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Key points: 23 

1. A new statistical downscaling method to improve GRACE groundwater storage change 24 

estimates was proposed and proved to be effective. 25 

2. Leakage-corrected GRACE groundwater storage anomalies in North China Plain showed 26 

losses (gains) in the Piedmont Plain (Coastal Plain). 27 

3. Uncertainty in leakage-corrected groundwater storage anomaly arising from specific yield 28 

and/or groundwater level can be reduced by 65-90%. 29 
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Abstract: To compensate for the intrinsic coarse spatial resolution of groundwater storage 30 

(GWS) anomalies (GWSA) from the Gravity Recovery and Climate Experiment (GRACE) 31 

satellites and make better use of current dense in situ groundwater-level data in some regions, 32 

a new statistical downscaling method was proposed to derive high-resolution GRACE GWS 33 

changes. A ground-based scaling factor (SFGB) method was proposed to downscale GRACE 34 

GWS changes that were corrected using gridded scaling factors estimated from ground-based 35 

GWS changes through forward modeling. The proposed method was applied in the North 36 

China Plain (NCP), where many observation wells and consistently measured specific yield 37 

are available. Importantly, the sensitivity of the proposed method was explored considering 38 

the uncertainties of in situ GWS changes due to variable specific yield and/or number of 39 

observation wells. Independent validation shows that SFGB can effectively recover GRACE 40 

GWSA at the 0.5º grid scale (r = 0.81, root mean square error = 40.51 mm/yr). The SFGB-41 

corrected GWSA in the NCP was -32.60±0.99 mm/yr (-4.6±0.14 km3/yr) during 2004-2015, 42 

showing contrasting GWS trends in the piedmont west (loss) and the coastal east (gains). 43 

Uncertainties in SFGB-corrected GWSA arising from specific yield, groundwater-level, and 44 

both can be reduced by 90%, 65%, and 84%, respectively relative to ground-based GWSA. 45 

This study highlights the potential value of jointly using GRACE and in situ observation data 46 

to improve the accuracy of GRACE-derived GWSA at smaller scales. The new downscaling 47 

method and the improved groundwater storage change estimates would facilitate better 48 

groundwater management. 49 

Keywords: GRACE; In situ observations; Statistical downscaling; Groundwater level; 50 
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Specific yield; Scaling factor. 51 

1. Introduction 52 

Groundwater is a critical resource. It is important to understand how its quantity, i.e., 53 

groundwater storage (GWS) changes at different spatial and temporal scales. In situ 54 

groundwater-level (GWL) observations and Gravity Recovery and Climate Experiment 55 

(GRACE) satellite measurements are widely used to monitor GWS changes. However, both of 56 

them have strengths and limitations (Alley and Konikow 2015; Famiglietti et al. 2015; 57 

Famiglietti and Rodell 2013; Scanlon et al. 2012). In situ GWL observations can be used to 58 

estimate GWS changes by multiplying a specific yield (Sy) for unconfined aquifers or storage 59 

coefficient for confined aquifers. However, the actual Sy or storage coefficient is not always 60 

spatially available or is difficult to be accurately estimated in some cases (Gehman et al. 2022; 61 

Lv et al. 2021; Rodell et al. 2007). A regional mean Sy referenced from soil lithology was 62 

thus often used in previous studies (Bhanja et al. 2016; Famiglietti et al. 2011; Leblanc et al. 63 

2009). Furthermore, the observation wells can be insufficient in many regions, resulting in 64 

large uncertainties in in-situ-measured GWS changes (Chen et al. 2016; Hachborn et al. 2017; 65 

Henry et al. 2011). 66 

GRACE is capable of capturing GWS changes independent of in situ information (Rodell et al. 67 

2009). GRACE data has been successfully applied worldwide (Chandanpurkar et al. 2021; 68 

Huang et al. 2015; Panda and Wahr 2016; Reager and Famiglietti 2009; Richey et al. 2015; 69 

Shamsudduha et al. 2012; Strassberg et al. 2009; Syed et al. 2008; Syed et al. 2009; Xiang et 70 
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al. 2016). The most widely used GRACE solutions include the level-2 spherical harmonic 71 

(SH) solutions and level-3 mascon solutions. Mascon solutions can be directly used to 72 

estimate terrestrial water storage anomaly (TWSA) time series, but mascons are intrinsic 73 

global solutions and are not designed for a specific region (Zhang et al. 2019). SH solutions 74 

need complex processing and further signal leakage correction to reduce noise in higher 75 

degree coefficients. However, by employing various correction methods, SH data can be 76 

applied at sub-regional scales below the GRACE footprint. The iterative forward modeling 77 

and scaling factor are two commonly used approaches for this data processing (Chen et al. 78 

2009; Chen et al. 2015; Landerer and Swenson 2012; Longuevergne et al. 2010). However, 79 

scaling factors may be sensitive to models used, because they are derived from the a priori 80 

information which is mostly obtained from model-simulated TWS anomalies (i.e., TWSA) or 81 

GWS anomalies (GWSA) (Huang et al. 2019; Landerer and Swenson 2012; Liu and Zou 82 

2019). Many existing global land surface models such as those in the Global Land Data 83 

Assimilation System (GLDAS) and global hydrological models such as WaterGAP (WGHM) 84 

have a common lack of groundwater modules or many of them are not well-suited to 85 

represent local human activities. It is difficult to invert the spatial pattern of mass changes in 86 

the study area by using the iterative forward modeling method. Yi et al. (2016) and 87 

Vishwakarma et al. 2017 proposed a multi-basin inversion method and data-driven approach 88 

respectively, but these methods also had difficulties in inverting the spatial distribution of 89 

signal variations. 90 

Based on the limitations of the above correction methods, we attempt to improve the 91 
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resolution of GRACE by using a new downscaling approach. Downscaling is widely used in 92 

the fields of remote sensing, climate, and hydrology (Atkinson 2013; Peng et al. 2017; 93 

Quintana Seguí et al. 2010; Saikrishna et al. 2022; Xu et al. 2019). Downscaling methods can 94 

be categorized into two types: dynamical downscaling and statistical downscaling. Low-95 

resolution data patterns are nested inside high-resolution data patterns during dynamic 96 

downscaling (Saikrishna et al. 2022; Adachi and Tomita 2020; Brown et al. 2008). Because a 97 

model is based on physical principles, the physical interpretation of the dynamically 98 

downscaled results is simplified. However, computational intensity limits the application of 99 

this time-consuming method (Adachi and Tomita 2020; Jyolsna et al. 2021). Statistical 100 

downscaling involves establishing a statistical relationship between small-scale observation 101 

data and large-scale data (Tang et al. 2016). For example, in the statistical downscaling of soil 102 

moisture (Peng et al. 2017), multi-source satellite data with varying resolutions, geographic 103 

information data related to soil moisture, and model data can all be used for statistical 104 

downscaling. Therefore, many kinds of data can be used as variables in statistical 105 

downscaling. Common methods of statistical downscaling include multiple regression, 106 

machine learning, etc. Compared with dynamical downscaling, statistical downscaling is 107 

simpler and requires much less computational time (Chen et al. 2010).  108 

Statistical downscaling methods are also widely used in GRACE downscaling (Pulla et al. 109 

2023; Arshad et al. 2022; Yin et al. 2022). Most studies construct correlations with GRACE 110 

GWSA using data related to changes in GWS, such as precipitation, soil moisture, 111 

evapotranspiration, and soil lithology information (Pulla et al. 2023; Chen et al. 2019). 112 
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However, it is difficult for these downscaling applications to reflect changes in GWS in areas 113 

with high levels of human activity and groundwater extraction (Miro and Famiglietti 2018; 114 

Sahour et al. 2020; Yin et al. 2022; Zhang et al. 2019). Meanwhile, statistical downscaling 115 

applications that use other variable data like evapotranspiration to establish statistical 116 

relationships with GRACE data (e.g., Yin et al. 2018) cannot be applied to regions where 117 

there is no strong correlation between GWS and evapotranspiration. There have been few 118 

studies on GRACE downscaling that use in situ GWL data as variables, and most studies use 119 

in situ data as prediction targets and validation data (Seyoum et al. 2019; Zhang et al. 2021). 120 

In situ observation data are not only often used in statistical downscaling as prediction target 121 

data and validation data (Liu et al. 2020; Xu et al. 2020; Pulla et al. 2023), but are also input 122 

into models as variables (Duan and Bastiaanssen 2013; Hunink et al. 2014; López López et al. 123 

2018; Samadi et al. 2013; Shen et al. 2021; Teng et al. 2014; Xu et al. 2018). A large number 124 

of studies have shown that when combined with in situ observation data, the results of 125 

downscaling studies are better (Duan and Bastiaanssen 2013; López López et al. 2018). 126 

Although groundwater monitoring on the ground is not an easy task, many countries or 127 

regions have constructed dense in situ GWL monitoring networks, such as California Central 128 

Valley, India, the Bengal Basin, and North China Plain. Previous studies have demonstrated 129 

the capability of GRACE satellites in monitoring GWS changes in those aquifers or regions 130 

by using in situ GWL measurements as validation data (Shamsudduha et al. 2012c; Bhanja 131 

and Mukherjee 2019; Huang et al. 2015; Scanlon et al. 2012b;). However, none of those 132 

studies retrieved a high-resolution GWS change map using the in situ GWL data and/or 133 
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GRACE data. Therefore, a large research opportunity still exists in those aquifers or regions 134 

where making better use of the dense in situ GWL datasets can compensate for the coarse 135 

GRACE data by deriving high-resolution GWS changes through statistical downscaling. 136 

In this study, a new statistical downscaling approach was proposed by jointly using in situ 137 

GWL observations and GRACE data. Ground-based scaling factors were derived to 138 

downscale GRACE GWS changes through forward modeling with in situ GWL observations 139 

as the a priori information. The North China Plain (NCP) was selected as the study area 140 

considering the great significance of groundwater resources for agricultural and societal 141 

development, and the sufficient GWL observation wells and reported Sy data in the region, 142 

which can support a variety of validation and sensitivity analyses. To demonstrate the 143 

reliability and effectiveness of the proposed downscaling method, this study was conducted in 144 

three steps. As the flowchart in Figure 1 shows that an independent validation was first 145 

performed using selected validation data. Then, the proposed method was directly applied in 146 

the NCP to improve the GWS change estimates at smaller scales. Finally, a sensitivity 147 

analysis was performed to investigate how Sy values and/or the number and location of GWL 148 

observation wells influence the results of scaling factors through forward modeling. 149 
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 150 

Figure 1. Schematic flowchart of technical and analytical methods used in this study. CGS Sy 151 

refers to the widely used Sy of NCP released by the China Geology Survey (Zhang et al., 152 

2009). The sensitivity analysis and independent validation were implemented using different 153 

prior information as that in the application to the NCP. 154 

 155 

2. Study area and data 156 

2.1. Study area 157 

A case study was applied to the North China Plain (NCP, Figure 2) at multiple spatial scales, 158 

i.e., the whole region (~14×104 km²), sub-regions, cities, and the 0.5° grid cells. The sub-159 

regions cover the Piedmont Plain (PP) (~5.4×104 km²), the Central Plain (CP) (~6.6×104 km²), 160 

and the Eastern Plain (EP) (~2.0×104 km²). Cities in the plain area include Beijing (0.60×104 161 

km²), Shijiazhuang (0.66×104 km²), Cangzhou (1.42×104km²), Hengshui (0.88×104 km²), and 162 

Xinxiang (0.67×104 km²). 163 

 The NCP is characterized by cold-dry winters (December-March) and hot-humid summers 164 

(July-September). The annual precipitation in the NCP gradually reduces from 1,200 mm in 165 
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the southeast to 400 mm in the northwest (Xing et al. 2013). Groundwater in this region is the 166 

main source of water supply for agricultural production which contributes ~10% to China’s 167 

grain production, including ~30% of the total wheat production. Groundwater abstraction had 168 

been intensified since the 1970s. Intensive groundwater use started to drop in recent years due 169 

to regulations and technical innovation (Gong et al. 2018b). The NCP comprises three distinct 170 

hydrogeological settings within the Quaternary aquifer system, including PP (fluvial fans 171 

distributed along the Taihang Mountains in the west, and composed of clayey gravel, and 172 

medium-coarse sand), CP (alluvial sediments composed of clay, silty clay, and fine-medium 173 

sand), and EP (marine and alluvial sediments along the coastal area of Bohai Sea, 174 

characterized by fine sand, silt, sandy clay, and silty clay). The grain size of sediment 175 

particles and the permeability decrease from the west (PP) to the east (EP). Groundwater 176 

flows locally from the top of alluvial fans and regionally from the west to the east (Xing et al. 177 

2013). 178 
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 179 

Figure 2. Study area with location of observation wells. The GWL trend map of observation 180 

wells was shown on the lower right for a better understanding of GWS changes at local 181 

scales. The inserted map on the upper left shows the spatial distribution of Sy reported by 182 

CGS (Zhang et al. 2009). 183 

2.2. Data 184 

The GRACE data used for TWSA estimation were the RL06 level-2 spherical harmonic (SH) 185 

solutions from the Center for Space Research (CSR) at the University of Texas, covering the 186 

period from January 2003 to December 2016. To estimate GWSA from GRACE TWSA, we 187 
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subtracted soil moisture storage anomalies (SMSA) simulated by GLDAS-1 Community Land 188 

Model (CLM) and surface water storage anomalies (SWSA) of 14 major reservoirs from the 189 

China Water Annual Report and Beijing Water Resources Bulletin. The CLM SMSA was used 190 

considering its best performance among 4 GLDAS model simulations (CLM, VIC, Noah, and 191 

Mosaic) with in situ observations (Zhang et al., 2021). 192 

GWL data from a total of 447 observation wells were obtained from the Groundwater Level 193 

Yearbook (January 2003 to December 2016) compiled by the China Institute of Geological 194 

and Environmental Monitoring. The compiled dataset includes 389 wells located at 195 

unconfined aquifers and 58 wells at confined aquifers (Figure 2). The Sy data (Figure 2) were 196 

obtained from China Geological Survey (CGS), which was empirically estimated by the 197 

aquifer soil texture and GWL fluctuations (Zhang et al. 2009). Generally, Sy refers to the 198 

aquifer storage coefficient for unconfined aquifers, while the storativity which is much 199 

smaller than Sy is usually used for confined aquifers. It is however difficult to identify Sy or 200 

storativity for the unconfined or confined aquifers in the NCP because most of the pumping 201 

wells abstract water from both unconfined and confined aquifers. In this study, the CGS Sy 202 

was used, but attention was paid to its uncertainty that may result from hydrogeological 203 

complexities.  204 

3. Methods 205 

3.1. Correcting GRACE GWSA using ground-based scaling factors 206 

The SFGB method in this study used ground-based GWSA (hereafter denoted as GWSAGB) as 207 
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the a priori information to derive scaling factors which were then applied to correct the 208 

leakage error in GRACE-derived GWSA. Key estimation consists of two parts: 209 

disaggregation of apparent GWSA and correction. To estimate TWSA, the CSR SH solutions 210 

were truncated at degree and order 60 and filtered by a 300-km Gaussian smoother (Swenson 211 

et al. 2003; Swenson and Wahr 2002). To disaggregate GWSA from GRACE TWSA, SMSA, 212 

and SWSA were forward-modeled and then subtracted from GRACE TWSA to derive the 213 

apparent GWSA (Rodell and Famiglietti 2002). Different from Huang et al. (2015) which 214 

used regionally averaged long-term groundwater depletion rate as the a priori information, 215 

the a priori information in this study has a spatial resolution of 0.5°. As a result, this study 216 

focuses on the performance of SFGB not only at regional and sub-regional scales but also at 217 

city and grid scales. 218 

In this study, we corrected trends and seasonal signals of TWSA individually as they may be 219 

weakened during the post-processing of GRACE SH solutions (Landerer and Swenson 2012). 220 

In doing so, the a priori information (i.e., the GWSAGB time series) was first decomposed into 221 

trends and seasonal components using the additive decomposition method (Perfilieva et al. 222 

2013). The retrieved trends and seasonal signals of the a priori information were individually 223 

forward-modeled to calculate the scaling factors. The scaling factors were then applied to 224 

correct the corresponding trends and seasonal components of GRACE apparent GWSA. Next, 225 

the corrected trends and seasonal components were aggregated to obtain the SFGB-corrected 226 

GWSA (hereafter denoted as GWSASF) time series. Given that the influence of signals outside 227 

the studied area should also be considered in the correction, this study calculated the trends of 228 
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GWSAGB outside the NCP using the data obtained from the Monthly Report of Groundwater 229 

Dynamics released by the Ministry of Water Resources of China. Since there would be a 6-230 

month gap at the beginning and the end of the studied period after the decomposition of the 231 

trends and seasonal signals, this study only analyzed the GWSA from January 2004 to 232 

December 2015 to ensure the consistency of the calculated GWSA in the time series.  233 

3.2. Independent Validation and application in the NCP 234 

To achieve a more effective validation, the in situ GWL observation wells were divided into 235 

two independent groups, i.e., the correction data used to produce scaling factors for correcting 236 

GRACE GWSA and the validation data used for verification of the method reliability. The 237 

division of the two independent data groups avoids the repeated use of GWL data for 238 

correction or validation and hence avoids the reliance of validation results on the correction 239 

data. The correction and validation data groups are determined as follows. (1) Rescale the 240 

entire NCP into 61 grids at 0.5° resolution (see the dashed grids in Figure 2). Most grids 241 

encompass several GWL observation wells. (2) Select those grids with densely- and evenly-242 

distributed wells which can be better served as validation grids. A total of 19 grids (see the 243 

dark green grids in Figure 2) were selected as validation grids within which the ratio of 244 

temporal sampling of GWL data (2003-2016) was greater than 85% (sufficient enough for 245 

validation purposes). (3) The validation data were determined by selecting ~50% of wells 246 

within each of the 19 grids. Finally, a total of 111 wells were selected as independent 247 

validation data, as marked by the green points in Figure 2. (4) The remaining >300 GWL 248 

observation wells were divided as correction data.  249 



Confidential Manuscript submitted to Water Resources Research 

The correction data were used as in situ a priori information to derive scaling factors for 250 

correcting GRACE GWSA. The validation data were used to independently evaluate the 251 

performance of GRACE GWSA derived from various methods, including GWSASF, and the 252 

results obtained from CSR mascon solution, iterative forward modeling, and WGHM-based 253 

scaling factors.  254 

After verifying the reliability and effectiveness of the proposed SFGB downscaling method, an 255 

application was conducted under a realistic situation when all GWL observation wells and the 256 

reported Sy by CGS were considered altogether to derive SFGB for correcting GRACE 257 

GWSA. The improved GWS changes were estimated at regional, subregional, city, and grid 258 

scales with a comparison to the results and findings in previous studies. 259 

3.3. Numerical experiments for sensitivity analysis of the SFGB downscaling method 260 

As the mass change derived from the scaling factor method is affected by the a priori 261 

information (Huang et al. 2015; Landerer and Swenson 2012; Long et al. 2015), GWSASF can 262 

be biased by the uncertainties generated by Sy (due to limited knowledge on hydrogeological 263 

conditions) and GWL (due to uneven spatial distribution and/or insufficient observation 264 

wells). Three scenarios were designed to investigate the effects of individual Sy, GWL, and 265 

both of them on uncertainties. The CGS Sy and all (100%) observation wells were used to 266 

estimate the referenced GWSA for comparison when conducting numerical experiments for 267 

sensitivity analysis. The sensitivities were analyzed using the standard deviations of multiple 268 

GWSASF that result from using different Sy and GWL as the a priori information. 269 
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Scenario #1: “Fixed wells, variable Sy”. The number of wells was fixed considering all the in 270 

situ GWL data from 447 observation wells, but the Sy values were variable by randomly 271 

generating 1,000 groups of values ranging from 0 to 0.5. The a priori GWSAGB can be 272 

estimated using the randomly generated Sy and GWL data.   273 

Scenario #2: “Fixed Sy, variable wells”. The Sy values were fixed using the data from CGS, 274 

but the number of wells was variable by randomly generating 10,000 groups at a 0.5 grid 275 

scale. The a priori GWSAGB can be estimated using the randomly sampled GWL and the 276 

CGS Sy.  277 

Scenario #3: “Variable Sy, variable GWL”. Sy values are variable by randomly generating 278 

1,000 groups of values ranging from 0 to 0.5, and the number of wells is variable by randomly 279 

generating 10,000 groups at a 0.5 grid scale. The a priori GWSAGB can be estimated from 280 

both randomly generated Sy and GWL.  281 

Notably, when testing a random generation of 1,000 groups of wells, almost identical results 282 

were achieved relative to the random generation of 10,000 groups of wells. Therefore, we 283 

finally used 1,000 groups of results in both Scenarios #2 and #3. 284 

3.4. Error estimation  285 

In this study, we estimated errors from the GRACE measurements, hydrological model 286 

simulations, and in situ GWSA. Following Chen et al. (2009), GRACE measurement error 287 

was calculated using the residual signals in the Pacific Ocean at the same latitude. The error 288 
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from model-simulated SMSA was estimated using the standard deviation of the SMSA 289 

simulations of four models (i.e., CLM, VIC, MOS, and NOAH) after forward modeling. An 290 

error of 10% was specified for GWSAGB. The final error of apparent GWSA and GWSASF 291 

was calculated using the error propagation principle of addition and multiplication given by 292 

equations (1) and (2):  293 

                  𝜎ୟ୮୮ୟ୰ୣ୬୲ ୋ୛ୗ୅ = ඥ𝜎்ௐௌ஺ଶ + 𝜎ௌெௌ஺ଶ                                           (1) 294 

𝜎ீௐௌ஺ೄಷ = ඥ(𝜎ௌி)ଶ × (𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝐺𝑊𝑆𝐴)ଶ + (𝜎௔௣௣௔௥௘௡௧ ீௐௌ஺)ଶ × (𝑆𝐹)ଶ          (2) 295 

where σ is the estimated uncertainty of corresponding variables, SF is the scaling factor, and 296 

the upper hyphen “—” means calculating the derivative. 297 

4. Results and discussion 298 

4.1. Validation of GRACE-derived GWSA against independent measurements 299 

Figure 3a shows the spatial correlations (statistics at 0.5° grid scale) between GRACE-derived 300 

GWSAs and independent validation data. Overall, GWSASF represents a good consistency 301 

with independent validation data, with a correlation coefficient of 0.81 and root mean square 302 

error (RMSE) of 40.5 mm/yr. However, GWSA trends (Figure S1) derived from CSR mascon, 303 

iterative forward modeling, and WGHM-based scaling factor have weak correlations with 304 

independent validation data, with a correlation coefficient of -0.30, -0.30, and -0.07, 305 

respectively. 306 
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 307 

Figure 3. (a) Comparison between GRACE-derived GWSA trends and independent 308 

measurements. Four GRACE-estimated GWSA trends are inter-compared, i.e., the SFGB, 309 

iterative forward modeling, CSR Mascon solution, and WGHM-based scaling factor. The 310 

statistics for correlation coefficient (r), and root mean square error (RMSE) were performed at 311 

0.5° grid scale. (b-c) Grid-scale statistics of correlation coefficients (r, b) and RMSE (c) 312 

between monthly GWSA corrected by SFGB and the independent measurements. 313 

Figure 3b-c shows the spatial distribution of the statistical metrics between GWSASF and the 314 

independent measurements at the grid scale. Figure 4 plots the monthly time series of 315 

GWSASF with large discrepancies in the grid cells of Figure 3b-c compared to the 316 

independent validation dataset. Differences between the two types of data are caused by the 317 

mismatch of data caused by several reasons. Firstly, the mismatch can be caused by the 318 

uncertainties of in situ observations, e.g., insufficient observation wells in the unconfined 319 

aquifers (such as GRID #13, #40, #41, and #53) and biased Sy in the confined aquifers (such 320 

as GRID #16, #21, and #22). Such uncertainties may generate biased scaling factors. 321 

Secondly, the mismatch of spatial resolutions between GRACE and in situ observations 322 
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further results in discrepancies between GWSASF and the validation dataset. For example, the 323 

area of Beijing (GRID #61) is below the footprint of GRACE, but GWSASF shows a rapid 324 

increase in Beijing during July-December, 2012 in contrast to the stable fluctuations reflected 325 

by the validation data. The extreme rainfall event in July 2012 (Zhang et al. 2013; Zhang et al. 326 

2015) is believed to be the cause for that mismatch, as GRACE and in situ observations may 327 

capture different mass variations during the flood event at different spatial resolutions. 328 

 329 

Figure 4. Comparison between monthly GWSASF and independent measurements at the grid 330 

cells showing large discrepancies (r < 0.5, RMSE > 500 mm/mo.). The Sy and number of total 331 

observation wells (N) at each grid cell are shown above for understanding uncertainties of in 332 

situ data. 333 

4.2. Divergent GWSA in the NCP based on the SFGB downscaling method 334 

In this section, GWL data from all available observation wells and the CGS Sy were used to 335 
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derive scaling factors for the NCP. Results show that GWSA in the entire NCP represents a 336 

decreasing rate of -32.60±0.99 mm/yr (4.56±0.14 Gt/yr) during 2004-2015 (Error! 337 

Reference source not found.5), which was more significant than the rate (-18.6±0.8 mm/yr) 338 

estimated by the Mascon solution during 2003-2015 (Gong et al. 2018) and the rate (-28.57 339 

mm/yr) simulated by the MODFLOW model during 1960-2008 (Cao et al. 2013). 340 

Compared with previous GRACE studies in the NCP (Feng et al. 2013; Gong et al. 2018; 341 

Huang et al. 2015), this study showed remarkable spatial variations in GWSA at the sub-342 

regional scale, demonstrating groundwater loss in the piedmont west and gains in the coastal 343 

east. Significant depletion rates were found in PP (-66.76±2.03 mm/yr) and CP (-23.12±0.65 344 

mm/yr), while the GWSA in EP showed a slightly increasing trend (7.24±0.27 mm/yr) (Figure 345 

5). In addition, the magnitude of the GWSA trend was identified as decreasing from PP in the 346 

west to the eastern coastal area (EP). Such spatial variations echo previous studies reporting 347 

the conditions of groundwater pumping and hydrogeological characteristics from the PP to the 348 

EP (Huang et al. 2015). 349 
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activities over the NCP (Zhang et al. 2021). In contrast, Cangzhou City exhibited a slightly 359 

increasing trend of 5.38±0.21 mm/yr (or 0.08±0.01 Gt/yr), which agrees with the GWSA 360 

recovery period since 2005 revealed by the InSAR measurements (Jiang et al. 2018). Such an 361 

increasing trend could be attributed to the strict groundwater management policies issued by 362 

the local government, indicating that the proposed methods in this study may be effective in 363 

revealing the actual groundwater dynamics under regional water management. Furthermore, 364 

the estimated GWSA reflects the impact of spatial-temporal variations of precipitation. For 365 

instance, the abnormal increase of GWSA in Beijing in 2012 was believed to be related to 366 

extreme rainfall (Zhang et al. 2013; Zhang et al. 2015). A noticeable decrease in GWSA 367 

during 2014-2015, especially in the unconfined aquifers of the PP (e.g., Beijing and 368 

Shijiazhuang), was ascribed to the concurrent severe drought (Zhang et al. 2021). 369 

In addition to the divergent GWSA over the NCP, the SFGB-based results highlight the 370 

uncertainties in estimated GWSA in some regions. For example, significant differences are 371 

recognized among different estimates in Beijing (SFGB-based rate: -84.33±3.03 mm/yr, in 372 

situ-based rate: -68.49±3.86 mm/yr, and reported rate from water resources bulletin: -43.76 373 

mm/yr by). The larger depletion rate revealed by the SFGB-based estimate may be resulted 374 

from overestimated Sy and/or insufficient observation wells, as to be discussed in Section 4.3. 375 

However, such a discrepancy may be reasonable considering the lack of in situ Sy in Beijing, 376 

and it is possible to use the SFGB to further estimate Sy at the sub-regional scale in Beijing. 377 
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4.3. Sensitivity analysis 378 

Given the uncertainties in the a priori information due to inaccurate Sy and/or the 379 

scarcity and uneven distribution of GWL observation wells, both SFGB- and in situ-380 

based method may overestimate or underestimate GWSA. Thus, a set of numerical 381 

experiments was conducted to investigate the sensitivity of the SFGB downscaling 382 

method and the in situ-based method to the variability of Sy and the number of GWL 383 

observation wells.  384 

The statistical results of numerical experiments at different spatial scales under 385 

different scenarios are shown in Figure 6 and Table S1-S3. The magnitude of 386 

sensitivity (or uncertainty) can be measured by the distance between the upper and 387 

lower quartile lines in Figure 6. Compared to Scenario #1 (“fixed wells, variable Sy”, 388 

Figure 6a) and Scenario #3 (“variable Sy, variable wells”, Figure 6c), the trends of 389 

GWSASF and GWSAGB in Scenario #2 (“fixed Sy, variable wells”, Figure 6b) are 390 

closer to the reference GWSA trend. Meanwhile, the GWSASF and GWSAGB are less 391 

sensitive to the variability of the number of observation wells at regional and 392 

subregional scales in Scenario #2. Even under an extreme situation when only 5 wells 393 

(1% of the total number of wells) are selected, relatively good results still can be 394 

obtained. The sensitivity of GWSASF to the variability of wells increases slightly 395 

relative to GWSAGB when the spatial scale decreased to the city scale. Both GWSASF 396 

and GWSAGB are more sensitive to the variability of Sy than the variability of wells. 397 
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In Scenario #2, the reported Sy from CGS was used, while in Scenarios #1 and #3, the 398 

random Sy between 0 and 0.5 was used. The random Sy in Scenarios #1 and #3 399 

influenced the accuracy of both GWSASF and GWSAGB considerably, but the 400 

GWSASF trends at almost all spatial scales were closer to the reference GWSA trend 401 

than GWSAGB, indicating the effectiveness of SFGB in correcting the leakage error 402 

from grid scale to the entire regional scale. 403 

GWSASF has a different magnitude of sensitivity to the variability of Sy and/or wells 404 

at different spatial scales, and the optimization ratio of GWSASF compared to 405 

GWSAGB varies among different scenarios. At regional, subregional, and city scales, 406 

GWSASF shows lower sensitivity than GWSGB in Scenario #1 and Scenario #3. In 407 

Scenario #1 (or #3), the uncertainty in GWSASF trends decreased significantly at the 408 

three scales, with the largest optimization ratio of 90% (#3: 84%) in the NCP, 409 

followed by 81% (#3: 73%) in the CP, 74% in the PP (#3: 69%), and 69% in Hengshui 410 

(#3: 61%) (Table S1 and S3, Figure 6). Relative low optimization ratios were found in 411 

the EP in Scenario #1 and #3, and in Xinxiang in Scenario #1 (see Table S1 and S3, 412 

Figure 6).  In Scenario #2, optimization of GWSASF was found in the NCP (by 65%), 413 

PP (by 4%), and CP (by 3%) under the low sensitivity to the variability of wells 414 

(Table S2, Figure 6). Overall, the SFGB downscaling method is capable of reducing 415 

the uncertainty in GWSA induced by the random Sy at any spatial scales as indicated 416 

in Scenarios #1 and #3, and this method can be used to estimate large-scale GWSA 417 

when reliable Sy is already known but the in situ observation wells are insufficient as 418 
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4.4 Caveats 429 

The proposed SFGB downscaling method is applicable under the situation when 430 

observation wells are insufficient and the reliable Sy values are simultaneously 431 

unknown. However, a premise should be considered that the available insufficient 432 

observation wells should be relatively evenly distributed and can be interpolated into 433 

grid cells based on which the forward modeling is performed to estimate scaling 434 

factors. The SFGB downscaling method is less sensitive to the variability of 435 

observation wells than to the Sy. In other words, GWSASF relies less on the number of 436 

wells. Nevertheless, attention should be paid to the heterogeneity of GWL variability 437 

within one grid. If there is a limited number of wells in one grid (e.g., 0.5°×0.5°) 438 

with high heterogeneity of hydrogeology conditions, the GWL data of the limited 439 

wells may not be able to represent the average GWL in that grid. Such a situation may 440 

result in a large bias in the estimated GWSASF, especially at the city and grid scales. 441 

5. Conclusions  442 

This study proposed a new statistical downscaling approach to derive high-resolution 443 

GWS changes using the ground-based scaling factor (SFGB) method by jointly using 444 

GRACE and in situ GWL data. The proposed method takes advantage of these two 445 

datasets by combining the high-resolution in situ GWL data with the independent 446 

measurements of mass changes from GRACE. Independent validation and numerical 447 

experiments demonstrated the effectiveness of SFGB in reducing uncertainties arising 448 

from Sy and improving the spatial resolution of estimated GWSA. In areas with a 449 
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certain amount of observation wells, the SFGB-based statistical downscaling method 450 

could provide better estimates of GWSA than using in situ GWL data or GRACE data 451 

alone. The improved GWSA estimates would be beneficial to water resources 452 

management departments which usually have a desire for higher-resolution and 453 

lower-uncertainty GWSA datasets for policy-making. 454 

Previous studies have revealed an overall groundwater depletion over the NCP. 455 

However, the findings based on the SFGB downscaling method in this study provided 456 

updated information against those traditional insights, revealing obvious GWSA 457 

variability at the sub-regional and city scales. The most significant GWS loss 458 

occurred in Shijiazhuang in the piedmont west with a depletion rate of -90.83±2.42 459 

mm/yr (-0.61±0.02 Gt/yr), in contrast to the slightly increasing trend (5.38±0.21 460 

mm/yr or 0.08±0.01 Gt/yr) in Cangzhou city in the coastal east under the water 461 

resources management policies. The GWSA estimates in the NCP at a higher 462 

resolution obtained in this study would promote our understanding of the impacts of 463 

climate, hydrogeology, and human intervention on regional groundwater resources, 464 

and help identify priorities for regional groundwater management practices. 465 
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