References
Bieleman JH. Driers. CHIMIA Int J Chem. 2002;56:184–190 DOI:
10.2533/000942902777680568.
de Boer JW, Wesenhagen PV, Wenker ECM, Maaijen K, Gol F, Gibbs H, et al.
The Quest for Cobalt-Free Alkyd Paint Driers. Eur J Inorg Chem.
2013;2013:3581–3591 DOI: 10.1002/ejic.201300205.
Bouwman E, van Gorkum R. A study of new manganese complexes as potential
driers for alkyd paints. J Coat Technol Res. 2007;4:491–503 DOI:
10.1007/s11998-007-9041-0.
Charamzová I, Vinklárek J, Honzíček J. Effect of primary driers on
oxidative drying of high-solid alkyd binder: Investigation of thickness
effects by mechanical tests and infrared spectroscopy. Prog Org Coat.
2018;125:177–185 DOI: 10.1016/j.porgcoat.2018.09.001.
Eilers PHC. A Perfect Smoother. Anal Chem. 2003;75:3631–3636 DOI:
10.1021/ac034173t.
van Gorkum R, Bouwman E. The oxidative drying of alkyd paint catalysed
by metal complexes. Coord Chem Rev. 2005;249:1709–1728 DOI:
10.1016/j.ccr.2005.02.002.
Haber F, Weiss J. Über die Katalyse des Hydroperoxydes.
Naturwissenschaften. 1932;20:948–950 DOI: 10.1007/BF01504715.
Heredia-Guerrero JA, Benítez JJ, Domínguez E, Bayer IS, Cingolani R,
Athanassiou A, et al. Infrared and Raman spectroscopic features of plant
cuticles: a review. Front Plant Sci. 2014;5:1–14 DOI:
10.3389/fpls.2014.00305.
Hofland A. Alkyd resins: From down and out to alive and kicking. Prog
Org Coat. 2012;73:274–282 DOI: 10.1016/j.porgcoat.2011.01.014.
Honzíček J. Curing of Air-Drying Paints: A Critical Review. Ind Eng Chem
Res. 2019;58:12485–12505 DOI: 10.1021/acs.iecr.9b02567.
Hubert JC, Venderbosch RAM, Muizebelt WJ, Klaasen RP, Zabel KH.
Mechanistic study of drying of alkyd resins using (Z,Z)- and
(E,E)-3,6-nonadiene as model substances. Prog Org Coat. 1997;31:331–340
DOI: 10.1016/S0300-9440(97)00091-X.
Křižan M, Vinklárek J, Erben M, Císařová I, Honzíček J. Autoxidation of
alkyd resins catalyzed by iron(II) bispidine complex: Drying performance
and in-depth infrared study. Prog Org Coat. 2017;111:361–370 DOI:
10.1016/j.porgcoat.2017.05.015.
Kumarathasan R, Rajkumar AB, Hunter NR, Gesser HD. Autoxidation and
yellowing of methyl linolenate. Prog Lipid Res. 1992;31:109–126 DOI:
10.1016/0163-7827(92)90005-4.
Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L. Cobalt
toxicity in humans—A review of the potential sources and systemic
health effects. Toxicology. 2017;387:43–56 DOI:
10.1016/j.tox.2017.05.015.
Maeder M, King P. ReactLab Kinetics. Jplus consulting; 2017.
Malinowski ER. Factor Analysis in Chemistry. 3rd Ed. New York: Wiley;
2002.
Muizebelt WJ, Hubert JC, Venderbosch RAM. Mechanistic study of drying of
alkyd resins using ethyl linoleate as a model substance. Prog Org Coat.
1994;24:263–279 DOI: 10.1016/0033-0655(94)85019-4.
Oakley LH, Casadio F, Shull KR, Broadbelt LJ. Modeling the Evolution of
Crosslinked and Extractable Material in an Oil-Based Paint Model System.
Angew Chem Int Ed. 2018;57:7413–7417 DOI: 10.1002/anie.201801332.
Orlova Y, Harmon RE, Broadbelt LJ, Iedema PD. Review of the kinetics and
simulations of linseed oil autoxidation. Progress in Organic Coatings.
2021;151:106041 DOI: 10.1016/j.porgcoat.2020.106041.
Pirš B, Znoj B, Skale S, Zabret J, Godnjavec J, Berce P, et al. The
Influence Of Co/Sr and Fe/Sr Driers on Film Formation of High Solid
Alkyd Coatings. Acta Chim Slov. 2014;62:52–59 DOI:
10.17344/acsi.2014.708.
Preininger O, Vinklárek J, Honzíček J, Mikysek T, Erben M. A promising
drying activity of environmentally friendly oxovanadium(IV) complexes in
air-drying paints. Prog Org Coat. 2015;88:191–198 DOI:
10.1016/j.porgcoat.2015.06.026.
Soucek MD, Khattab T, Wu J. Review of autoxidation and driers. Prog Org
Coat. 2012;73:435–454 DOI: 10.1016/j.porgcoat.2011.08.021.
Spier E, Neuenschwander U, Hermans I. Insights into the
Cobalt(II)-Catalyzed Decomposition of Peroxide. Angew Chem Int Ed.
2013;52:1581–1585 DOI: 10.1002/anie.201207920.
van Stokkum IHM, Larsen DS, van Grondelle R. Global and target analysis
of time-resolved spectra. BBA-Bioenergetics. 2004;1657:82–104 DOI:
10.1016/j.bbabio.2004.04.011.
van de Voort FR, Ismail AA, Sedman J, Emo G. Monitoring the oxidation of
edible oils by Fourier transform infrared spectroscopy. J Am Oil Chem
Soc. 1994;71:243–253 DOI: 10.1007/BF02638049.
Webster DC. Paints, Varnishes, and Related Products. In: Shahidi F,
editor. Bailey’s Industrial Oil and Fat Products. 6th ed. New York:
Wiley; 2020. p. 1–41 DOI: 10.1002/047167849X.bio076.pub2.
Fig. 1 Lewis structures of fatty acids commonly found in drying
oils.
Fatty acids may be present as both triglycerides and free acids.
Fig. 2 Proposed mechanisms for radical initiation by transition
metal driers.
Fig. 3 Olefin structural motifs formed during drying oil
autoxidation: A , non-conjugated cis -olefins with a
methylene spacer; B , cis-trans conjugated olefins formed
upon rearrangement after initial H-atom abstraction; C ,
isolated trans -olefins formed from termination reactions.
Fig. 4 FT-IR spectra of linseed oil mixed with 1.36 mM
Co(hfac)2 collected at 1-hour intervals for 12 hours.
Initial timepoint corresponds to 2 hours.
Fig. 5 Residual spectra (dark to light with respect to time,
initial and final spectra shown in red and purple respectively) for 1.36
mM Co(hfac)2 sample fit using a) A Bmodel, b) A B C model, and c) AB C D model over 13 hours. For each plot,
induction period is 80 minutes and first time point shown is 120 minutes
while subsequent time points are 20 minutes apart.
Fig. 6 Species associated spectra (SAS) for species A– D (blue, orange, black, and green respectively) from global
analysis of 1.36 mM Co(hfac)2 fit with a) AB model, b) A B C model, and c)A B C D model.
Fig. 7 Residual spectra (dark to light with respect to time,
initial and final spectra shown in red and purple respectively), and SAS
(blue, orange, and black correspond to species A , B ,
and C ) of global fits for 1.36 mM Co(hfac)2 in
linseed oil, when k1 and k2 are
unrestricted (a, c) and k1 is fixed as equal to
k2 (b, d).
Fig. 8 a) Raw spectra and b) predicted SAS (A blue,B orange, C black) for the autoxidation of linseed oil
containing 2.04 mM Co(acac)2 drier.
Table 1. Calculated rate constants and statistical parameters
for global fits of linseed oil oxidation with Co(acac)2,
Co(hfac)2, and Co(oct)2.