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Abstract14

Shifts in Southern Ocean (SO, 40−85oS) shortwave (SW) cloud feedback (SWFB)15

towards more positive values are the dominant contributor to higher effective climate sen-16

sitivity (ECS) in Coupled Model Intercomparison Project phase 6 (CMIP6) models. The17

positive shift in SWFB in CMIP6 global climate model (GCMs) can be traced back to18

the greater reduction in low cloud cover and the weaker cloud liquid water response to19

warming in the SO. To evaluate how realistic the CMIP6 cloud response is, we connect20

the SO SWFB to changes in column-integrated liquid water mass (LWP) and the sus-21

ceptibility of albedo to LWP in 50 CMIP5 and CMIP6 GCMs. In turn, we predict the22

responses of SO LWP to warming using a cloud-controlling factor (CCF) model. The23

combination of the CCF model and radiative susceptibility explains about 50 % of the24

variance in the GCM-simulated SWFB in the SO. Observations of SW radiation fluxes,25

LWP, and reanalysis of CCFs are used to constrain the SO SWFB . This yields a con-26

strained response of SO LWP to warming of 2.89 − 4.41 g m−2 K−1, relative to the27

total GCM range of −0.48 − 9.33 g m−2 K−1. The susceptibility of albedo to LWP28

is constrained to be 0.41 − 0.86 (kg m−2)−1, relative to the GCM range of 0.23 − 3.6229

(kg m−2)−1, where albedo is unitless. The overall constraint on the contribution of SO30

SWFB to global cloud feedback is −0.19 − 0.05 Wm−2K−1, relative to GCM range31

of −0.28 − 0.27 Wm−2K−1. In summary, observations suggest a moderate negative32

to weak positive SO SWFB .33

Plain Language Summary34

Clouds over the Southern Ocean (SO, 40−85oS) efficiently reflect sunlight back35

to space and cool the planet. Previous studies suggest that SO clouds become optically36

thicker and thus more strongly cool the planet in response to global warming—a com-37

pensating feedback (i.e., a negative shortwave cloud feedback (SWFB)). The SO SWFB38

in the latest generation of global climate models (GCMs) participating in the Coupled39

Model Intercomparison Project phase 6 (CMIP6) has shifted towards more positive val-40

ues, leading to the larger predicted temperature responses to greenhouse gas increases41

by these GCMs. In this study, we examine if this more positive SWFB is consistent with42

observations. We connect the effect of SO clouds on reflected sunlight to the predicted43

response of cloud liquid content to global warming. Satellite observations of reflected sun-44

light, cloud liquid, and reanalysis of atmospheric state are applied to constrain the SO45

SWFB . The results suggest that SO cloud liquid will increase with warming around the46

average of GCM predictions. Satellite records suggest that the sensitivity of reflected sun-47

light to cloud liquid is weak compared to GCMs. In combination, these two constraints48

suggest a moderately negative SO SWFB .49

1 Introduction50

Shortwave cloud feedback (SWFB) is the largest uncertainty in net climate feed-51

back, and by extension, effective climate sensitivity (ECS) (Zelinka et al., 2020; Sher-52

wood et al., 2020). This uncertainty can be attributed to the difficulties in represent-53

ing subgrid-scale cloud processes in the global climate models (GCMs) (Sherwood et al.,54

2014; Zhao, 2014; Storelvmo et al., 2015; Webb et al., 2015; McCoy et al., 2016). Although55

there is a large intermodel spread in the sign and magnitude of SWFB , some robust fea-56

tures emerged from previous generations of GCMs. For example, positive SWFB in sub-57

tropics due to decreased cloud coverage and negative SWFB in extratropics due to in-58

creased cloud optical depth (Zelinka et al., 2012; Ceppi, McCoy, & Hartmann, 2016).59

Zelinka et al. (2020) shows that GCMs participating in the Coupled Model Inter-60

comparison Project phase 6 (CMIP6) report positive shifts in extratropical SWFB pole-61

ward of 30o relative to previous generations of GCMs. This results in an increase in ECS62
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in CMIP6 GCMs. Zelinka et al. (2020) demonstrates the positive shift in extratropical63

SWFB is driven by the stronger reduction of low cloud cover and weaker increase of in-64

cloud liquid water content in extratropics in response to warming in CMIP6 GCMs. This65

corresponds to a more positive cloud amount feedback and less negative cloud optical66

depth feedback, respectively. In this study, observations are used to constrain extratrop-67

ical SWFB and evaluate whether the more positive SWFB in the Southern Ocean re-68

gion (SO, defined as 40−85oS) in CMIP6 GCMs are consistent with observed variabil-69

ity.70

Examining the response of cloud liquid water content to warming is an idealized71

way to constrain extratropical SWFB . The column-integrated liquid water mass (i.e.,72

Liquid Water Path, hereafter LWP) is proportional to the cloud optical depth in an over-73

cast region. Increased in-cloud LWP increases the amount of reflected shortwave (SW)74

radiation more than it reduces the outgoing longwave (LW) radiation, leading to a neg-75

ative cloud optical depth feedback (Paltridge, 1980). In this study, LWP is defined as76

the liquid water mass averaged over cloudy and clear-sky pixels. It incorporates infor-77

mation about cloud fraction (CF) coverage into this variable as well as in-cloud LWP78

(LWP ≈ CF · LWPin−cloud).79

Across GCMs, SO LWP increases in response to increased surface temperature. Fig80

1a shows that the changes in LWP scaled by changes in global-mean surface air temper-81

ature (GMT) in the quadrupling CO2 (abrupt4xCO2) simulations of GCMs are anti-correlated82

with model extratropical SWFB . The response of LWP to warming also reproduces the83

dipole pattern of SWFB in the SO. Our analysis will focus on constraining SO SWFB84

by constraining the changes in LWP with warming in 40− 85oS.85

Many potential mechanisms can explain the increase of extratropical LWP with warm-86

ing, as shown by Fig 1b (Terai et al., 2019). For example, the phase changes of suscep-87

tible ice to liquid in the mixed-phased cloud region and the resultant suppression of pre-88

cipitation (Senior & Mitchell, 1993; McCoy et al., 2014a; Ceppi, Hartmann, & Webb, 2016;89

Tan et al., 2016, 2019); the strongly increased moist adiabat at high latitudes (Betts &90

Harshvardhan, 1987); and increases in cloud liquid water content driven by enhanced ex-91

tratropical moisture convergence (McCoy, Field, Bodas-Salcedo, et al., 2020; McCoy et92

al., 2022). In this study, we focus our analysis on how changes in extratropical moisture93

convergence contribute to SO SWFB . As shown in Held and Soden (2006), column-integrated94

water vapor increases with warming following Clausius-Clapeyron scaling (C-C) (glob-95

ally averaged rate about 7 %/K). Two direct consequences of increased lower-tropospheric96

humidity are increased horizontal transport of water vapor and enhanced patterns of mois-97

ture convergence and divergence. The latter change also satisfies the C-C scaling, albeit98

with some adjustments in its spatial pattern such as the poleward expansion of subtrop-99

ical drying (Siler et al., 2018; Bonan et al., 2023). Local precipitation and evaporation100

in the extratropics increase with warming but at a slower rate than C-C scaling owing101

to the energetic constraints (Allen & Ingram, 2002; Lorenz & DeWeaver, 2007; Stephens102

& Ellis, 2008; K. Trenberth, 2011). Thus, the convergence of moisture exceeds local evap-103

oration and increases the extratropical moisture supply (K. E. Trenberth, 1998). Because104

the conversion of water vapor to precipitation happens in clouds, increases in both source105

and sink of clouds should guarantee an increase in extratropical cloudiness (McCoy et106

al., 2022). The negative SWFB owing to increased liquid cloud condensates is most no-107

table in the region where moisture convergence is increasing with warming, which tends108

to be poleward of 50oS in the SO (Fig 1a and Fig S1). Here, we will investigate if changes109

in moisture flux can predict the SO LWP response to warming and in turn, how this af-110

fects the SO SWFB . Spaceborne observations and reanalysis are used to constrain the111

SO SWFB . We provide an outline of how we do this below.112

SWFB is the change in upwelling shortwave (SW) radiation fluxes (SW↑) at the113

top of atmosphere (TOA) due to adjustment of cloud properties and scaled by changes114

in GMT. Because downwelling SW radiation flux (SW↓) is a function of season and lat-115
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itude, the local SWFB should be proportional to the cloud-induced change in SW albedo116

(α = SW↑/SW↓) scaled by GMT (∂αC/∂GMT ) for a given time and latitude. In turn,117

the change in α can be expressed as the product of the susceptibility of α to liquid (∂α/∂LWP )118

and the response of cloud liquid to warming (dLWP/dGMT )119

SWFB ∝ ∂αC

∂GMT
∼ ∂α

∂LWP
· dLWP

dGMT
(1)120

The change in α caused by ice is ignored for two reasons: First, the response of cloud121

ice is much smaller than response of liquid to global warming (McCoy et al., 2022), with122

a median ratio of changes in LWP to ice water path across GCMs of 8 (McCoy et al.,123

2016). Second, the reflectivity of SW radiation per unit mass of ice is typically less than124

that of liquid, owing to the smaller average size of liquid droplets (Liou, 2002; McCoy125

et al., 2014b). In Section 3.3 we evaluate the predictive ability of the right-hand side of126

Equation 1 in GCMs neglecting ice.127

We constrain the SO SWFB by providing constraints on each term on the right-128

hand side of Equation 1. Methods for computing the right-hand side of Equation 1 are129

discussed in section 2. LWP response to global warming is predicted using meteorolog-130

ical variability, discussed in detail in section 2.1 and 2.2. The method for estimating the131

radiative susceptibility is presented in section 2.3. Sections 2.4 and 2.5 describe how to132

compute these two terms from GCM data and observations, respectively. Section 3.1 pro-133

vides observational constraints on the GCM LWP responses. Section 3.2 analyzes the134

opposing roles of radiative susceptibility and LWP response in setting the SO SWFB .135

Section 3.3 produces a constraint on the SO SWFB by splitting the LWP constraint into136

latitude bands consistent with regions of persistent drying and moistening. Conclusions137

are presented in section 4 with suggestions for future work.138

2 Data and Methodology139

2.1 Cloud-controlling Factor Analysis140

In this study, we examine the linear relationships between large-scale environmen-141

tal factors and clouds. The large-scale environmental factors that control local cloud pro-142

cesses are referred to as cloud-controlling factors (CCFs, Stevens and Brenguier (2009)).143

CCF analysis is based on the idea that response of local cloud properties to global warm-144

ing can be expressed by a first-order Taylor expansion in CCFs (Xi) (Klein et al., 2017).145

CCF analysis allows us to use observations to constrain the response of LWP to to global146

mean temperature (GMT) (Qu et al., 2015). Following Qu et al. (2015), we predict the147

response of LWP to GMT as follows:148

∆LWP

∆GMT
=

∑ ∂LWP

∂Xi

∆Xi

∆GMT
+Res

Xi = Ts, P − E, LTS, ω500

(2)149

The LWP response GMT is decomposed into the LWP response to CCFs and a resid-150

ual term. LWP response to GMT induced by each CCF is a product of the sensitivity151

of LWP to CCF (∂LWP/∂Xi) and the response of CCFs to changes in GMT (∆Xi/∆GMT ).152

We constrain the LWP response to GMT by replacing the ∂LWP/∂Xi derived from GCMs153

with the observed sensitivities and estimating ∆Xi/∆GMT from GCMs’ quadrupling154

CO2 simulations. The constraint assumes that the sensitivities derived from present cli-155

mate are applicable to predict future cloud change. This assumption requires an invari-156

ant relationship between local cloud properties and CCFs across any time scale greater157

than 2-3 days, which is the time scale that the boundary layer and its clouds can re-adjust158

to CCF changes (Schubert et al., 1979; Bretherton, 1993). This is referred to as ”time-159
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scale invariance” (Klein et al., 2017). We evaluate the time-scale invariance of our re-160

lationships between CCFs and LWP with an out-of-sample test from the observational161

record and an out-of-sample test from the GCM simulations. In section 3.1.1, we show162

that the observed sensitivities of LWP to CCFs derived from 2012−2016 monthly-mean163

data are able to predict the annual mean LWP change in the SO back to the early 1990s.164

For GCMs, section 3.1.2 shows the sensitivities computed using monthly preindustrial165

control (piControl) simulations are able to predict the long-term variation of LWP in166

150 years of abrupt CO2 quadrupling (abrupt4xCO2) simulations.167

The CCFs considered in this study are surface skin temperature (Ts), precipita-168

tion minus evaporation (P−E), lower tropospheric stability (LTS) (Klein & Hartmann,169

1993), and 500 mb subsidence (ω500). These factors are consistent with McCoy, Field,170

Bodas-Salcedo, et al. (2020) and McCoy et al. (2022). Because GCMs do not output mois-171

ture convergence as a variable, we use P−E as a proxy. These terms differ by the change172

in moisture storage over time (see Fig 1 in Seager and Henderson (2013)). Fig S2 shows173

P−E is close to moisture convergence in the 40−85oS region for ERA-5 reanalysis if174

we averaged the variables over a large spatial scale (5o x 5o). Seager and Henderson (2013)175

also states that the discrepancy between these two terms should be smaller in GCMs than176

in reanalysis because of the absence of an analysis increment in GCMs. For the above177

reasons, we average LWP and CCFs data into 5o x 5o gridboxes in the SO to make P−178

E a reasonable approximation of moisture convergence. In this study, the LWP response179

is predicted on each 5o x 5o gridbox in the SO.180

The moisture convergence is consistently positive across GCMs in the SO region181

in picontrol simulations (gray lines in Fig S1). In abrupt4xCO2 simulations moisture con-182

vergence reduces in 40 − 50oS region and enhances in 50 − 85oS region (colored lines183

in Fig S1). This implies a poleward expansion of subtropical drying under global warm-184

ing (Siler et al., 2018; Bonan et al., 2023) and is consistent with 50oS acting as the de-185

marcation between the positive SWFB (negative ∆LWP/∆GMT ) region and negative186

SWFB (positive ∆LWP/∆GMT ) region (Fig 1a) in GCMs driven by changes in mois-187

ture convergence. Following the regimes of persistent drying and moistening, SO LWP188

response and SWFB are constrained in 40−50oS and 50−85oS regions in section 3.1.2189

and 3.3.190

2.2 Temperature Partitioning of Southern Ocean Clouds191

CCF analysis has been used to predict the response of boundary layer cloud to warm-192

ing in the tropics and subtropics (Qu et al., 2015; Zhai et al., 2015; Myers & Norris, 2016;193

Brient & Schneider, 2016; McCoy et al., 2017; Myers et al., 2021; Wall et al., 2022). The194

extratropical region presents a unique set of challenges in predicting the boundary layer195

cloud response to warming with a single set of linear relationships as in Equation 2. In196

the SO region, surface temperature varies from 210 K in the austral winter over the sea197

ice to around 290 K in the summer near 40oS. The temperature of clouds over the ocean198

and sea ice varies along with the surface temperature. The wide temperature range in199

the SO results in a combination of mixed-phase and liquid-only boundary layer clouds.200

The formation and removal processes governing these cloud types are very different. The201

initial nucleation and growth processes happen at different rates in mixed-phase (T <202

0oC) and liquid-only (T > 0oC) clouds (Jeffery & Austin, 1997; Koop et al., 2000; Schaller203

& Fukuta, 1979; Mossop, 1985; Lamb & Verlinde, 2011). Precipitation efficiency is higher204

in mixed-phase clouds than in liquid-only clouds due to the rapid growth of ice crystals205

at the expense of liquid drops (Wegener-Bergeron-Findeisen (WBF) process) (Storelvmo206

& Tan, 2015). The higher precipitation efficiency of mixed-phase clouds results in the207

majority of mid-latitude precipitation events originating as snow (Field & Heymsfield,208

2015).209
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Previous studies suggest that mixed-phase and liquid-only clouds respond differ-210

ently to global warming. Gordon and Klein (2014) shows that low cloud optical depth211

increases with warming for cold clouds and decreases with warming for warm clouds in212

GCMs. This behavior is also found by in-situ observations (Terai et al., 2019). These213

studies state that the increase of cold cloud optical depth is due to the increased cloud214

water content, while the decrease of warm cloud optical depth is owing to reduced cloud215

physical thickness. In addition to these mechanisms, analysis of GCMs has suggested that216

phase changes in mixed-phase clouds in response to warming are important to the ac-217

curate representations of SWFB and ECS (Tan et al., 2016; Bjordal et al., 2020).218

Because of the strongly differing cloud physics and response behaviors of warm and219

cold clouds, we treat them separately by splitting our analysis into two CCF models. We220

characterize cold and warm clouds in the SO by Ts. Each 5o x 5o gridbox in 40−85oS221

is counted as the cold (warm) regime if the Ts of this gridbox is lower than (larger or222

equal to) a threshold Ts (TRTs
). This results in two CCF models split over TRTs

:223

∆LWP

∆GMT
|Cold =

∑
(
∂LWP

∂Xi
|Cold ·

∆Xi

∆GMT
|Cold) +Res1

Ts < TRTs

∆LWP

∆GMT
|Warm =

∑
(
∂LWP

∂Xi
|Warm · ∆Xi

∆GMT
|Warm) +Res2

Ts ≥ TRTs

(3)224

For each GCM, TRTs
is the temperature that maximizes the explained variance225

of GCM LWP by Equation 3. We iterate through potential values of TRTs
from 210 K226

to 290 K. For each potential TRTs
, the r2 of Equation 3 trained by picontrol simula-227

tions is computed. Fig 2 shows the r2 for each GCM as a function of potential TRTs in228

piControl simulations. The TRTs for most GCMs is around 270 K, which generally sep-229

arates the clouds over sea ice from the warm open ocean. This is consistent with other230

studies showing minimal supercooled liquid fraction in GCMs when cloud temperature231

is lower than 255 K (Komurcu et al., 2014). If we assume a typical lapse rate of 6.5K/km232

and cloud height of 2− 3 km in the extratropical environment, this is consistent with233

a surface temperature of 270 K. The TRTs and resultant regime-specific ∂LWP/∂Xi234

derived from piControl simulations are used to partition the regimes and predict the LWP235

response to warming in abrupt4xCO2 simulations. Fig S3 shows that the TRTs
trained236

by abrupt4xCO2 simulations are qualitatively the same as the mean-state values.237

Because microwave radiometers do not retrieve LWP over sea ice (Elsaesser et al.,238

2017), it is hard to do the same cold-warm partitioning in observations. The lack of high-239

latitude LWP data in the SO limits the possible range of TRTs derived from observa-240

tions, and they do not significantly improve predictions as in GCMs shown in Fig 2. For241

this reason, the observed SO is only treated as a single regime. In section 3.1.1, we eval-242

uate whether our prediction of observed LWP is degraded by only using the single regime243

CCF model Equation 2.244

2.3 Radiative Susceptibility245

In Equation 1, the response of LWP to GMT is connected to its SW radiative ef-246

fect through a radiative susceptibility term (∂α/∂LWP ). This term describes how a change247

in LWP affects α while keeping other factors fixed. Following McCoy et al. (2022), the248

radiative susceptibility is estimated by training the multi-linear regression model:249

α = c1 ∗ LWP + c2 ∗ αclear−sky + c3; (4)250
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where c1 is ∂α/∂LWP . α is a function of clear-sky albedo (αcs) and LWP, which251

is in turn affected by cloud areal extent (Bender et al., 2017) and cloud optical depth252

(Gordon & Klein, 2014). To reduce the effects introduced by the seasonal cycle of so-253

lar zenith angle (SZA), we only train Equation 4 on January data, during which time254

the SZA is smallest and the effect of cloud properties on α is most pronounced (see Fig255

2 in McCoy et al. (2018) for the relationships between α, cloud fraction, and SZA). The256

effects of high αcs is excluded in our analysis by threshold (TRαcs). We test a series of257

TRαcs in section 3.2 to estimate whether c1 is sensitive to this threshold. Removing high258

αcs removes data over sea ice from the models, making this calculation analogous to the259

observations where retrievals are not available over sea ice. The regression model is trained260

on data from the SO region at the native spatial resolution of each GCM and of obser-261

vations.262

2.4 Global Climate Models263

We compute the LWP response to GMT of GCMs by using monthly-mean output264

from the mean-state (piControl) and the quadrupling CO2 (abrupt4xCO2) simulations265

from 50 GCMs participating in CMIP5 (20) and CMIP6 (30). GCMs used in this study266

are listed in Table S1.267

Radiative susceptibility (∂α/∂LWP ) is computed using piControl. The CCF model268

(Equation 3) is trained on piControl output to calculate regime-specific sensitivities of269

LWP to CCFs (∂LWP/∂Xi). Changes in CCFs scaled by GMT (∆Xi/∆GMT ) are com-270

puted as the differences between the piControl average and the 121 - 140 year mean of271

abrupt4xCO2 simulations following Myers et al. (2021). Following Equation 3, these terms272

are combined to predict ∆LWP/∆GMT . The time-scale invariance of Equation 3 is eval-273

uated by comparing ∆LWP/∆GMT predicted from Equation 3 to ∆LWP/∆GMT cal-274

culated from GCM output.275

LWP is the column-integrated liquid water mass, computed by using clwvi (total276

condensed water path for liquid and ice) minus clivi (ice water path). Monthly-mean LWP277

for GCM is averaged over the cloudy and cloud-free portion of the model gridbox, which278

is consistent with the microwave LWP retrieval used in this study (section 2.5). The fol-279

lowing variables are used for CCFs (Xi): ts for surface temperature; pr and hfls for pre-280

cipitation and evaporation; ta at 700 mb, ps, and ts for lower tropospheric stability and281

wap at 500 mb for subsidence. The radiative susceptibilities (∂α/∂LWP ) of GCMs are282

computed by regressing the SW albedo (α = rsut/rsdt) on clear-sky albedo (αcs =283

rsutcs/rsdt) and LWP.284

2.5 Observations285

Observations of monthly-mean cloud LWP are provided by the Multisensor Advanced286

Climatology of Liquid Water Path (MAC-LWP) data set (Elsaesser et al., 2017; O’Dell287

et al., 2008). MAC-LWP synthesizes microwave LWP observations from multiple satel-288

lites. Cloud LWP is the liquid water mass within an atmospheric column excluding pre-289

cipitating liquid. The monthly-mean LWP is averaged over the cloudy and cloud-free scenes290

of each 1o x 1o gridbox. Microwave observations of LWP are only available over the open291

ocean. Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-292

2) reanalysis (Gelaro et al., 2017) is used to describe CCFs. MAC-LWP LWP and MERRA-293

2 CCFs from 1992 to 2016 are used to conduct the out-of-sample test in section 3.1.1294

and provide constraints on GCM LWP responses in section 3.1.2. LWP and CCFs are295

binned into the same 5o x 5o averages used in the analysis of GCM output.296

A missing data threshold of 50% is used in each 5o x 5o gridbox. Fig 3 compares297

the fraction of gridboxes with sufficient data to the fraction of warm regime gridboxes298

for 50 GCMs. The distribution of observations in SO is qualitatively close to the warm299
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regime of GCMs. Since most of the GCMs group all open water into one regime (TRTs ≈300

270 K), the observed SO becomes an approximation to the GCM warm regimes. Because301

of this, a CCF model with only one regime (Equation 2) is used to predict the histor-302

ical record of LWP in section 3.1.1. The derived ∂LWP/∂Xi from observations is used303

to constrain the warm regime LWP response to GMT in GCMs. The propagation of the304

constraint range from the warm regime to the entire SO is discussed in section 3.1.2.305

Equation 4 is used to calculate ∂α/∂LWP from monthly-mean TOA shortwave fluxes306

from the Clouds and the Earth’s Radiant Energy System (CERES) EBAF-TOA data307

(Ed 4.1) (Loeb et al., 2018; Wielicki et al., 1996) combined with LWP from MAC-LWP.308

Observations from 2003 to 2016 are used. This period is set by the availability of CERES309

and MAC-LWP data.310

3 Results311

3.1 Prediction of LWP312

To constrain SWFB using Equation 1, we need to constrain the response of SO LWP313

to warming. To do this, we need to evaluate whether the sensitivity of LWP to CCFs314

is time-scale invariant (Klein et al., 2017). We examine time-scale invariance using two315

out-of-sample tests. First, we evaluate whether the regression model in Equation 2 trained316

on a short period of observations can predict past variations of LWP. This is shown in317

section 3.1.1. Second, we evaluate whether the regression model in Equation 3 trained318

on the mean-state climate from GCMs can predict the LWP response to a quadrupling319

in CO2. This is discussed in section 3.1.2. Following these tests, we use observations to320

constrain the spread of GCM LWP responses to GMT in abrupt4xCO2 simulations in321

section 3.1.2 and discuss the contribution of CCFs to LWP response to GMT in section322

3.1.3.323

3.1.1 Historical Trends in LWP324

We split the observations of LWP and reanalysis of CCFs from 1992 to 2016 into325

a training period (2012 - 2016) and a validation period (1992 - 2011). We train the sen-326

sitivities of LWP to CCFs (∂LWP/∂Xi) using monthly-mean observational data in the327

training period and use them to predict the annual variation of LWP in the validation328

period. Fig 4a shows the decadal trend in SO LWP from MAC-LWP observation and329

the prediction of Equation 2. MAC-LWP shows a positive trend of LWP in the past two330

decades, consistent with Manaster et al. (2017). The predicted LWP by Equation 2 broadly331

reproduces the positive trend of LWP during this period from 1996 until 2012. Before332

1996, the predicted LWP trend appears to reverse. This may be because the meteoro-333

logical predictors used in the regression model are reliant on the observations being in-334

gested in MERRA-2. Many fewer observations of precipitation are available before the335

mid-1990s (Gelaro et al., 2017). The lack of observational input to reanalysis may lead336

to the disagreement between the Equation 2 predicted LWP and observations in the early337

1990s. The ability of Equation 2 to predict decadal-scale trends in LWP in an out-of-338

sample test supports the time scale invariance of ∂LWP/∂Xi derived from observations.339

Our choice of training and validation period does not substantiall affect the ability of340

the CCF model to predict LWP (Fig S4).341

Fig 4b shows the decomposition of LWP response into contributions from individ-342

ual CCFs. The positive trend in SO LWP can be largely explained by the changes in P−343

E. Increases in surface temperature explain only a small fraction of the LWP trend. Sta-344

bility and large-scale subsidence have negligible effects on the SO LWP on a decadal scale.345

Increased P−E is related to the increased moisture content in the extratropical atmo-346

sphere. This result suggests the important role of hydrological response to the observed347

LWP increase in the SO for the past two decades.348
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3.1.2 Predicting LWP response to CO2 Quadrupling349

Following our evaluation of whether Equation 2 can predict the observed decadal350

variability of LWP, we evaluate whether Equation 3 trained on mean-state (piControl)351

output can predict the response of LWP to CO2 quadrupling (abrupt4xCO2). Fig 5 shows352

the predicted LWP change scaled by GMT change (∆LWP/∆GMT ) between the piControl353

average and the 121 - 140 years mean of abrupt4xCO2 simulations. The 50 GCMs shown354

are from CMIP5 and CMIP6 and are listed in Table S1. LWP response to GMT is shown355

separated into three different latitude bands: 40−85oS (Fig 5ab); 40−50oS (Fig 5cd);356

and 50 − 85oS (Fig 5ef). The 40 − 50oS and 50 − 85oS correspond to the regions of357

drying and moistening in response to warming (Fig S1). As discussed in section 2.5, ob-358

servational constraint from MAC-LWP is only available in the warm regime. Latitudinal-359

averaged ∆LWP/∆GMT in the warm regime is shown in Fig 5ace. Latitudinal-averaged360

∆LWP/∆GMT for both regimes is shown in Fig 5bdf.361

Equation 3 explains 70% of the variance in 40−85oS ∆LWP/∆GMTacross GCMs362

(Fig 5b). The best fit line between the CCF model predictions and the actual GCM out-363

put is close to 1-1 line. This result supports the time-scale invariant relationships be-364

tween LWP and CCFs in Equation 3. The explained variance in ∆LWP/∆GMT by Equa-365

tion 3 is 59% averaged over 40−50oS (Fig 5d). This decrease in explained variance may366

be related to the hydrological response in this region. While moisture convergence is pos-367

itive in 40−50oS in the mean-state climate, this pattern becomes less robust at the end368

of abrupt4xCO2 simulations with some GCMs displaying drying and some displaying moist-369

ening (Fig S1). In the 50−85oS latitude band, explained variance in ∆LWP/∆GMT370

is 86% (Fig 5f).371

To provide observational constraints on ∆LWP/∆GMT in these three latitude bands,372

we need to evaluate the amount of constraint provided by the warm component of Equa-373

tion 3 because observations are only available in this regime. Fig 5ace display the con-374

straint range of warm regime ∆LWP/∆GMT in each latitude band as red shading on375

the x-axis. These constraints are obtained by replacing the GCM ∂LWP/∂Xi in the warm376

regime with ∂LWP/∂Xi computed from observations in section 3.1.1. The warm regime377

explains a large fraction of variance in ∆LWP/∆GMT across GCMs for all latitude bands378

(see r2 in Fig 5ace). The variance in ∆LWP/∆GMT averaged over 40−85oS explained379

by the warm regime is high (r2 = 0.88, Fig 5a). Only the warm regime exists in the380

40 − 50oS region and r2 = 1 (Fig 5c). The explained variance in ∆LWP/∆GMT is381

still relatively high in the 50− 85oS region (r2 = 0.67, Fig 5e).382

We propagate the observational constraint from the warm regime to latitudinal-383

averaged ∆LWP/∆GMT . This is done using the linear relationships in Fig 5ace. Un-384

certainty in the fit is estimated by Jackknife resampling (Tukey, 1958). We intersect the385

shaded region on the x-axis of Fig 5ace with the best fit line and uncertainty to prop-386

agate our constraint from the warm regime to the sum of warm and cold regimes in each387

latitude band. In Fig 5bdf, the constraints from the y-axis of 5ace are shown as the brown388

shading on the x-axis. The fit lines in Fig 5bdf are used to propagate the constraints on389

the CCF model predictions to the GCM LWP response. These constraints are used in390

section 3.3 to constrain SWFB .391

3.1.3 CCF Contributions to LWP Response to CO2 Quadrupling392

In this section we show the sensitivities of LWP to CCFs (∂LWP/∂Xi) and each393

CCFs contribution to the response of LWP to warming (∆LWP/∆GMT ). Values of ∂LWP/∂Xi394

for each GCM is shown in Fig 6a. The change in each CCF between picontrol and abrupt4xCO2395

simulations is shown in Fig 6b. Following Equation 3, the product of these two terms396

is the contribution of each CCF to ∆LWP/∆GMT (Fig 6c). Cold and warm regime val-397

ues are shown in each subplot separately. Observed ∂LWP/∂Xi are displayed for the398

warm regime (Fig 6a).399
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The dependence of LWP on CCFs across GCMs and observations is broadly con-400

sistent with previous studies (Fig 6a). The dependence of LWP on Ts is positive across401

all the GCMs for the cold regime but with less agreement in the sign for the warm regime.402

This is consistent with previous studies suggesting cold cloud optical depth will increase403

with temperature (Gordon & Klein, 2014; Terai et al., 2019), mostly due to the increased404

cloud water content (Betts & Harshvardhan, 1987). Terai et al. (2019) suggests that the405

cloud optical depth for warm clouds may decrease or stay constant with increasing tem-406

perature owing to the reduced cloud adiabaticity. The dependence of LWP on P − E is407

positive for warm and cold regimes, which is consistent with previous literature (McCoy408

et al., 2019; McCoy, Field, Gordon, et al., 2020). The dependence of LWP on LTS is mostly409

positive in the warm regime of GCMs, while the sensitivity of LWP to ω500 is small. This410

is consistent with previous work on boundary layer cloudiness (Zelinka et al., 2018; My-411

ers & Norris, 2015, 2013). The observed sensitivities of LWP to Ts and P−E are pos-412

itive and much larger than the LTS and ω500 sensitivities.413

Both Ts and P − E increase with warming in warm and cold regimes (Fig 6b). LTS414

increases with warming in the warm regime but decreases in the cold regime. This ro-415

bust pattern may be related to the poleward shift of the Hadley cell (stabilizing the warm416

regime lower troposphere) and the poleward shift of the Southern Hemisphere storm track417

(destabilizing the cold regime lower troposphere) simulated by GCMs (Barnes & Polvani,418

2013; Bender et al., 2012). The change in large-scale subsidence is relatively small com-419

pared with other CCFs.420

Combining ∂LWP/∂Xi and the response of CCF to warming (∆Xi/∆GMT ) al-421

lows us to apportion ∆LWP/∆GMT among CCFs (Fig 6c). In the warm regime, GCMs422

have roughly equivalent contributions due to surface temperature, moisture convergence,423

and stability. In the cold regime, moisture convergence and surface temperature changes424

contribute the most.425

Among the GCMs surveyed here (Table S1), the second Community Earth System426

Model (CESM2, Danabasoglu et al. (2020)) and its variants (CESM2-FV2, CESM2-WACCM,427

CESM2-WACCM-FV2, and E3SM-1-0) in CMIP6 predict a decrease in LWP after the428

first 15 years in abrupt4xCO2 simulations (Bjordal et al., 2020; McCoy et al., 2022). This429

is shown in Fig 1b where these models display a non-monotonic response of LWP to GMT.430

These models also report the most positive extratropical SWFB (Fig 1a) and the high-431

est ECS among GCMs (Table S1). We single out CESM2 in Fig 6. The prediction of CESM2432

LWP response to warming by the CCF model is not as accurate as other GCMs (Fig S5).433

However, it is substantially improved from McCoy et al. (2022) (CESM2 is much closer434

to the 1-1 line in Fig 5b compared to Fig 2 in McCoy et al. (2022)). While more work435

is needed to more accurately predict CESM2 LWP response to warming using a CCF436

model, the near-zero change in LWP from piControl to the end of the abrupt4xCO2 sim-437

ulations in the warm regime is captured by the CCF model (Fig 6c and Fig S5). Fig 6438

suggests that the LTS-induced increase in LWP in the warm regime is offset by decreases439

related to Ts. CESM2 displays the lowest sensitivity of warm regime LWP to P−E and440

the P−E contribution to LWP response is small. Observational constraint suggests that441

CESM2 overestimates the LTS sensitivity and underestimates the P−E sensitivity in442

the warm regime. The dependence of LWP to Ts in the warm regime is negative in CESM2443

but is positive from observations (Fig 6a). Because of the positive changes in Ts, P−444

E, and LTS in response to warming in the warm regime (Fig 6b), the overall effect is the445

near-zero response of LWP in CESM2 in the abrupt4xCO2 simulation.446

3.2 Radiative Susceptibility447

Following Equation 1, SWFB is proportional to the product of changes in LWP and448

the sensitivity of albedo to the changes in LWP. The radiative susceptibility (∂α/∂LWP )449

is computed for each GCM and from observations. Across GCMs, ∂α/∂LWP varies by450
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nearly a factor of seven. One emergent behavior in GCMs is an inverse relationship be-451

tween ∂α/∂LWP and mean-state LWP (Fig 7). This is consistent with previous stud-452

ies (McCoy et al., 2022). α and cloud fraction (areal coverage of clouds) are approximately453

linearly related (Bender et al., 2017). However, the effect of LWPin−cloud on albedo sat-454

urates at high LWPin−cloud (Lacis & Hansen, 1974). The SO mean-state LWP is a func-455

tion of cloud fraction and LWPin−cloud. A GCM that simulates high mean-state LWP456

would have fewer clear-sky pixels that could be filled in the warmed climate and is closer457

to radiative saturation. As LWP increases with warming, additional liquid affects α less458

efficiently by only increasing the in-cloud liquid rather than increasing cloud coverage.459

Observed radiative susceptibility trained on CERES and MAC-LWP is also shown460

in Fig 7. One potential source of uncertainty in estimating ∂α/∂LWP is the clear-sky461

α threshold (TRαcs) applied in Equation 4. We show this uncertainty in the SWFB con-462

straint by examining a range of observed ∂α/∂LWP computed using TRαcs from 0.11463

to 0.30. The ∂α/∂LWP derived from observations is on the low end of the GCM dis-464

tribution even accounting for this uncertainty in observations and GCMs. This result465

suggest that the too-bright and too-homogeneous bias of tropical clouds in CMIP6 GCMs466

may also exist in the simulation of extratropical clouds (Konsta et al., 2022).467

The sensitivity of LWP to moisture convergence (∂LWP/∂P − E) positively cor-468

relates with mean-state LWP in both cold and warm regime (Fig 7). This relationship469

can be explained in the context of sources and sinks of cloud liquid content (McCoy et470

al., 2022). Source and sink rates of clouds can be written as:471

Ksource = esource · rwater vapor

Ksink = esink · rLWP

(5)472

the product of a bulk efficiency of sources (esource) and sinks (esink) of cloud liquid with473

their respective reservoir terms. The reservoir that liquid draw from is water vapor (rwater vapor)474

and the reservoir of the sink of liquid in this model is cloud liquid itself (rLWP ). In the475

mean-state climate, sources and sinks are balanced (Ksource = Ksink) and476

esource
esink

=
rLWP

rwater vapor
. (6)477

Following this model, mean-state LWP is proportional to the relative strength of source478

and sink efficiencies (i.e., esource/esink). If we assume the same water vapor (rwater vapor)479

in the mean-state climate in GCMs, the diversity in model mean-state LWP can be traced480

back to the subgrid-scale parameterization of cloud source and sink processes. We note481

that the similar water vapor amount is only an assumption as free-running models with-482

out a fixed SST will result in slightly different mean-state water vapor paths (Jiang et483

al., 2012). In this simple model, the sensitivity of LWP to moisture convergence (∂LWP/∂P − E)484

trained using GCM mean-state climate may act as a proxy of this relative strength of485

source to sink efficiencies (esource/esink ∝ ∂LWP/∂P − E).486

The steady-state framework presented above may help us understand why ∂LWP/∂P − E487

in the cold regime is consistently larger than the value in the warm regime (Fig 7). In488

this framework, it is because of a stronger source efficiency for cold regime clouds due489

to the larger moist adiabat (Betts & Harshvardhan, 1987), even though the sink efficiency490

for cold regime clouds is likely to be larger as well (Field & Heymsfield, 2015).491

How does this steady-state framework inform us about the diversity in the response492

of LWP to warming? The moisture content (rwater vapor) in extratropics increases with493

GMT. If we assume the relative strength of source to sink efficiency (esource/esink) is fixed494

under climate change, a model with larger mean-state sensitivity of LWP to P−E would495

lead to a larger increase in LWP. The warm regime ∂LWP/∂P − E and ∆LWP/∆GMT496

covary across GCMs (Fig S6) with a correlation of r = 0.78.497
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3.3 Constraints on Southern Ocean SW Cloud Feedback498

In the proceeding section, we examine the response of SO LWP to GMT predicted499

by CCFs and the response of α to LWP in order to predict SWFB (Equation 1). Based500

on the observational constraints on ∆LWP/∆GMT in Fig 5 and the observational con-501

straint on ∂α/∂LWP in Fig 7, we provide constraints on SWFB in Fig 8. Equation 1502

explains 53 % and 52 % of the variance in GCM SWFB averaged over 40− 50oS and503

50−85oS regions, respectively (Fig 8). Observational constraints on the right-hand side504

of Equation 1 predict the contributions to global mean SWFB from 40−50oS and 50−505

85oS regions to be −0.04−0.06 W m−2 K−1 and −0.15−0.01 W m−2 K−1. The lat-506

ter range is consistent with the 50−85oS constraint range (−0.10−0.0 W m−2 K−1)507

reported by McCoy et al. (2022). These ranges are calculated by taking the shaded y-508

ranges in Fig 8 and scaling them by the ratio of the area in the latitude band to global509

area. The uncertainties in 40− 50oS and 50− 85oS SWFB constraints are calculated510

by combining uncertainties in the observational constraint on ∆LWP/∆GMT (see sec-511

tion 3.1.2 for details of uncertainty propagation) and uncertainties in ∂α/∂LWP (the512

observational uncertainty owing to αcs threshold). The constraint on 40−50oS is tighter513

than 50−85oS because observational constraint on ∆LWP/∆GMT is only available514

in the warm regime and the 40− 50oS region is entirely warm regime.515

We combine our constraints on SWFB in the 40 − 50oS and 50 − 85oS latitude516

bands to compute the constraint on 40−85oS SWFB . The distributions of 40−50oS517

and 50 − 85oS SWFB located in the constraint ranges on the x-axis of Fig 8 are nor-518

mally distributed. We take the sum of the area-weighted latitudinal constraints in 40−519

50oS and 50−85oS and propagate their standard errors to estimate 40−85oS SWFB .520

The contribution of the SO (40−85oS) to the global mean SWFB is constrained as −0.19−521

0.05 W m−2 K−1 at 95% confidence interval (Fig 9). This range is a bit wider than the522

range reported by McCoy et al. (2022), but we have added a new constraint from 40−523

50oS latitude band and taken into account the uncertainty owing to different αcs thresh-524

olds.525

4 Conclusions526

In this work, we built a Cloud Controlling Factor (CCF) regression model to pre-527

dict the response of the Southern Ocean (SO, 40−85oS) LWP. The CCFs considered528

in the regression model were surface temperature (Ts), precipitation minus evaporation529

(P−E, approximately the moisture convergence), lower tropospheric stability (LTS),530

and 500 mb subsidence (ω500). Warm and cold clouds are regulated by very different mi-531

crophysical processes and have different responses to warming. To allow the CCF regres-532

sion model to adapt to this, we partitioned the SO into cold and warm regimes. This533

new method increases the robustness of the CCF model prediction compared to previ-534

ous work (McCoy et al., 2022). We used two out-of-sample tests to evaluate the predic-535

tive ability of our CCF regression model: the ability of our CCF model trained on ob-536

servations to replicate the observed decadal trend in SO LWP (section 3.1.1, Fig 4) and537

the ability of our CCF model trained on the mean-state output of GCMs to predict their538

response to CO2 quadrupling (section 3.1.2, Fig 5). Using the CCF regression model trained539

on observations combined with the GCM simulated changes in CCFs in response to CO2540

quadrupling, we were able to provide an observational constraint on the change in LWP541

in response to GMT (∆LWP/∆GMT ) of 2.89 − 4.41 gm−2K−1 (Fig 5b).542

Ultimately, the quantity we care about in relation to Earth’s radiation budget is543

not cloudiness, but radiative flux. We define a radiative susceptibility metric (∂α/∂LWP )544

that we can use to scale our constrained LWP response. We computed ∂α/∂LWP from545

satellite observations and GCM output. The observational constraint suggest that most546

of the GCMs overestimate ∂α/∂LWP (Fig 7), which is consistent with recent studies547
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of tropical clouds (Konsta et al., 2022). Satellite observations estimate ∂α/∂LWP to be548

0.41 − 0.86 (kg m−2)−1.549

GCMs with higher mean-state LWP tend to have lower ∂α/∂LWP (Fig 7). This550

can be connected to the sensitivity of LWP to moisture convergence (∂LWP/∂P − E).551

GCMs with higher ∂LWP/∂P − E simulate higher mean-state LWP. These GCMs will552

tend to predict a larger LWP response (∆LWP/∆GMT ) but have a lower ∂α/∂LWP553

due to radiative saturation. This results in compensation between the LWP response to554

warming and the radiative susceptibility.555

The product of ∂α/∂LWP and ∆LWP/∆GMT predicts roughly 50 % of the vari-556

ance in SO SWFB across 50 CMIP5 and CMIP6 GCMs (Fig 8). Observational constraints557

on ∆LWP/∆GMT and ∂α/∂LWP produce a constrained range on SO SWFB of −0.19558

to 0.05 Wm−2K−1 (95% confidence interval) (Fig 9), which suggest a moderate nega-559

tive to weak positive SO SWFB . This is consistent with previous work, but expands the560

constraint region to the entire SO as opposed to just constraining the region where GCMs561

consistently moisten (McCoy et al., 2022).562

Our analysis suggests some directions of future studies seeking to constrain the ex-563

tratropical SWFB :564

1. Our analysis identified increased moisture convergence into the SO as a key driver565

of increased LWP. This mechanism ultimately links the global circulation and hy-566

drological cycle to the extratropical SWFB . To better understand this linkage, it567

would be useful to understand how Hadley cell expansion and transient eddies (i.e.568

atmospheric rivers) contribute to long-term variability of the SO moisture bud-569

get.570

2. Due to the lack of microwave observations of LWP over sea ice, we cannot pro-571

vide an observations-constrained CCF model for the cold regime. In this study,572

the GCM relationship between the warm regime LWP response and the response573

averaged over the latitude band is used to fill the gap. Ground-based LWP ob-574

servations in high latitude SO, such as those taken during the Atmospheric Ra-575

diation Measurement (ARM) West Antarctic Radiation Experiment (AWARE, Lubin576

et al. (2020)), may be able to provide an observational constraint on the cold regime577

LWP response.578

3. We found that ∂α/∂LWP varied dramatically across GCMs and strongly mod-579

ulated the effect of changes in LWP on radiation. We also found that observations580

suggested that GCMs tended to have a ∂α/∂LWP that was too large. One pos-581

sibility is that this is due to clouds that are too uniform and radiatively efficient582

(Konsta et al., 2022; Nam et al., 2012). Determining the origin of this behavior583

might be helpful in identifying a potential source of GCM bias in SWFB .584
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Figure 1. (a) Extratropical SWFB (top) and the response of LWP to global-mean surface air

temperature (GMT) (∆LWP/∆GMT ) calculated as the difference piControl and years 121 -

140 from the abrupt4xCO2 simulation. (b) Annual-mean anomalies in LWP relative to piControl

averaged over 40 − 85oS versus anomalies in GMT in the first 150 years of abrupt4xCO2 simu-

lations. The thick black lines in subplot (a) are the multi-model mean, and the shaded regions

correspond to the 25th-75th percentiles of quantities. Lines in subplot (b) are the second-order

polynomial fits of the annual LWP responses. SW cloud feedback and effective climate sensitivity

(ECS) data are derived from Zelinka et al. (2020). Fifty CMIP5 and CMIP6 GCMs are shown

(Table S1). Lines for each GCM in (a) and (b) are colored by the ECS for that specific GCM.
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Figure 2. The r2 between the LWP predicted by Equation 3 and GCM output in piControl

simulations as a function of potential threshold surface temperature (TRTs) used to partition the

cold and warm regimes in Equation 3. TRTs is selected to maximize r2.

Figure 3. Latitudinal distribution of the ratio of gridboxes that are classified as warm regime

to the total number of gridboxes for GCMs (dashed lines) and the ratio of gridboxes with more

than 50% coverage in microwave retrievals to the total number of gridboxes for MAC-LWP obser-

vations (solid line).
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Figure 4. (a) Observed Southern Ocean annual-mean LWP from MAC-LWP (green) and

LWP predicted by the CCF model (Equation 2; blue) from 1992 to 2016. The CCF model is

trained on data from 2012 to 2016 (right side of the dashed line) and is used to predict LWP

back to 1992. (b) The decomposition of annual mean LWP anomalies into individual CCF contri-

butions by Equation 2.
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Figure 5. Predictions of the GCM-simulated ∆LWP/∆GMT by (Equation 3).

∆LWP/∆GMT is shown averaged over (a,b) 40− 85oS, (c,d) 40− 50oS, and (e,f): 50− 85oS.

(a,c,e) Predicted ∆LWP/∆GMT from Equation 3 versus ∆LWP/∆GMT in only the warm

regime. (b,d,f) ∆LWP/∆GMT simulated by GCMs versus ∆LWP/∆GMT predicted by Equa-

tion 3 for all regimes. 1-1 lines are shown using dashed gray lines and best fit are shown as solid

red and brown lines with their uncertainties estimated by Jackknife resampling. Observational

constraints (red shading) are shown in (a,c,e). This constraint is propagated from the warm

regime ∆LWP/∆GMT to the latitudinal-averaged ∆LWP/∆GMT by taking the intersection

between the red shading and the fit line with its uncertainty (red dashed lines). Constraints

on latitudinal-averaged ∆LWP/∆GMT are then shown using brown shading in (b,d,f). This

is combined with the uncertainty in the CCF model prediction by using the best fit line be-

tween GCM and CCF model predictions to yield an observational constraint on GCM-simulated

∆LWP/∆GMT . Explained variance (r2) are shown within each subplot. GCMs are denoted

with the number listed in Table S1.
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Figure 6. The contribution of each term in Equation 3 for 40 − 85oS averaged LWP response

to GMT for warm and cold regimes: (a) Sensitivities of LWP to CCFs in GCMs (observational

sensitivities are shown as pink triangle markers in the warm regime); (b) Changes in each CCF

per degree GMT change; (c) LWP changes due to individual CCFs (the product of (a) with

(b)), their sum (light blue box), and the GCM response (gray box). The r2 between Equation 3

predicted LWP response to GMT and the GCM output in each regime is noted. CCFs are nor-

malized by their spatio-temporal standard deviations of each regime in the mean-state climate.

CESM2 values are denoted by orange diamonds, all other GCMs are denoted by light blue dots.
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Figure 7. The sensitivity of LWP to moisture convergence (∂LWP/∂P − E, left axis) in

the warm (red) and cold (blue) regimes and the radiative susceptibility (∂α/∂LWP , right axis)

as a function of mean-state (piControl) LWP. Observational ∂LWP/∂P − E and ∂α/∂LWP

are shown by the pink and green triangles (observational ∂LWP/∂P − E is comparable to the

warm regime ∂LWP/∂P − E of GCMs for reason discussed in section 2.2 and 2.5). The linear

fit between ∂LWP/∂P − E in each regime and piControl LWP and the power law fit between

∂α/∂LWP and piControl LWP are shown. ∂α/∂LWP for TRαcs be 0.15 is shown with marker

and uncertainty from varying TRαcs from 0.11 to 0.30 is shown as the error bar.
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Figure 8. GCM SW cloud feedback (SWFB) from Zelinka et al. (2020) as a function of

SWFB predicted by Equation 1 for 40 − 50oS (red) and 50 − 85oS (blue) latitude bands. Obser-

vational constraints on 40 − 50oS and 50 − 85oS ∆LWP/∆GMT are from Figure 5 (d) and (f)

and the observational constrain on ∂α/∂LWP is shown in Figure 7. The combination of these

constraints yields constraints on 40 − 50oS and 50 − 85oS SWFB shown as shaded regions along

the x-axis. The linear fit between SWFB and prediction from Equation 1 are shown with their

95% confidence interval. Constraints on 40 − 50oS and 50 − 85oS SWFB are the extents of the

y-coordinate of models within the shaded regions.
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Figure 9. The contribution of Southern Ocean (40 − 85oS) SWFB to the global mean cloud

feedback. SWFB for 50 CMIP5 and CMIP6 GCMs listed in Table S1 is shown as a blue his-

togram black kernel density estimate. A dashed black line denotes the multimodel mean SWFB .

Gray shading shows the 95% range of the model SWFB before constraint. Red shading shows the

95% confidence interval of the Southern Ocean SWFB by combining the 40 − 50oS and 50 − 85oS

SWFB constraints (Figure 8). Observational constraint suggests a moderate negative to weak

positive Southern Ocean SWFB .
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