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Key Points: 6 

• Statistical tropical cyclone rainfall prediction leverages distance-based algorithms to 7 
identify and use similar past events. 8 

• Proposed in this study is the use of Sinkhorn Distance as a novel measure of TC 9 
similarity in rainfall prediction. 10 

• Incorporating Sinkhorn Distance improves TC rainfall prediction accuracy, offering an 11 
alternative similarity measure.  12 
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Abstract 14 

There is a need to improve the prediction of Tropical Cyclone (TC) rainfall as climate change 15 
has led to increased TC rainfall rates. Enhanced reliability in predicting TC tracks has paved the 16 
way for statistical methodologies to utilize them in estimating current TC rainfall, achieved by 17 
identifying similar past TC tracks and obtaining their corresponding rainfall data. The widely 18 
used Fuzzy C Means (FCM) clustering algorithm, though popular, has limitations stemming 19 
from its clustering-centric design, hindering its ability to pinpoint the most appropriate similar 20 
TCs. Our study introduces the Sinkhorn Distance as a novel measure of TC similarity in rainfall 21 
prediction. Our findings indicate that the incorporation of Sinkhorn Distance significantly 22 
enhances the accuracy of TC rainfall predictions across WNP. When compared to the 23 
conventional approach using FCM, our Sinkhorn Distance-based methodology consistently 24 
yields better results, as demonstrated by metrics like RMSE and correlation coefficients. 25 
Collectively, the inclusion of Sinkhorn Distance stands as a valuable addition to our toolkit for 26 
discerning similar TC tracks, thus elevating the precision of TC rainfall predictions. With 27 
ongoing advancements in statistical and AI techniques, we anticipate even more refined 28 
approaches to further enhance our predictive capabilities. This study represents a leap forward in 29 
meeting the critical need for more accurate TC rainfall forecasts in the WNP Region. 30 

1 Introduction 31 

In recent years, the world has witnessed an alarming increase in the frequency and 32 
intensity of extreme weather events (IPCC 2021), and tropical cyclones (TCs) stand out as one of 33 
the most devastating natural phenomena affecting coastal regions (Gori et al., 2022; Lee et al., 34 
2019; Wang et al., 2023). The devastating impact of TC rainfall is well-documented, causing 35 
severe flooding, property damage, and loss of lives (Tu et al., 2021). Predicting the rainfall 36 
associated with these powerful TCs is of utmost importance for enhancing disaster preparedness, 37 
risk mitigation, and timely response strategies. 38 

Numerical weather prediction (NWP) model-based methods for TC rainfall prediction 39 
have made significant progress (Luitel et al., 2018; Ren et al., 2018). However, accurately 40 
predicting TC rainfall remains challenging due to the complexity and non-linearity of 41 
atmospheric processes (Luitel et al., 2018; Ren et al., 2018). Moreover, these NWP-based 42 
methodologies are computationally expensive, demanding substantial resources (Hokson & 43 
Kanae, in press-a). To address these issues, statistical-based methodologies have been developed 44 
as a complementary measure to conventional methods. 45 

Statistical-based methodologies rest on the notion that past weather events have a high 46 
likelihood of recurring in the present or future (Bagtasa, 2021). By identifying similar historical 47 
TCs, these methods enable the prediction of a TC’s rainfall. Leveraging comprehensive historical 48 
TC rainfall data, these methodologies provide valuable insights into the fundamental patterns and 49 
relationships that govern rainfall behavior during cyclones. A significant advantage of statistical 50 
approaches lies in their efficiency, as they often demand fewer computational resources, making 51 
them accessible and practical for countries and organizations with limited resources. 52 

Recently, there has been a notable enhancement in the precision and reliability of TC 53 
track predictions (Li et al., 2016; Kim et al., 2019). This progress has led to the adoption of 54 
various statistical methodologies that leverage TC tracks to establish similarity between 55 
current/future TCs and past TCs. This approach is grounded in the concept that TCs exhibiting 56 
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similar tracks tend to generate akin rainfall patterns. This is attributed to the shared influence of 57 
factors such as TC intensity, location relative to landmass, as well as temperature and humidity, 58 
as noted by Hokson and Kanae (in press-a). Many studies have capitalized on these principles, 59 
including works by Ren et al. (2018), Kim et al. (2019), Kim et al. (2020), Bagtasa (2021, 2022), 60 
Hokson and Kanae (in press-a, in press-b), as well as Wang et al. (2023). 61 

In identifying similar TC tracks, and thus similar TCs, for the statistical prediction of 62 
rainfall, researchers employ a distance-based similarity measure. Among the methods utilized in 63 
previous studies (Kim et al., 2019; Kim et al., 2020; Hokson & Kanae, in press-a, in press-b; 64 
Wang et al., 2023) is the Fuzzy C Means (FCM) clustering algorithm. FCM uses a membership 65 
coefficient as a similarity index between a target TC and other TC, allowing it to identify various 66 
patterns, even those with irregular shapes. Moreover, FCM exhibits computational efficiency, 67 
making it a good choice for those with limited resources. However, certain limitations exist, such 68 
as the requirement for equal-length data and the dependence on the number and location of 69 
cluster centers. If the cluster centers are not adequately optimized (e.g., centers are close to each 70 
other), FCM may fail to identify the most similar TCs. In light of these drawbacks, it becomes 71 
crucial to explore alternative distance-based similarity measures to enhance the effectiveness and 72 
robustness of TC rainfall predictions. 73 

The Sinkhorn Distance (Cuturi, 2013) is one possible distance-based similarity measure 74 
we can use in identifying similar TCs for the statistical prediction of TC rainfall. It compares 75 
probability distributions and handles large-scale datasets with complexity and uncertainty, 76 
making it popular in AI and machine learning research. Unlike FCM, it doesn't need equal-length 77 
data and allows direct similarity checks between two TCs without involving other real or 78 
arbitrary TCs. In this study, we explore the potential of the Sinkhorn Distance as a similarity 79 
measure for identifying similar TCs in the statistical prediction of TC rainfall. To assess its 80 
accuracy in rainfall prediction, we employ various statistical measures. We establish the 81 
methodology utilizing FCM as the reference approach and compare the results obtained using the 82 
Sinkhorn Distance. By doing so, we aim to determine whether the Sinkhorn Distance could serve 83 
as a promising alternative to FCM in improving the accuracy of TC rainfall predictions. 84 

This study is part of an ongoing effort to enhance our methodologies for the statistical 85 
prediction of TC rainfall. In a previous study (Hokson & Kanae, in press-b), we investigated the 86 
utilization of additional along-track variables, alongside the TC track, to identify similar TCs. 87 
We discovered that these additional variables had minimal impact on TC rainfall prediction 88 
accuracies. In another previous study (Hokson & Kanae, in press-a), we proposed a novel 89 
constraint involving the TC central pressure at selected locations, which yielded significant 90 
improvements in our TC rainfall prediction accuracy. These findings highlight the importance of 91 
exploring innovative approaches to optimize our predictions.  92 

This rest of this paper is organized as follows. Section 2 describes the data and the study 93 
area. Section 3 discusses the methodology, including the proposed use of Sinkhorn Distance 94 
Algorithm. Section 4 presents and discusses the result. Section 5 offers a summary and 95 
conclusion.  96 
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2 Data and study area 97 

2.1 Data 98 

In this study, we utilized twodatasets for the statistical prediction of TC rainfall. 99 
The first dataset, RSMC Best Track Dataset (https://www.jma.go.jp/jma/jma-eng/jma-100 
center/rsmc-hp-pub-eg/trackarchives.html), provided 6-hourly TC tracks. We 101 
downloaded the second dataset, APHRODITE Monsoon Asia Precipitation data V1101 102 
and V1101EX_R1 (Yatagai et al., 2012), to obtain 0.25° daily rainfall data. These 103 
datasets played a crucial role in our investigation of TC rainfall prediction. 104 

2.2 Study area 105 

 106 

Figure 1. The five areas of simulations. Adapted – with modifications – from Magee et al. 107 
(2021). 108 

The Western North Pacific (WNP) Region is recognized as the world's most 109 
active tropical cyclone basin, witnessing an average of 26 typhoons annually (Lee et al., 110 
2020). These cyclones impact hundreds of thousands to millions of people every year in 111 
the region, underscoring the critical importance of accurately predicting TC rainfall. In 112 
contrast to regional methods, our study adopts a country-specific approach, focusing on 113 
individual predictions for each country (Figure 1) in WNP. The countries under 114 
examination include China and Taiwan (15.6° - 45.4° N, 128.3° - 103.4° E), Japan (21.0° 115 
- 50.0° N, 124.0° - 152.0° E), Korea (27.5° - 45.0° N, 115.0° - 132.5° E), Philippines 116 
(5.0° - 25.0° E, 115.0° - 135.0° E), and Vietnam (5.0° - 22.5° N, 120.0° - 100.0° E). This 117 
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decision was driven by the need for more localized and precise forecasts, a crucial aspect 118 
in enhancing disaster preparedness. 119 

 120 

3 Statistical prediction of TC rainfall 121 

  122 

Figure 2. Four-step methodology for predicting TC for every TC. Step 2 uses Sinkhorn Distance 123 
instead of the Fuzzy C Means (FCM). The area of simulation for China and Taiwan is used as 124 
example. 125 

The prediction of rainfall for each target TC involves a four-step process (Figure 2), 126 
adapted from previous studies (Kim et al., 2019; Kim et al., 2020; Hokson & Kanae, in press-b; 127 
Wang et al., 2023) with a modification in step 2. First, a target TC is selected and represented by 128 
its 6-hourly positions (track) within the area of simulation. Second, similar TCs are identified 129 
using the Sinkhorn Distance (Section 3.1). Third, the rainfall values (Section 3.2) of all identified 130 
similar TCs are collected. Finally, the prediction is obtained by calculating the simple average of 131 
the collected rainfall values. 132 

3.1 Identification of similar TCs using Sinkhorn distance 133 

To identify similar TCs, we propose the use of Sinkhorn Distance. It is derived 134 
from the optimal transport theory, which studies the most efficient way to transform one 135 
distribution into another. For this study, probability distributions are represented by TC 136 
track positions. 137 

The Sinkhorn Distance algorithm for computing distance between two tracks, as 138 
described by Cuturi (2013) is given as follow: 139 

1. Define the track data as: 140 
𝑨 = [(𝑥!, 𝑦!), (𝑥", 𝑦"), … , (𝑥#, 𝑦#)] with 𝑛 elements 141 
𝑩 = [(𝑢!, 𝑣!), (𝑢", 𝑣"), … , (𝑢$, 𝑣$)] with 𝑚 elements 142 

where 𝑥 and 𝑢 are longitude, and 𝑦 and 𝑣 are latitude. 143 
2. Define the cost matrix (based on Euclidean distance) 144 
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𝐶%& = 1(𝑥% − 𝑢&)" + (𝑦% − 𝑣&)" 145 

where 𝐶%& is the pairwise distance between point 𝑖 in track 𝑨 and point 𝑗 in track 146 

𝑩. 147 
3. Initialize the scaling/weighting factors: 148 

𝒈 = [1, 1, …	, 1] with 𝑛 elements for points in track 𝑨 149 
𝒉 = [1, 1, …	, 1] with 𝑚 elements for points in track 𝑩 150 
 151 

4. Perform Sinkhorn iterations: (repeat until convergence or a maximum number of 152 
iterations is achieved) 153 

a. Update the scaling factors 154 

𝑔% =
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where ε is the regularization parameter controlling the trade-off between 157 
accuracy and computational stability in Sinkhorn iterations. 158 

b. Normalize the scaling factors 159 

𝒈 =
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 160 
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 161 

 162 
5. Compute the optimal transport plan 𝑃%&.  163 

𝑃%& = 𝑔%
+
,$!
- ℎ& 164 

where 𝑃%& represents the probability of transporting mass from point 𝑖 in track 𝑨 to 165 

point 𝑗 in track 𝑩. Values for 𝑃%& are within the range 0 – 1.  166 

6. Calculate the Sinkhorn Distance values. 167 

𝑠𝑑𝑖𝑠𝑡 = 	B B 𝑃%&𝐶%&
$

&*!

#

%*!
 168 

Using the calculated Sinkhorn Distance values of similar TCs per each target TC, the 169 
similar TCs are ranked based on similarity. 170 

To identify the optimal number of similar typhoons, n_opt, to be used for TC 171 
rainfall prediction, the prediction error values across different numbers of similar TCs are 172 
computed. The number of similar typhoons with the least prediction error is considered 173 
the optimal number of similar typhoons. All similar TCs that are part of the n_opt most 174 
similar typhoons are used for rainfall prediction. 175 
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3.2 Computation of rainfall values 176 

We used the conventional circles of 500 km radius (Guzman and Jiang 2021) to 177 
extract TC rainfall at each of its 6-hourly positions. These extracted values were then 178 
summed up to compute the distributed total rainfall for each TC. Subsequently, the total 179 
rainfall values of all the similar typhoons (i.e., the n_opt most similar TCs) were 180 
collected and averaged to obtain the predicted rainfall value of each target TC. 181 

 182 

4 Results 183 

4.1 Identified similar TCs based on track similarity 184 

 185 

Figure 3. Top 20 most similar TCs identified through SINK and FCM for the five typhoon cases 186 
in five simulation areas. Black represents the target TC track, and gray represents identidied 187 
similar TC tracks. 188 

To illustrate the effectiveness of Sinkhorn Distance, hereinafter referred to as 189 
SINK, we conducted an analysis employing five distinct Tropical Cyclones (TCs), each 190 
serving as a representative sample of specific simulation areas. These TCs encompass 191 
Soudelor (2015) for China & Taiwan, Vongfong (2014) for Japan, Sanba (2012) for 192 
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Korea, Nesat (2011) for the Philippines, and Wutip (2013) for Vietnam. In order to 193 
demonstrate the capacity of SINK in identifying similar TCs, we present the top 20 TCs 194 
that exhibit the highest similarity as identified by the algorithm. Overall, SINK identifies 195 
similar TC tracks wells, as portrayed in Figure 3. 196 

In a comparative context against the conventional FCM approach, it becomes 197 
evident that TCs identified as similar by SINK exhibit an enhanced spatial proximity to 198 
the target TCs. Specifically, in the case of China & Taiwan, TCs deemed similar to 199 
Soudelor (2015) demonstrate closer alignment in the southern and eastern sectors, albeit 200 
without the same degree of proximity in the northern trajectory. Similarly, for Japan, TCs 201 
identified as similar to Vongfong (2014) display notable spatial closeness, with the 202 
exception being the northeastern portion of the target TC track. While exploring the 203 
results for Korea, it is noteworthy that SINK identifies analogous TCs primarily closer to 204 
the east of the target, although some tracks exhibit distinctive and unconventional shapes. 205 
Furthermore, when considering the Philippines, TCs identified as similar to Nanmadol 206 
(2011) vividly illustrate the proximity of TC tracks, particularly in the eastern vicinity of 207 
the target TC. Lastly, for Vietnam, SINK identifies a greater number of similar TCs 208 
situated to the south of the target, consequently leading to a more centralized alignment 209 
in comparison to the FCM methodology. These findings highlight the difference in TC 210 
similar identification between the new SINK method and the conventional FCM 211 
approach. 212 

4.2 Optimal numbers of similar TCs for TC rainfall prediction and performance of SINK 213 

 214 

Figure 4. Average rainfall prediction error of TCs across different number of similar TCs for the 215 
five simulation areas. Only values inside rainfall calculation areas (shown in the Appendix) area 216 
are considered in the prediction error. Values in bold red represent the best values. 217 

As in previous studies (Kim et al., 2019; Kim et al., 2020; Hokson & Kanae, in 218 
press-a, in press-b; Wang et al., 2023), we determined the optimal numbers of similar 219 
TCs using TC rainfall prediction error. In such, the numbers of similar TCs with the least 220 
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RMSE values for the five simulation areas are considered optimal numbers of similar 221 
TCs for simple averaging of rainfall for prediction of rainfall. 222 

The RMSE values for all simulation areas for any number of similar TCs are 223 
between 6 mm to 18 mm for SINK (Figure 4). This same range is applicable to FCM, 224 
which is also computed for comparative and in-depth analysis. Notably, these values are 225 
markedly lower than those reported by Kim et al. (2019) and Kim et al. (2020), possibly 226 
due to the larger dataset of past TCs employed in this study. Moreover, they are also 227 
lower than those indicated by Hokson & Kanae (2023a and 2023b), as well as Wang et al. 228 
(2023), which may be attributed to the more localized approach adopted in here. 229 
Comparing SINK with FCM for all simulation areas except for Korea, RMSE values are 230 
lower for SINK than FCM across different number of similar TCs. For Korea, the RMSE 231 
values for SINK are almost the same with FCM, sometimes higher sometimes lower. 232 

Table 1. Minimum RMSE values and corresponding optimal no. of similar TCs based on Figure 233 
4 for the five simulation areas. 234 

Simulation Area No. of 
target TCs 

RMSE [mm] Optimal no. of similar TCs 
FCM SINK FCM SINK 

China & Taiwan 768 7.38 7.09 12 13 
Japan 672 6.92 6.68 14 17 
Korea 234 9.34 9.42 12 8 

Philippines 759 13.99 13.73 11 9 
Vietnam 405 14.34 13.84 9 13 

The minimum values of RMSE are in between 8 to 17 number of similar TCs and 235 
ranges 6 to 15 mm (Figure 4 and Table 1). The optimal numbers of similar TCs for SINK 236 
are 13 for China & Taiwan, 17 for Japan, 8 for Korea, 9 for the Philippines, and 13 for 237 
Vietnam based on the least RMSE. For FCM, the optimal numbers of similar TCs are 12 238 
for China & Taiwan, 14 for Japan, 12 for Korea, 11 for the Philippines, and 9 for 239 
Vietnam. 240 

4.3 Rainfall prediction 241 

Using the optimal number of similar TCs determined in Section 4.2, the TC 242 
rainfall are predicted. In this analysis, we continue to utilize the five test TCs introduced 243 
in Section 4.1, showcasing the influence of the similar TCs identified through SINK.  244 

We replotted the similar TCs shown and discussed in Section 4.1 (Figure 3) to 245 
reflect the optimal number of TCs for each simulation area (Figure 5). Generally, SINK 246 
identified similar TCs closer to the target than FCM, like those involving top 20 most 247 
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similar. Compared to those with top 20 most similar TCs however, the top 8 most similar 248 
TCs for Korea identified through SINK are mostly on the east side of the target TC. 249 

 250 

Figure 5. Similar tracks of optimal number identified through SINK and FCM for five typhoon 251 
cases in five simulation areas. 252 

Overall, the identification of similar TCs through Sinkhorn Distance resulted in 253 
comparable predictions of TC rainfall (see Figure 6). Visually, the rainfall prediction 254 
using SINK appears to be superior when compared to predictions made using Fuzzy C-255 
Means (FCM). In four out of the five typhoon cases – Soudelor (2015), Vongfong (2014), 256 
Sanba (2012), and Nanmadol (2011) – the results from SINK show higher rainfall values 257 
than those from FCM in areas where significant rainfall was observed (highlighted in red 258 
in Figure 6). In contrast, for the remaining typhoon case (Wutip), SINK predicts lower 259 
rainfall values than FCM in areas with high observed rainfall (also in red in Figure 6). 260 
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These values from SINK generally appear to be closer to the observed values than those 261 
from FCM. 262 

 263 

Figure 6. Spatially distributed rainfall prediction values based on similar TCs identified through 264 
SINK and FCM (Figure 5) for five typhoon cases in five simulation areas. 265 
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To quantitatively assess the prediction performance illustrated in Figure 6, we 266 
computed the Root Mean Square Error (RMSE) and correlation coefficient values. In 267 
general, the results from SINK exhibit superior RMSE and correlation values. The RMSE 268 
values are consistently better for all five typhoon cases in the results from SINK 269 
compared to those from FCM. The correlation coefficient of the results from SINK 270 
outperforms that of FCM for Soudelor (2015), Vongfong (2014), and Wutip (2013), 271 
remains similar for Nanmadol (2011), but is slightly worse for Sanba (2012). Notably, 272 
Sanba (2012) serves as an illustrative example of the degradation introduced by using 273 
SINK specifically in the context of Korea. 274 

Table 2. RMSE and correlation coefficient values for the five simulation cases in five simulation 275 
areas. Values in bold red represent the best values. Only values inside rainfall calculation areas 276 
(shown in the Appendix) area are considered in the prediction error. 277 

Simulation area TC (Year) 

No. of similar 
TCs used RMSE [mm] Correlation 

coefficient 

FCM SINK FCM SINK FCM SINK 

China & Taiwan Soudelor (2015) 12 13 23.48 22.01 0.82 0.84 

Japan Vongfong (2014) 14 17 17.87 14.28 0.85 0.87 

Korea Sanba (2012) 12 8 18.51 17.13 0.97 0.95 

Philippines Nanmadol (2011) 11 9 45.58 44.85 0.96 0.96 

Vietnam Wutip (2013) 9 13 24.95 9.17 0.64 0.88 

 278 

5 Summary 279 

Our research introduces the Sinkhorn Distance as a novel TC similarity measure in the 280 
statistical prediction of TC rainfall. By incorporating this metric into an established methodology 281 
(Kim et al., 2019; Hokson & Kanae, in press-b), we have demonstrated its potential 282 
effectiveness. Our investigation revealed that, in general, the utilization of Sinkhorn Distance 283 
leads to accurate predictions of TC rainfall across five simulation areas – namely China & 284 
Taiwan, Japan, Korea, Philippines, and Vietnam. 285 

In comparison to the conventional approach employing FCM as a TC similarity measure, 286 
our methodology employing Sinkhorn Distance yielded generally better results for the simulation 287 
areas of China & Taiwan, Japan, Philippines, and Vietnam. However, it exhibited slightly less 288 
favorable outcomes for the simulation area of Korea. These assessments were based on spatially 289 
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distributed rainfall data, with performance metrics quantified using RMSE and correlation 290 
coefficients. 291 

Taken collectively, the inclusion of Sinkhorn Distance in our study presents an additional 292 
valuable tool for discerning similar TC tracks, thereby enhancing the accuracy of TC rainfall 293 
predictions. As statistical and AI techniques continue to advance, we anticipate even more 294 
refined approaches to further enhance our predictive capabilities. This study constitutes a stride 295 
towards a much-needed enhancement in our predictions of TC rainfall. 296 

Appendix 297 

 298 

Figure A1. Rainfall calculation areas. Only values on land inside the rainfall calculation areas 299 
are considered in the analysis in the main text. 300 
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