References
1. Young RC, Ozols RF MC. The anthracycline antineoplastic drugs. N Engl
J Med. 1981;305:139–53.
2. Hitchcock-Bryan S, Gelber RD, Cassady JR SS. The impact of induction
anthracycline on long-term failure-free survival in childhood acute
lymphoblastic leukaemia. Med Pediatr Oncol. 1986;14:211–5.
3. Karim S, Bhandari U, Kumar H, Salam A, Siddiqui MAA, Pillai K.
Doxorubicin induced cardiotoxicity and its modulation by drugs. Indian J
Pharmacol. 2001 Jan 1;33:203–7.
4. Gewirtz. A critical evaluation of the mechanisms of action proposed
for the antitumor effects of the anthracycline antibiotics adriamycin
and daunorubicin. Biochem Pharmacol. 1999;57(7):727–241. Available
from: doi: 10.1016/s0006-2952(98)00307-4. PMID: 10075079.
5. Chen, Tzu, Wu, Yan, Chung, Yu, Hwu, Yeukuang, Cheng, Hsun, Mou, Yuan
and WL. Probing the Dynamics of Doxorubicin-DNA Intercalation during the
Initial Activation of Apoptosis by Fluorescence Lifetime Imaging
Microscopy (FLIM). PLoS One. 2012;7:(9): e44947. Available from:
https://doi.org/10.1371/journal.pone.0044947
6. Quiles J, Huertas J, Battino M, Mataix J, Ramirez-Tortosa M.
Antioxidant nutrients and adriamycin toxicity. Toxicology. 2002 Nov
1;180:79–95.
7. Müller I, Jenner A, Bruchelt G, Niethammer D, Halliwell B. Effect of
Concentration on the Cytotoxic Mechanism of Doxorubicin—Apoptosis and
Oxidative DNA Damage. Biochem Biophys Res Commun. 1997;230(2):254–7.
Available from:
https://www.sciencedirect.com/science/article/pii/S0006291X96958982
8. Swift L, Rephaeli A, Nudelman A, Phillips D, Cutts S. Doxorubicin-DNA
Adducts Induce a Non-Topoisomerase II-Mediated Form of Cell Death.
Cancer Res. 2006 Jun 1;66:4863–71.
9. Xu Z, Zhang F, Sun F, Gu K, Dong S, He D. Dimethyl fumarate for
multiple sclerosis. Cochrane Database Syst Rev. 2015;(4). Available
from: https://doi.org//10.1002/14651858.CD011076.pub2
10. Mori S, Kurimoto T, Maeda H, Nakamura M. Dimethyl Fumarate Promotes
the Survival of Retinal Ganglion Cells after Optic Nerve Injury,
Possibly through the Nrf2/HO-1 Pathway. International Journal of
Molecular Sciences. 2021; Vol. 22.
11. Manai F, Amadio M. Dimethyl Fumarate Triggers the Antioxidant
Defense System in Human Retinal Endothelial Cells through Nrf2
Activation. Antioxidants. 2022; Vol. 11.
12. Yamaguchi Y, Kanzaki H, Katsumata Y, Itohiya K, Fukaya S, Miyamoto
Y, et al. Dimethyl fumarate inhibits osteoclasts via attenuation of
reactive oxygen species signalling by augmented antioxidation. J Cell
Mol Med. 2018 Feb 1;22(2):1138–47. Available from:
https://doi.org/10.1111/jcmm.13367
13. Campolo M, Casili G, Biundo F, Crupi R, Cordaro M, Cuzzocrea S, et
al. The Neuroprotective Effect of Dimethyl Fumarate in an MPTP-Mouse
Model of Parkinson’s Disease: Involvement of Reactive Oxygen
Species/Nuclear Factor-κB/Nuclear Transcription Factor Related to NF-E2.
Antioxid Redox Signal. 2016 Dec 23;27(8):453–71. Available from:
https://doi.org/10.1089/ars.2016.6800
14. Meseguer-Ripolles J, Lucendo-Villarin B, Tucker C, Ferreira-Gonzalez
S, Homer N, Wang Y, et al. Dimethyl fumarate reduces hepatocyte
senescence following paracetamol exposure. iScience. 2021 Jun 25;24(6).
Available from: https://doi.org/10.1016/j.isci.2021.102552
15. Antunes LMG, Takahashi CS. Effects of high doses of vitamins C and E
against doxorubicin-induced chromosomal damage in Wistar rat bone marrow
cells. Mutat Res Toxicol Environ Mutagen. 1998;419(1):137–43. Available
from:
https://www.sciencedirect.com/science/article/pii/S138357189800134X
16. Oh CJ, Park S, Kim J-Y, Kim H-J, Jeoung NH, Choi Y-K, et al.
Dimethylfumarate attenuates restenosis after acute vascular injury by
cell-specific and Nrf2-dependent mechanisms. Redox Biol. 2014;2:855–64.
Available from:
https://www.sciencedirect.com/science/article/pii/S2213231714000755
17. Khudhair AR, Al-Shawi NN. Possible Protective Effects of Lutein
against Ciprofloxacin Induced Bone Marrow Toxicity in Rats. Iraqi J
Pharm Sci. 2021;30(1):233–9.
18. Ford CE, Hamerton JL. A Colchicine, Hypotonic Citrate, Squash
Sequence for Mammalian Chromosomes. Stain Technol. 1956 Jan
1;31(6):247–51. Available from:
https://doi.org/10.3109/10520295609113814
19. Julian Preston R, Dean BJ, Galloway S, Holden H, McFee AF, Shelby M.
Mammalian in vivo cytogenetic assays Analysis of chromosome aberrations
in bone marrow cells. Mutat Res Toxicol. 1987;189(2):157–65. Available
from: https://www.sciencedirect.com/science/article/pii/0165121887900218
20. Schmid W. The micronucleus test. Mutat Res Mutagen Relat Subj.
1975;31(1):9–15. Available from:
https://www.sciencedirect.com/science/article/pii/0165116175900588
21. Bhilwade HN, Chaubey RC, Chauhan PS. Gamma ray induced bone marrow
micronucleated erythrocytes in seven strains of mouse. Mutat Res Toxicol
Environ Mutagen. 2004;560(1):19–26. Available from:
https://www.sciencedirect.com/science/article/pii/S138357180400035X
22. MacGregor JT, Heddle JA, Hite M, Margolin BH, Ramel C, Salamone MF,
et al. Guidelines for the conduct of micronucleus assays in mammalian
bone marrow erythrocytes. Mutat Res Toxicol. 1987;189(2):103–12.
Available from:
https://www.sciencedirect.com/science/article/pii/0165121887900164
23. Bajpayee M, Kumar A, Dhawan A. The Comet Assay: Assessment of In
Vitro and In Vivo DNA Damage BT - Genotoxicity Assessment: Methods and
Protocols. In: Dhawan A, Bajpayee M, editors. New York, NY: Springer New
York; 2019. p. 237–57. Available from:
https://doi.org/10.1007/978-1-4939-9646-9_12
24. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for
quantitation of low levels of DNA damage in individual cells. Exp Cell
Res. 1988;175(1):184–91. Available from:
https://www.sciencedirect.com/science/article/pii/0014482788902650
25. Larramendy ML, Dulout FN, Bianchi NO, Olivero OA. In vivo
dose—response relationship in bone-marrow cells of mice treated with
adriamycin. Mutat Res Toxicol. 1980;79(2):133–40. Available from:
https://www.sciencedirect.com/science/article/pii/0165121880900816
26. Dulout FN, Larramendy ML, Olivero OA. Effect of caffeine on the
frequency of chromosome aberrations induced in vivo by
triethylenemelamine (TEM) and adriamycin (ADR) in mice. Mutat Res Mol
Mech Mutagen. 1981;82(2):295–304. Available from:
https://www.sciencedirect.com/science/article/pii/0027510781901597
27. Manjanatha MG, Bishop ME, Pearce MG, Kulkarni R, Lyn-Cook LE, Ding
W. Genotoxicity of doxorubicin in F344 rats by combining the comet
assay, flow-cytometric peripheral blood micronucleus test, and
pathway-focused gene expression profiling. Environ Mol Mutagen. 2014 Jan
1;55(1):24–34. Available from: https://doi.org/10.1002/em.21822
28. Bingöl G, Gülkaç MD, Dillioğlugil MÖ, Polat F, Kanli AÖ. Effect of
resveratrol on chromosomal aberrations induced by doxorubicin in rat
bone marrow cells. Mutat Res Toxicol Environ Mutagen. 2014;766:1–4.
Available from:
https://www.sciencedirect.com/science/article/pii/S1383571814000850
29. Gülkaç MD, Akpinar G, Üstün H, Özön Kanli A. Effects of vitamin A on
doxorubicin‐induced chromosomal aberrations in bone marrow cells of
rats. Mutagenesis. 2004 May 1;19(3):231–6. Available from:
https://doi.org/10.1093/mutage/geh021
30. Saidu NEB, Noé G, Cerles O, Cabel L, Kavian-Tessler N, Chouzenoux S,
et al. Dimethyl Fumarate Controls the NRF2/DJ-1 Axis in Cancer Cells:
Therapeutic Applications. Mol Cancer Ther. 2017 Mar 2;16(3):529–39.
Available from: https://doi.org/10.1158/1535-7163.MCT-16-0405
31. Edward Bennett Saidu N, Bretagne M, Lupo Mansuet A, Just P-A, Leroy
K, Cerles O, et al. Dimethyl fumarate is highly cytotoxic in KRAS
mutated cancer cells but spares non-tumorigenic cells. Oncotarget.
2018;Vol 9, No 10. Available from:
https://www.oncotarget.com/article/24144/text/
32. Shekarchi S, Roushandeh AM, Roudkenar MH, Bahadori MH. Dimethyl
fumarate prevents cytotoxicity and apoptosis mediated by oxidative
stress in human adipose-derived mesenchymal stem cells. Mol Biol Rep.
2021;48(9):6375–85. Available from:
https://doi.org/10.1007/s11033-021-06638-w
33. Nicolay JP, Müller-Decker K, Schroeder A, Brechmann M, Möbs M,
Géraud C, et al. Dimethyl fumarate restores apoptosis sensitivity and
inhibits tumor growth and metastasis in CTCL by targeting NF-κB. Blood.
2016 Aug 11;128(6):805–15. Available from:
https://doi.org/10.1182/blood-2016-01-694117