employing Markov Chain 207 

Monte Carlo (MCMC) sampling algorithms. These methods effectively estimate the posterior 208 

distribution 𝑃(𝑥 𝑧⁄ ) by bypassing the explicit calculation of the marginal likelihood. This 209 

approach avoids the potential biases that can arise from improper definition or calculation of 210 

the marginal likelihood (Issan et al., 2023).  211 

MCMC sampling systematically draws a representative set of samples from the target posterior 212 

distribution by constructing the Markov Chain. Here, the drawn sample from the probability 213 

distribution depends on the previously drawn sample. As the number of samples increases, the 214 

chain converges to the desired target posterior distribution (Roberts and Rosenthal, 2004). 215 

There are many MCMC algorithms, each considering different ways of constructing the 216 

Markov Chain while sampling, such as Gibbs sampling, Metropolis-Hastings algorithm, and 217 

Affine invariant ensemble sampling. Out of these sampling algorithms, previous studies 218 

recommended the Affine invariant ensemble sampling because it reaches faster convergence 219 

by considering the ensemble of chains in parallel, invariant to the affine transformations of 220 

parameters, enabling easy sampling from anisotropic probability distributions and has only two 221 

hyperparameters (one is number of walkers (i.e., ensemble of chains) and the other is stretch 222 

move (updates the next step of a given walker)) (Goodman and Weare, 2010; Issan et al., 2023).  223 

Affine invariant ensemble sampling is an ensemble-based extension of the most widely used 224 

Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953). Briefly, Metropolis–225 

Hastings algorithm involves iteratively drawing samples from a chosen prior-based proposal 226 

density centred (Gaussian distribution) around the previous sample, accepting or rejecting these 227 

samples based on defined probabilities to build the Markov chain. The use of a single chain in 228 

the Metropolis–Hastings algorithm is extended to an ensemble of chains in the Affine invariant 229 

ensemble sampling technique, which can be run in parallel for faster convergence.  In this study, 230 

we implemented the Affine invariant ensemble sampling using the “emcee” Python package 231 

by choosing 50 walkers and stretch move as 2 (for more detailed description, refer to Mackey 232 

et al. (2013)). The MCMC sampling is sensitive to the initial point, where a low probable initial 233 

condition could be considered, which might not be representative of the target posterior 234 

distribution. Hence, the few initial samples were disregarded until the chain reached the 235 

stationary distribution, which is referred to as burn-in. In this study, an initial 1000 steps were 236 

chosen as burn-in, after which the chains converge (Fig. S3). Following the Mackey 237 

et al. (2013), we run the chains to 3000 steps (i.e., around 50 times the integrated 238 

autocorrelation time (which is around 50)) to ensure the convergence of chains to the target 239 

distribution (Fig. S3). More information about the autocorrelation times can be found in 240 

Goodman & Weare (2010) and Mackey et al. (2013). 241 

 242 

 243 
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3 Results and discussion 244 

3.1 Gaussian process regression based-Bayesian Optimisation (G-BO) of parameters for 245 

improving temperature and relative humidity 246 

 247 

G-BO results of the three sensitive parameters in calibrating the hourly temperature (T) and 248 

relative humidity (Rh) individually and the T and Rh combined are presented in figure 1. The 249 

most probable optimal values of the scattering tuning parameter (P14) are towards the lower 250 

end of the parameter range for all the three cases of optimisation (only T (Fig. 1(a)), only Rh 251 

(Fig. 1(d)), and T and Rh combined (Fig. 1(g))). Here, the default value of the P14 is outside 252 

the 2σ interval of the optimal posterior, which clearly suggests that the default value is not the 253 

best for providing accurate information of T and Rh during extreme heat events over southeast 254 

Australia. Multiplier for the saturated soil water content parameter (P17) posterior distribution 255 

resembles a Gaussian for all three optimisation cases (T (Fig. 1(b)), Rh (Fig. 1(e)), and both T 256 

and Rh (Fig. 1(h))), with a mean value around 0.42, 0.37, and 0.40 (normalised values) when 257 

optimised for only T, only Rh, and both T and Rh, respectively. Here, the default P17 value is 258 

outside the 2σ of posterior for T; however, it is within the 2σ interval when optimised for only 259 

Rh and on the lower end of the posterior with less probability when optimised T and Rh 260 

combined. This suggests that the default value of P17 is less likely to accurately simulate the 261 

T and Rh during heat extremes in southeast Australia. Similar to P14, profile shape exponent 262 

for calculating the momentum diffusivity coefficient parameter (P22) posterior has high 263 

densities towards the lower bound of the parameter range when optimised for T (Fig. 1(c)), Rh 264 

(Fig. 1(f)) individually, and T and Rh combined (Fig. 1(i)). The default value of P22 is not in 265 

the 2σ interval of optimal posterior, suggesting the default value should be reconsidered for 266 

this parameter.   267 

The mean (and 2σ confidence interval) nMAE of G-BO posterior distribution of optimised 268 

parameter combinations for T and Rh combined case is 0.867 (0.863, 0.874) for T and 0.928 269 

(0.924, 0.934) for Rh. Further, we compare the MAE spatial patterns of T and Rh between the 270 

default and optimised parameter distribution combinations, as shown in figure 2.  The MAE of 271 

default or optimised parameter combination is calculated with respect to BARRA2 data. We 272 

randomly sample 10 parameter sets from the G-BO posterior distribution (T and Rh combined) 273 

as the representative sample (see Table S2), and the MAE of the ensemble mean of 10 runs 274 

computed with respect to BARRA2 data is shown for the spatial comparison. Figures 2(a) and 275 

2(d) show the average T and Rh, respectively, during all days of both events (2009 and 2019) 276 

using the BARRA2 data. The optimised ensemble mean reduced the MAE of T mostly across 277 

the domain compared to the default simulation (compare Figs. 2(b) vs. 2(c)). Particularly, the 278 

substantial reductions were seen in the regions of high average temperatures (greater than 33 279 

°C, see in Fig. 2(a)) and in the northeast parts of the domain (Fig. 2(c)). Similar to T, optimised 280 

ensemble mean improved the simulation of Rh compared to the default over the regions of the 281 

low average Rh i.e., central parts of the domain and across the regions of average high Rh i.e., 282 

northeast coast of the domain (compare Figs. 2(e) vs. 2(f)). Previous studies have also shown 283 

that the default parameter set has a substantial (cold) temperature and (wet) precipitation bias 284 

over southeast Australia, broadly consistent with the current results (Di Virgilio et al., 2019; Ji 285 

et al., 2022; Kala et al., 2015). The optimised ensemble mean improves the prediction of T and 286 

Rh mostly across the domain, particularly over the east coast and the northeast parts of the 287 

domain where the substantial biases observed in the default simulation.  288 
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 289 

 290 

Fig. 1 Bayesian optimised posterior distribution (grey shading) of sensitive parameters (presented as 291 
normalised values) for hourly temperature (T) (a-c) and relative humidity (Rh) (d-f) individually and 292 

for both T and Rh (g-i) combined. The red and blue lines show the default and uniform prior 293 
distribution, respectively. The grey dashed lines show the 2σ interval (95%) of the optimised posterior 294 

distribution values.   295 

 296 

Daily maximum temperature (Tmax) and daily minimum relative humidity (Rhmin) are the 297 

critical meteorological variables considered for identifying and quantifying the heat extremes, 298 

particularly the dry heat, over southeast Australia (Abram et al., 2021; Reddy et al., 2021b). 299 

Hence, we compare the spatial patterns of the Tmax and Rhmin mean during all days of the two 300 

selected events (Fig. 3(a-c and f-h)) and only on the extremely hot days of each event (2009 301 

(Fig. S4) and 2019 (Fig. S5)). The optimised ensemble mean simulation improved the realism 302 

of the mean Tmax by around 2.5 °C (compare Fig. 3(b) vs. (c)) and Rhmin (compare Fig. 3(g) vs. 303 

(h)) by approximately 0.1 over the domain compared to the default parameter values. Further, 304 

we compare the domain area-average time series of daily maximum temperature (Tmax) during 305 

all days of both the events (2009 and 2019) between BARRA2, default, and optimised 306 

ensembles (Fig. 3(d)). Results show that the optimised ensemble clearly improved the accuracy 307 

of Tmax across all days of the two selected events compared to the default (Fig. 3(d)). Further, 308 

the ensemble spread of domain average bias of Tmax and Rhmin across all the days of both events 309 

(2009 and 2019) is compared with the default domain average bias (Fig. 3(e) and (j)). This 310 

shows that all the 10 optimised ensemble members clearly improved the cold Tmax and wet 311 

Rhmin bias compared to the default. Furthermore, the optimised ensemble accurately simulated 312 
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the hot region (region of Tmax greater than 44 °C) on the extremely hot day of both the selected 313 

events (2009 (compare Fig. S4(b) vs (c)) and 2019 (compare Fig. S5(b) vs (c))) compared to 314 

the default. This suggests that the optimised ensemble simulations better capture the 315 

extremeness of the extreme heat events over southeast Australia compared to the default. The 316 

accurate information on extremeness of the extreme heat events is critical for planning 317 

emergency services, electricity demand management, and cattle safety and crop management 318 

(Asseng et al., 2011; Lindstrom et al., 2013; Loridan et al., 2016).       319 

 320 

 321 

Fig. 2 Spatial plot of average hourly temperature (T; °C) (a) and hourly relative humidity (Rh) (d) 322 
during all days of both selected events (2009 and 2019) using the BARRA2 data. MAE of the WRF 323 
default parameters run (default) and optimised ensemble mean (of randomly drawn 10 parameter 324 
combinations from the optimal posterior distribution of both T and Rh combined) parameters run 325 

(Opt. Ens. mean) with respect to BARRA2 data for the considered meteorological variables. The MAE 326 
of T (b-c) and Rh (e-f) for default and Opt. Ens. mean runs with respect to BARRA2. 327 

 328 

The G-BO optimised parameter distributions are further tested on an independent extreme heat 329 

event (2013 event) not used in the optimisation. Similar to the 2009 and 2019 events, the 2013 330 

event optimised ensemble mean improves the simulation of T and Rh mostly across the domain, 331 

particularly over the east coast and the northeast regions of the domain, compared to the default 332 

parameters (Figs. S6 and S7). Further, the Tmax and Rhmin results of the 2013 event show that 333 

the optimised ensemble improves the simulation compared to the default, which is consistent 334 

with the two optimised events (Fig. S7). This further testing help demonstrates the robustness 335 

of the G-BO results. Overall, this study’s G-BO methodology improved the simulation 336 

accuracy of T and Rh during heat extremes, specifically bettered the extremeness of the extreme 337 

heat information. 338 

 339 
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 340 

Fig. 3 Spatial plot of average daily maximum temperature (Tmax; °C) (a) and daily minimum relative 341 
humidity (Rhmin) (f) during all days of both selected events (2009 and 2019) using the BARRA2 data. 342 
Comparison of the WRF default parameters run (default) and optimised ensemble mean (Opt. Ens. 343 
mean) (of randomly drawn ten parameter combinations from the optimal posterior distribution of 344 

both T and Rh combined) with respect to BARRA2 data for the considered meteorological variables. 345 
The mean bias of Tmax (b-c) and Rhmin (g-h) between default and Opt. Ens. mean runs with respect to 346 
BARRA2. Domain average temporal comparison of daily maximum temperature (Tmax; °C) (d), and 347 
daily minimum relative humidity (Rhmin) (i) of BARRA2 (black line), default (blue line), optimised 348 

ensemble (orange shading), and optimised ensemble mean (orange line) during all days of 2009 and 349 
2019 events (events are separated with dotted vertical lines). Box plots of domain average bias of 350 

optimised ensemble with respect to BARRA2 and the default domain average bias value is shown as a 351 
blue dot (Tmax(e) and Rhmin(j)). 352 

 353 

 354 



11 
 

3.2 Physical understanding of optimal distribution of parameters 355 

 356 

The scattering tuning parameter (P14) optimal posterior is towards the lower bound of its range 357 

with a maximum likelihood value around 0.5×10-5 to 0.6×10-5, which is lower than the default 358 

value (1×10-5). The lower the P14, the weaker the scattering, leading to more incoming solar 359 

radiation, which increases the surface heating and can amplify the daytime surface temperature 360 

(Dudhia, 1989; Montornès Torrecillas et al., 2015). This supports our result of lower P14 361 

compared to the default as the optimal, which improves the temperature cold bias of default 362 

parameter simulation (Fig. 3(b) vs. (c)). This is more specifically seen in the Tmax because it is 363 

much affected by the P14 (Fig. 3(b) vs. (c)) (Reddy et al., 2024). Low P14 values favour low 364 

Rhmin; our results agree with this and show that the positive Rhmin bias in default simulation is 365 

improved in the optimised run with the P14 value lower than the default one (Fig. 3(g) vs. (h)).  366 

The multiplier for saturated soil water content or soil porosity P17 in the land surface scheme 367 

is optimised to the posterior, with the maximum likelihood value ranging between 1.03-1.18, 368 

which is slightly higher than the default value (1). Our G-BO results show a higher Tmax with 369 

the calibrated parameter set compared to the default parameter simulation. Consistent with the 370 

results, previous studies suggest that low P17 favours a decrease in surface temperature, 371 

particularly during the daytime (Fonseca et al., 2019; Reddy et al., 2024; Temimi et al., 2020). 372 

Next is parameter P22, which is the profile shape exponent in the momentum diffusivity 373 

coefficient of the planetary boundary layer scheme. P22 optimised posterior maximum 374 

probability value is around 1.0 to 1.14, which is lower than the default value (2). Previous 375 

studies suggest that the low P22 weakens the turbulent mixing below the maximum height of 376 

momentum diffusivity, which may moderate the convective mass flux, leading to a lower Rh 377 

(Hong et al., 2006; Oke, 2002). 378 

Our study has focused on the critical task of quantifying parameter uncertainty and optimising 379 

parameter values relative to observations, which is fundamental for enhancing model 380 

reliability. It is important to recognize, however, that there are additional sources of uncertainty 381 

that also affect model accuracy. These include uncertainties in initial and boundary conditions, 382 

the accuracy of observational data, and inherent limitations within the model structure. While 383 

our results provide valuable insights for parameter optimisation, future studies could further 384 

improve model simulations by exploring these additional sources of uncertainty, thereby 385 

offering a more holistic approach to model accuracy and reliability. 386 

 387 

4 Conclusions 388 

 389 

We used the G-BO methodology to estimate the optimal distribution of the three WRF model 390 

parameters previously identified as the most important to simulate extreme heat conditions in 391 

SE Australia (Reddy et al., 2024). The parameters, scattering tuning parameter (P14), the 392 

multiplier for saturated soil water content (P17), and the profile shape exponent for calculating 393 

the momentum diffusivity coefficient (P22), have the produced the greatest sensitivity to the 394 

simulated hourly temperature (T) and relative humidity (Rh) during the two considered 395 

southeast Australian extreme heat events (2009 and 2019). Unlike the previous studies, which 396 

focus on identifying single optimum parameter values, our methodology provides optimal 397 
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parameter distributions, which allows us to quantify the parameter uncertainty and parameter 398 

correlations.  399 

The key results from the parameter optimisation are: 1) for two of the three parameters 400 

optimised the default WRF default parameter values lie outside the optimal range suggesting 401 

the need to reconsidering the parameter values for simulating heat extremes in this region. 2) 402 

Randomly drawing ten parameter samples from the optimal distributions improved the MAE 403 

of the simulated T and Rh by 11.2-12% and 5.4-6.8 %, respectively. 3) The mean spatial pattern 404 

of ten optimal parameter simulations improves the default simulation negative bias of T and 405 

positive bias of Rh mostly across the domain. Most importantly optimal parameter sample 406 

substantially improved critical variables of the dry heat, such as daily maximum temperature 407 

(Tmax) and daily minimum relative humidity (Rhmin), compared to the default parameters over 408 

the domain. The changes in the optimised parameters from the default values are physically 409 

plausible and explainable from a physical parameterization perspective. An investigation of the 410 

optimal parameter distributions shows no correlations between the optimal parameters. A small 411 

spread in the ensemble from the optimised model indicates constrained parameter uncertainty 412 

(Fig. 3(d-e) and (i-j)). However, the discrepancies between the ensemble predictions and the 413 

observed data suggest that additional uncertainties from other sources are present within our 414 

model. 415 

Further, to demonstrate the robustness of the optimal parameter distributions we use them to 416 

simulate a heat extreme event in 2013 in southeast Australia. The simulations improved 417 

representation of the Tmax and Rhmin, over the default parameter values. Overall, G-BO 418 

methodology improved the simulation of T and Rh during heat extremes, specifically bettered 419 

the extremeness of the extreme heat information, which have significant implications for 420 

emergency services management and cattle and crop productivity. The present study results 421 

may quite not be applicable to wet extremes, which needs to be further explored and is clearly 422 

outside the scope of this study. Future studies can apply the present study’s methodology to 423 

other extreme events such as extreme rainfall and tropical cyclones, to name a few. Further, 424 

this study’s approach can be applicable to other dynamical models in the atmospheric, oceanic, 425 

and biological sciences, to name a few.  426 
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