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In the Central Himalayas, where environmental conditions vary greatly, understanding the7

biophysical limitations on forest carbon is crucial for accurately determining the region’s forest carbon8

stocks. This study investigates the role of climate and disturbance on the spatial variation of two key forest9

carbon pools: aboveground carbon (AGC) and soil organic carbon (SOC). Using field-observed plot-level10

carbon pool estimates from Nepal’s national forest inventory and structural equation modeling, we explore11

the relationship between forest carbon stocks and proxies of environmental constraints. The forest AGC12

and SOC models explained 25 % and 59 % of the observed spatial variation in forest AGC and SOC,13

respectively. The climatic availability of water and energy in broad-scale gradients combined with the14

fine-scale gradients of terrain and disturbance intensity were found to influence forest carbon stocks, but15

the sign and strength of the statistical relationships differ for forest AGC and SOC. While AGC showed a16

negative relationship to disturbance, SOC was impacted by the availability of climatic energy. Disturbances17

such as selective logging and firewood collection result in immediate forest carbon loss, while soil carbon18

changes take longer to respond. The lower decomposition rates in the high-elevation region, due to lower19

temperatures, preserve organic matter and contribute to the high SOC stocks observed there. These results20

have important implications for forest carbon management and conservation in the Central Himalayas.21

0.1 Introduction22

Early explorers and scientists highlighted the Himalayas’ diverse flora (Gould & Gould 1831, Hooker23

1854, Smith 1911, Hara 1966), with pronounced variations in geology, relief, and climate contributing24

to high biological diversity (Vetaas & Grytnes 2002, Oommen & Shanker 2005, Kandel et al. 2016).25

The Himalayas are a global biodiversity hotspot (Myers et al. 2000) with a high level of endemism and26
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priority conservation landscapes (Thompson 2009). Concerns about potential climate change impacts on27

vulnerable ecosystems have recently brought further attention to the region (Sharma et al. 2009, Shrestha28

et al. 2012, Dolezal et al. 2016, Gerlitz et al. 2016). The region supports diverse forest types from tropical29

broadleaved to alpine coniferous forests (Rawat & Lama 2017).30

Forest structure, particularly woody plant basal area, height distribution, and wood density,31

is the primary determinant of carbon stocks (Saatchi et al. 2011), and varies with species distribution32

and composition (Bohn & Huth 2017). Climate, lithology, and terrain interactions constrain species33

composition and forest structure by limiting resources. The disturbance regime can alter forest structure34

and composition (Vlam et al. 2017), affecting carbon stocks (Zhang et al. 2014). Disturbances typically35

reduce forest carbon density below the climatic/edaphic potential. The environmental control of species36

richness over large gradients has been well studied worldwide (Sanders 2002, Svenning et al. 2009), including37

in the Himalayas (Vetaas & Grytnes 2002, Carpenter 2005), but the impact of species composition on38

forest structure, productivity, and carbon storage is poorly understood. Thus, we hypothesised that the39

relative importance of environmental controls on forest carbon stocks would vary with species composition,40

structure, and geographic location within broad temperature and precipitation regimes. Despite a broad41

understanding of how environmental conditions affect forest productivity, we do not know how the relative42

importance of different environmental controls varies across large heterogeneous landscapes such as the43

Central Himalayas (Kohler et al. 2010, Perrigo et al. 2019). A better quantitative understanding of these44

environmental controls is required to predict the spatial variation in forest carbon stocks across Nepal’s45

highly diverse forest regions.46

Broadly, variations in climate, terrain, and parent material set fundamental environmental47

controls on forest carbon stocks. In high mountain environments, air temperature is widely considered48

to be the primary control of alpine treeline formation (Körner 2007, Harsch et al. 2009), as low air49

temperatures and short growing seasons introduce photosynthetic constraints, thus limiting tree growth50

and survival (Dolezal et al. 2019). The observation of positive influences of both air temperature and51

precipitation on high-elevation tree growth is thought to be driven by increased moisture availability via52

snowmelt due to warmer spring temperatures (Wang et al. 2006) and increasing photosynthesis rates53

(Körner 2012). In the subtropical regions of the lower elevations, we can expect other environmental54

controls on forest carbon stocks to predominate, as the region has a higher mean annual temperature55

(Karki et al. 2016), mostly flat topography, and highly fertile alluvium deposits (Carson 1992). The levels56

of disturbance are also higher in these lower elevation forests because of the relatively high population57

density and road access (Webb & Sah 2003, Sapkota et al. 2009).58

Altitudinal gradients of mean annual air temperature vary with longitude and latitude (Cogbill59

& White 1991, Champagnac et al. 2012), and affect forest species composition and structure in mountain60

ranges (Xu et al. 2017b). In the case of the Central Himalayas, the elevational gradient is among61
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the steepest on Earth and is the main cause of strong variations in factors, such as air temperature,62

precipitation, snow fraction, and solar radiation. These factors are physiologically important for forests,63

as shown by several dendrochronological studies (Gaire et al. 2014, Sigdel et al. 2020); however, their64

role in driving spatial variation in forest species composition and structure remains poorly quantified65

(Rawat & Lama 2017, Bhutia et al. 2019). The NW-SE orientation of the mountain range creates steep66

elevational gradients from south to north, overwhelming the effects of latitudinal gradients on mean67

annual air temperature. Thus, there can be a considerable variation in elevation for a given latitude and68

longitude, and therefore, in the mean annual surface air temperature (Kattel et al. 2013). Similarly, the69

monsoon rains that originate in the Bay of Bengal gradually move from east to west along the longitudinal70

gradient of the Central Himalayas (Brunello et al. 2020), causing an east-west gradient in mean annual71

precipitation and its seasonal timing.72

The large-scale climatic gradients that are related to orography, latitude, and longitude do not73

capture landscape-scale variation in forest site conditions that are influenced by landform, slope, and74

aspect. There is potential for landscape-scale variation in topoclimatic conditions when the elevational75

profile does not increase monotonically with latitude (Figure 1). These topographic characteristics result76

in complex spatial variations in factors such as solar radiation (which depends on aspect and slope77

orientation), substrate quality, moisture availability, nutrient retention, and local microclimate (Holland &78

Steyn 1975, Taylor et al. 2015, Yang et al. 2016, Xu et al. 2017a). These topoclimatic variations provide79

habitats for forests with different species compositions, structures, and carbon densities.80

Figure 1: North-south elevational gradient (masl) at different longitudes along the latitudinal gradient in
the Central Himalayas derived using ASTER Digital Elevation Model data (NASA et al. 2019).
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The local temperature, radiation, and moisture conditions of a forest habitat are influenced by81

fine-scale topographic features, broadscale orography, and climate. Disturbances, especially those related82

to human land use, operate at an even finer scale, such as when people access patches to collect forest83

resources. These factors, operating at different spatial and temporal scales, have significant implications84

for forest carbon modelling across the Central Himalayas. In Nepal, fine-resolution observations of85

environmental predictors, such as air temperature, soil moisture, and soil depth, are unavailable. However,86

fine-resolution digital elevation models (DEMs) can accurately represent topography, which affects air87

temperature and moisture regimes. Using DEMs, we can derive terrain attributes that indirectly capture88

the variation in environmental conditions (Wilson 2018). For instance, slope angle and aspect influence89

solar radiation (Kumar et al. 1997) and temperature (Sheng et al. 2009) regimes. Additionally, slope90

angle and slope form affect soil depth (Boer et al. 1996, Fan et al. 2020), drainage (Jones 1987), (Schoorl91

et al. 2002), snow accumulation (Jain et al. 2009), erosion (Mitas & Mitasova 1998), and landslide risks92

(Pradhan & Kim 2018). By combining fine-resolution terrain attributes with coarse-resolution gridded93

climate data, we may be able to capture spatial variation in environmental conditions and use that94

information to predict spatial variation in forest carbon stocks.95

The broad and fine-scale environmental gradients expected to affect forest carbon are summarised96

in a conceptual model (Figure 2). By implementing this conceptual model in the SEM approach, we97

address the following questions:98

a) To what extent can the observed spatial variation in forest carbon stocks be explained by environ-99

mental predictors related to climatic water and energy availability, and disturbance?100

b) What is the relative contribution of key environmental predictors related to climatic water and101

energy availability to spatial variation in forest carbon stock? and,102

c) Does topography play a mediating role in the relationship between the broad-scale gradients of103

climatic water, energy availability, and forest carbon stocks?104

Figure 2: Conceptual model of controls on spatial variation in forest carbon stocks in the Central
Himalayas.
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0.2 Materials and Methods105

0.2.1 Input data106

Estimates of forest carbon stocks were obtained from Nepal’s national-scale forest inventory, conducted107

between 2010 and 2014. We used existing field-based estimates of two forest carbon pools: Aboveground108

Biomass (AGB) and Soil Organic Carbon (SOC) stocks. Estimates of forest AGC and SOC were available109

for 1,156 and 2,009 plots at the plot level, respectively. A carbon fraction of 0.47 was used to convert forest110

AGB to AGC (IPCC 2006). Details on the distribution of plot-level field data, study area description,111

sample plot design, forest attribute measurements, and soil carbon analysis protocols have been submitted112

as a data paper (Khanal & Boer 2023).113

Mean annual precipitation and seasonality are significant indicators of forest habitat quality,114

as available soil water affects species composition (Miller et al. 2021), tree growth (Eckes-Shephard et115

al. 2021), and thus, carbon storage (Knapp et al. 2017, Hofhansl et al. 2020). Growing Degree Days116

(GDD) that exceed a certain temperature threshold indicate the temperature regime and duration of117

the forest growing season (Hanes & Schwartz 2011, Hankin et al. 2019). In this study, a threshold of118

0°C was used to calculate the GDD, given that the study area extends to cold alpine regions. Potential119

evapotranspiration (PET) measures the availability of climatic energy (Stephenson 1990). Both the GDD120

and PET are proxies for climatic energy availability.121

Terrain and disturbance variables were available at a higher spatial resolution than that of the122

relatively low-resolution gridded climate datasets. Two terrain variables were used to capture fine-scale123

variations in potential water and energy availability: the topographic wetness index (TWI) (Beven &124

Kirkby 1979) and potential incoming solar radiation (PISR) (Lacelle et al. 2016). TWI represents125

fine-scale variation in potential soil moisture availability (Rodhe & Seibert 1999, Muscarella et al. 2020),126

whereas PISR represents the potential energy available in the landscape (Stettz et al. 2019).127

Human-induced disturbances are related to accessibility, which is particularly important for128

forest product collection such as tree harvesting. Forested stands closer to the road network were expected129

to have a higher likelihood of disturbance. In this study, we assumed the likelihood of the disturbance of130

forest areas to be proportional to the distance to the interface with non-forest areas. Fragmented forests131

have a large interface with non-forest land use, such as settlements, and hence have high disturbance132

probabilities. Patch metrics from landscape ecology (McGarigal et al. 2009) were used to quantify the133

fragmentation of forested landscapes as a measure of the probability of disturbance. The landscape shape134

index (LSI) (McGarigal 1995) provides a standardised measure of the total edge or edge density relative135

to the size of the landscape. Forested patches with a longer edge adjacent to non-forest land use were136

more likely to experience human disturbance than intact stands in the core of forested areas.137

The fragmentation of a forest area increases the length of the forest edge and thus the likelihood138
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of disturbance. In mountainous terrain, landslides often occur where slopes are disturbed, such as near139

roads (Larsen & Parks 1997), and rainfall-triggered landslides on road construction sites are common in140

Nepal (McAdoo et al. 2018). Using the gridded percentage tree cover data product (Hansen et al. 2013),141

we computed the landscape openness (LOPEN) for each 30 m grid cell as the percentage of the area within142

a 1 km buffer that exceeds 10% tree cover. Tree cover of 10% is widely accepted by the United Nations143

Food and Agriculture Organisation as a criterion for defining forests (FAO 2010). LOPEN is similar to144

patch percentage metrics, which represents the proportion of the landscape made up of a specific patch145

type(Liu & Weng 2008) and is used to quantify land-use and land cover changes (Herzog et al. 2001).146

Unlike the direct use of tree cover, the openness variable represents the proportion of non-forest areas147

within the surrounding landscape of each grid cell. Forest areas with high landscape openness or low tree148

cover can be a result of either naturally sparse forests or a reduction in tree cover due to disturbance.149

However, even stands with naturally low or sparse tree cover are likely to have a larger interface with150

non-forest land cover, resulting in a higher probability of disturbance.151

Predictors were selected to represent latent variables: climatic water availability (mean annual152

precipitation (Bio12) and seasonality (Bio15)), climatic energy (mean annual potential evapotranspiration153

(PET), mean annual growing degree days (GDD), and seasonality of mean monthly air temperature154

(Bio4)), terrain (mean daily potential incoming solar radiation (PISR) and topographic wetness index155

(TWI)), and intensity of disturbance (landscape shape index (LSI) and landscape openness (LOPEN))156

(Table 1). Details on the calculations of LSI, PISR, and TWI can be found in Supporting information S0.3.157

A summary of the descriptive statistics for input datasets is provided in Table S4, Supporting information.158

Table 1: Covariates used for structural equation models (SEMs).

Variable Description Units

Spatial

Resolu-

tion

Climate Variables

Bio12 Mean annual precipitation derived using the mean monthly precipitation

(Karger et al. 2017)

mm yr-1 1 km

Bio15 Precipitation seasonality derived using the standard deviation of the

mean monthly precipitation estimates expressed as a percentage of the

annual mean (Karger et al. 2017)

- 1 km

PET Mean annual potential evapotranspiration (Title & Bemmels 2018).

Indicates the potential evaporation when the moisture supply is

unlimited.

mm yr-1 1 km
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Variable Description Units

Spatial

Resolu-

tion

GDD Sum of the mean monthly temperature greater than the base

temperature (0°C) multiplied by the total number of days. Derived

using Chelsa monthly temperature data (Karger et al. 2017) and

growingDegDays function in the R package envirem (Title & Bemmels

2018).

- 1 km

Bio4 Temperature seasonality (Standard deviation of the monthly mean air

temperatures) (Karger et al. 2017)

- 1 km

Disturbance Variables

LSI Landscape shape index. An aggregation metric representing the ratio of

the edge length of forest class to the minimum total edge length of a

forest patch. LSI = 1 indicates maximally aggregated patches, while an

increase in the index indicates an increase in the edge length, and hence

decreasing aggregation. Derived for 1 km buffer using lsm_c_lsi

function in R package landscapemetrics (Hesselbarth et al. 2019), and

binary forest cover data (DFRS 2015).

- 30 m

LOPEN Landscape Openness. Using percentage tree cover data (Hansen et al.

2013), LOPEN was calculated as the percentage of grid cells covered by

at least 10% tree cover within a circle of 1 km buffer distance. The field

sample plot centre was the centre of the buffer.

% 30 m

Terrain Variables

PISR Mean daily potential incoming solar radiation (PISR) was calculated

using the SAGA package (Conrad et al. 2015). The function estimates

PISR based on a lumped atmospheric transmittance model. The PISR

values were calculated at 30-day intervals for a year, and the daily

average was derived.

kWh m-2 30 m

TWI Topographic wetness index indicates potential on where water tends to

accumulate in a landscape. A high value indicates a high potential for

water accumulation due to a low slope. Derived from 30 m spatial

resolution ASTER DEM (NASA et al. 2019) and SAGA package

(Conrad et al. 2015)

- 30 m
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0.2.2 Statistical Analysis159

This study uses structural equation modelling (SEM) to quantify the relative influence of broad and160

fine-scale environmental predictors on forest carbon stocks. SEM is suitable for examining complex161

relationships (Grace 2006, Fan et al. 2016) and uses latent variables to capture complex attributes that162

cannot be directly measured (Bollen 2002). Terrain attributes that determine fine-scale variations in soil163

moisture availability and potential solar radiation also contribute to the spatial variation in forest carbon.164

In this case of examining the drivers of forest carbon stocks in heterogeneous landscapes, SEM allows165

using terrain as a mediator variable (Gana & Broc 2019) that helps explain the relationship between166

predictor and response.167

All statistical analyses were performed using R version 4.0.3 (Team 2020). Two separate SEMs168

for AGC and SOC were fitted using the lavaan package (Rosseel 2012). The models were fitted using the169

Maximum Likelihood Estimation with robust standard errors, and the overall model fit was assessed using170

the Yuan-Bentler test statistic. The model fit was evaluated using the χ2 test, with a non-significant result171

indicating a good model fit as it suggests that there is no discrepancy between the model-implied and the172

original covariance matrix. A commonly used significance cut-off of p < 0.05 (Hu & Bentler 1999) was173

applied. To further evaluate the model fit, commonly used indices such as the comparative fit index (CFI),174

squared root mean residual (SRMR), and root mean squared error of approximation (RMSEA) were also175

calculated (Hooper et al. 2008, Fan et al. 2016). The models were compared against the acceptable levels176

of CFI (>0.95), SRMR (<0.5), and RMSEA (0.05-0.08) (Schumacker & Lomax 2016).177

SEM is based on the covariance among variances; therefore, a key assumption of this method178

is that the data are multivariate normal. If this assumption is violated (e.g. skewness and outliers), it179

can strongly affect the covariance. To address this, the input variables were rescaled, transformed, and180

standardised using the DataSetScaleTransformStandardize function (Ryberg 2017) to approximate the181

multivariate normality. However, some variables still violate these assumptions (Figure S1, Supporting182

information). To address this, bootstrapping was used (Gana & Broc 2019), with 10,000 bootstraps183

performed to derive standard errors. The SEM model was designed to examine direct effects (e.g. the184

path from climatic water availability to forest carbon while controlling for terrain effects), indirect effects185

(e.g. the path from latent variables to forest carbon considering only terrain effects), and total effects186

(the sum of direct and indirect effects). Additionally, simple linear models were fitted to visualise the187

relationships between AGC, SOC, and predictor variables.188

0.3 Results189

SEM analysis revealed relationships between variables and the observed forest carbon stocks (SOC and190

AGC) in the Central Himalayas, as depicted in Figure 3. The AGC (Figure 3A) and SOC models (Figure191

3B) show that a substantial fraction of the observed spatial variation in forest carbon stocks can be192
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explained by these broad and fine-scale predictors. The AGC model accounted for 25% of the observed193

spatial variation in forest AGC, while the SOC model accounted for 59% of the observed variation in194

forest SOC. Among the variables, the latent variable representing disturbance probability was the most195

influential predictor of forest AGC, with a β coefficient of -0.556 (SE = 0.044, p <.001). Meanwhile,196

the proxy for climatic energy availability was the most influential predictor of SOC, with a β coefficient197

of = -0.745(SE = 0.027, p <.001). A summary of the direct and total effects, including standardised198

coefficients, standard errors, and p-values of SEMs for the AGC and SOC models, is presented in Table199

S1), Supporting information.200

The result of the χ2 test showed that the estimated covariance matrix significantly differed from201

the actual covariance matrix for both AGC (χ2(21) = 633.309, p = 0) and SOC (χ2(21) = 513.863, p =202

0) models. Although a highly significant χ2 suggests a poor global model fit (Kline 2010), the χ2 criterion203

is sensitive to sample size, as it is calculated as a function of the maximum likelihood (FML) and sample204

size (χ2 = (n − 1)FML) (Brown 2015). For example, with more than 200 samples, χ2 typically indicates a205

significant probability level (Schumacker & Lomax 2016). The fit indices of both the AGC (CFI = 0.95,206

SRMR = 0.057, RMSEA = 0.12) and SOC (CFI = 0.961, SRMR = 0.045, RMSEA = 0.107) models207

indicated a good fit. Thus, the observed range of indices within commonly accepted thresholds provided208

satisfactory model fits, and the models characterised the data reasonably well.209

The SEM fit showed that climatic energy availability was negatively correlated with forest carbon210

(AGC and SOC). The direct effect size of climatic energy was large, negative, and significant for both211

forest carbon pools, with a larger impact on forest SOC compared to AGC. Univariate plots and simple212

linear models revealed that forests with low growing degree days (GDD) may have higher forest carbon213

stocks than those with high GDD (Figure 4a, j), but the relationship is not strong. However, GDD had a214

strong negative correlation with SOC. Similarly, SOC had a stronger negative correlation with temperature215

seasonality (Bio4) and potential evapotranspiration (PET) than with forest AGC (Figure 4k, l).216

Variables related to climatic water availability had small but significant indirect effects on forest217

AGB and SOC. Although marginal, the direct effect size of water availability was positive for forest SOC,218

whereas it was negative and insignificant for forest AGC. Univariate linear models also showed a significant219

relationship between forest carbon stocks (both AGC and SOC) and variables representing climatic water220

availability (mean annual precipitation (Bio12) and precipitation seasonality (Bio15)) (Figure 4d, e, m, n).221

In contrast to the negative slopes in the linear models, the observed positive direct effect in SEM of SOC222

and negative effect in SEM of AGC is because SEM is a more complex model that aims to capture causal223

relationships by taking into account all the relationships among input variables simultaneously.224

The significant total effect for the latent variable terrain suggests that it mediates the relationship225

between water, energy, and disturbance variables and forest AGC and SOC (Figure 3). Although plotting226

forest carbon stocks (AGC and SOC) directly against terrain attributes did not show pronounced227
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A

B

Figure 3: Path diagrams for SEM models of the spatial variation in forest carbon stocks are shown
in Panel A (AGC model) and Panel B (SOC model). Latent variables are represented by ovals, while
observed variables indicating latent variables are represented by boxes connected to the ovals (variable
descriptions can be found in Table 1). The values on arrows pointing from latent variables to observed
variables represent the loadings, whereas the values on arrows pointing from latent variables to observed
variables indicate path regression coefficients. The significance levels are indicated by asterisks (*** p <
0.001; ** p < 0.01; * p < 0.05). Positive effects are indicated by green arrows, whereas negative effects
are indicated by red arrows. The dashed arrows indicate insignificant path coefficients.
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correlations (Figure 4), strong trends were observed in the upper quantiles of forest AGC and SOC for228

some terrain attributes. For example, despite the weak overall correlations between AGC and mean annual229

precipitation (Bio12), landscape openness, and TWI, the upper quantiles of forest AGC showed strong230

trends with these attributes. Similarly, the upper quantiles of forest SOC decreased strongly with TWI,231

although the overall correlation between the two was weak.232

In the SEM output (Figure 3), partial mediation was observed in both the AGC and SOC models,233

with significant direct and indirect effects (Table S1, Supporting information). Partial mediation indicated234

that the terrain variable did not fully explain the relationship between climate and forest carbon stocks,235

as direct effects also played a significant role. The significant total effects, combining direct and indirect236

effects, further confirm the significance of partial mediation, as stated by (MacKinnon et al. 2007). The237

partial mediation of terrain attributes on the relationship between forest carbon and climatic factors,238

such as energy, water, and disturbance (Table S1, Supporting information) highlights the contribution of239

fine-scale variations due to terrain superimposed on broader controls. More detailed information about240

the models for AGC and SOC can be found in Tables S2 and S3 in Supporting information, respectively.241

The probability of disturbance was found to have the strongest effect on forest AGC compared to242

water and energy variables (Figure 3A and Table S1, Supporting information). The SEM results showed243

that forest AGC was strongly related to the forest fragmentation metrics. The univariate linear model244

also confirmed a strong correlation between disturbance and forest AGC (Figure 4f, g), suggesting that245

human disturbance, such as wood product collection, plays a significant role in the spatial distribution of246

forest AGC (Figure 4k, m). Increased forest fragmentation, represented by an increase in the LSI, was247

associated with a decline in forest carbon. Conversely, forests with relatively low landscape openness,248

indicating a large proportion of tree cover, had relatively high forest carbon stock.249

0.4 Discussion250

The SEM findings confirmed that the various environmental factors associated with climatic moisture,251

energy availability and human disturbances significantly affect the spatial variation in forest carbon stocks252

in the Central Himalayas. The results of the SEM analysis revealed that a smaller fraction of the variation253

in forest AGC was explained by the SEM model than by the SEM model for forest SOC (as shown in254

Figure 3A and Figure 3B). Although the broad controls used in the conceptual model were found to be255

significantly related to both forest AGC and SOC, their relative importance differed between the two forest256

carbon pools. Among these controls, the disturbance variable showed the strongest positive correlation257

with forest AGC. In contrast, the climatic energy variable showed the strongest negative correlation with258

forest SOC. The significant indirect effects of topography on the spatial variation in forest carbon stocks259

imply that topography leads to fine-scale variations in forest habitat conditions, which are related to local260

climate and soil properties.261
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Figure 4: Scatterplots of forest AGC (blue dots) and SOC (brown dots) against each covariate used
in the SEM. The solid red lines correspond to the fitted quantiles (0.05 and 0.95), and the dashed red
line shows the linear fit. R2 and p-values in the panels represent linear models. AGC and SOC are on
the respective y-axes, and the other variables are on the x-axes. The variables included mean annual
growing degree days (GDD), seasonality of mean monthly air temperature (Bio4), mean annual potential
evapotranspiration (PET), mean annual precipitation (Bio12), precipitation seasonality (Bio15), landscape
openness (LOPEN), landscape shape index (LSI), mean daily potential incoming solar radiation (PISR),
and topographic wetness index (TWI).
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0.4.1 Broad-scale gradients262

The significant negative coefficient between forest carbon stocks and climatic energy availability indicated263

that areas with higher carbon stocks were located in colder climates with lower growing degree days264

(GDD) than in warmer climate zones. The mean annual air temperature decreased with elevation, leading265

to lower plant growth rates at higher elevations. This cold air temperature limits tree growth and survival266

(Körner 1998) and creates the treeline that defines the upper altitudinal limits of trees. The broad-scale267

gradients of mean annual temperature and humidity influence tree line elevation and species composition268

(Schickhoff et al. 2015), and therefore also affect forest carbon. In the Central Himalayas, the treeline269

elevation ranges between 3400-3600 meters above sea level (masl) (Schickhoff et al. 2015) and can reach270

even higher in some areas (Stainton 1972). Above the treeline, the forest transitions into low statured271

shrubs and grasses (Ohsawa et al. 1973, Körner 1998). For instance, at elevations around 3500 masl, the272

size of common tree species, such as Juniperus indica and Pinus wallichiana, depends on aspect (Måren273

et al. 2015), and forest carbon density is lower than at elevations below 3500 masl.274

The analysis found that the plots with the highest forest AGC in the country were located275

at high elevations with relatively cold climates, despite AGC being generally the lowest in the coldest276

regions (Figure 4a). Similarly, forest SOC was relatively high in cold regions of the high mountain regions,277

consistent with a negative relationship between GDD and SOC. However, the upper-quantile forest SOC278

decreased in the coldest region of the study area (Figure 4j). This reflects that soil carbon accumulation279

is a long-term process influenced by the balance between site productivity and decomposition rates, with280

decomposition being more sensitive than productivity. On a global scale, mature forest stands with a281

mean annual temperature (MAT) of approximately 10 ◦C have the highest carbon density, whereas low282

carbon density is found in stands with both higher and lower MAT (Liu et al. 2014). Despite the negative283

relationship in a linear model, the observed maximum forest carbon density stands are towards the middle284

MAT ranges in the Himalayas, which agrees with earlier findings (Lewis et al. 2013, Reich et al. 2014).285

The findings of the study agree with earlier research that shows an increase in AGC along the elevational286

gradient is a result of the combined effects of moisture availability and growth-limiting air temperatures287

(Yang et al. 2005). Conversely, SOC increases with elevation and is related to a decrease in mean annual288

air temperature (Liu & Nan 2018).289

The results of the analysis showed that the relationship between climatic water availability290

and forest SOC was significant and positive, whereas the relationship with AGC was negative. In the291

Central Himalayas, the major sources of soil moisture are the seasonal precipitation during the monsoon292

and snowpacks (Zobel & Singh 1997). Mean annual precipitation in Nepal varies greatly, with some293

high-elevation areas receiving as little as 200 mm, while others in the middle mountains receive over294

5000 mm (Karki et al. 2016). Despite the limited rainfall, higher elevation areas receive seasonal snow295

as an additional source of moisture for plant growth (Osmaston 1922, Singh & Singh 1987, Trujillo et296
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al. 2012). The forest AGC was found to have a positive correlation with mean annual precipitation for297

plots receiving up to approximately 1500 mm year-1 (Figure 4d). This pattern is consistent with the298

dominant effect of water limitation on forest productivity at this precipitation level. These results are in299

agreement with those of other studies that found a strong positive correlation between forest AGC and300

precipitation (Swetnam et al. 2017, Fang et al. 2018, Lie et al. 2018-07-12). However, plots receiving301

more than 1500 mm year-1 of precipitation showed a decreasing upper quantile of forest AGC, located302

in the middle mountains. This region has a history of higher intensity of human disturbances (Smadja303

1992, Brown & Shrestha 2000) and frequent natural disasters, such as landslides (Caine & Mool 1982),304

leading to lower forest AGC along the elevational gradient, as observed when plotted against GDD (Figure305

4d).This region has a history of higher intensity of human disturbances (Smadja 1992, Brown & Shrestha306

2000) and frequent natural disasters, such as landslides (Caine & Mool 1982), leading to lower forest AGC307

along the elevational gradient, as observed when plotted against GDD (Figure 4d). It is important to308

note that the topoclimatic heterogeneity in the study area means that in some areas, rainfall increases309

with elevation, while in others, it decreases with elevation (Pokharel et al. 2020).310

The weaker correlation between climatic water availability and forest carbon compared to climatic311

energy can be attributed to the effect of temperature in subalpine regions, with snow as the main source of312

precipitation. In these regions, temperature affects photosynthesis during the colder season but indirectly313

facilitates tree growth through snowmelt during winter (Huxman et al. 2003). Thus, temperature314

facilitates tree growth indirectly by increasing moisture availability through snowmelt during winter315

(Borgaonkar et al. 2011). As a substantial proportion of the Central Himalayan forests are located at316

elevations exceeding ~2000 masl (DFRS 2015), the snow fraction of precipitation is likely to be a significant317

determinant of forest habitat quality. The weaker correlation between climatic water availability and318

forest carbon stocks observed in this study can be attributed to the confounding effects of air temperature.319

The variables used to represent climatic water availability had only a marginal correlation with forest320

carbon, except for precipitation seasonality which showed a strong correlation with forest SOC (Figure321

4d,e,m,n). Forests with low SOC were located at high elevations with low annual precipitation and322

low precipitation seasonality (e.g. <80 in Figure 4n). The negative relationship between mean annual323

precipitation, precipitation seasonality, elevation, and mean annual temperature supports the idea that324

temperature affects the impact of climatic water availability on vegetation (Morán-Tejeda et al. 2013, Ale325

et al. 2018). In the higher elevation regions, temperature may limit tree growth and even recruitment326

despite abundant precipitation as snow. Plants in the alpine region may not have water limitations but327

can experience a range of atmospheric effects on photosynthesis rates (Wang et al. 2017), including a328

decrease in the length of the growing season (Barry 2002).329

Forest species composition, tree growth, and forest carbon stocks in the lower elevation ranges of330

the Central Himalayas are expected to respond differently to climate than at higher elevations. For instance,331
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in the subtropical forests of the Central Himalayas, tree species richness increases consistently with water332

availability and has a parabolic relationship with energy (Bhattarai & Vetaas 2003). Additionally, the333

growth of Chir pine (Pinus roxburghii) in the Himalayan subtropical zone has a strong positive correlation334

with seasonal precipitation and a negative correlation with mean monthly air temperature (Sigdel et al.335

2018, Tiwari et al. 2020). Even in areas with similar elevation and climatic conditions, forest carbon336

stocks are higher in regions dominated by older trees and nitrogen-fixing trees (Maraseni & Pandey 2014).337

The study area encompasses diverse ecoregions within the Central Himalayas (Olson et al. 2001), and the338

relationship between forest carbon stocks and broad climatic gradients highlights the impact of dominant339

climatic factors on the forests of the entire region.340

0.4.2 Fine-scale gradients341

The probability of forest disturbance, as represented by the latent variable, was found to have a significant342

negative correlation with both forest AGC and SOC. As hypothesised, in addition to the broad-scale343

interaction of climate with topography, the interaction of terrain characteristics with disturbances on a344

more local scale was also observed. The magnitude of disturbance’s effect on forest AGC and SOC varies,345

with immediate effects on forest AGC after tree removal and soil carbon changes taking longer to respond.346

In the mountainous environment of the Central Himalayas, terrain constrains human disturbance by347

limiting forest accessibility. This study found that the spatial and temporal patterns of both natural and348

human-induced forest disturbance are dependent on topography, as reported by Hadley (1994); Kenderes349

et al. (2007); Sommerfeld et al. (2018). These results support the observation that topography and350

human-induced disturbances jointly impact the structure and carbon content of forests in the Himalayas,351

as noted by Måren et al. (2015); Sharma et al. (2010).352

Univariate plots of the indicators of the disturbance also confirmed a significant negative353

relationship with forest AGC (Figure 4f, g). These findings are consistent with the expectation that the354

plots with higher disturbance likelihood had lower forest carbon. The level of forest fragmentation, as355

represented by the LSI, indicates a relatively high likelihood of human disturbance for plots in landscapes356

that have a relatively high edge density. Similarly, another indicator of forest disturbance, landscape357

openness, represents the fraction of non-forest area within the buffered region of the forest plots. Although358

a single or few large-diameter trees sampled in forest inventory plots in forest stands with sparse tree359

canopy can result in large forest AGC estimates (Vorster et al. 2020-05-14), these have typically low360

occurrence. Generally, a larger proportion of non-forested areas in a forest patch is thought to result361

from high-intensity disturbance as opposed to forest patches with a closed canopy (Frolking et al. 2009).362

Human disturbances such as selective tree removal, which is common in Nepal, would thus reduce tree363

cover (Shrestha et al. 2013, Aryal et al. 2021) and, therefore, forest carbon stock. In contrast, if these sites364

naturally have sparse tree cover or only a fraction of the patches with tree cover, we would likely expect365
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these sites to be adjacent to other land uses and have a higher probability of disturbance. Generally, we366

would expect a forest with a closed canopy to have a higher carbon density. However, in the case of forest367

SOC, the proxy for forest disturbance showed a weaker relationship compared to forest AGC (Figure368

4o,p). The form of the relationships was as expected: the plots with maximum forest SOC occurred in369

locations with the lowest probability of disturbance, forest SOC declined with the increasing disturbance370

probability and was smallest for plots in locations with the highest disturbance probability.371

The correlation between topographic attributes and forest carbon was significant, reflecting372

the impact of topography on forest habitat quality through its influence on soil depth, precipitation,373

water redistribution, and storage capacity in the mountains. Topography modifies the distribution of soil374

moisture availability and disturbance probabilities across the Central Himalayas (Gerlitz et al. 2016).375

In mountains, the formation of soil is controlled by slope and aspect, which determine the exposure376

to sun and wind, erosion potential, and moisture retention (Price & Harden 2013). Topography also377

affects the spatial variation of soil depths, which in turn controls soil moisture storage and conservation378

capacity (Boer et al. 1996, Williams et al. 2009). Topography affects the spatiotemporal redistribution379

of water by altering rainfall, snow accumulation, snowmelt, and meltwater distribution (Gurung et al.380

2017). Snow cover duration and other snow-related characteristics, such as the depth and fraction of381

precipitation, vary depending on topography and wind exposure. The windward slopes in the mountains382

receive more rainfall than the leeward slopes, creating high spatial variability in moisture availability383

owing to topographic complexity. Topography also affects the amount of solar radiation received across384

the mountainous landscape, with significant effects on forest productivity. For instance, the basal area of385

Abies pindrow in sites above 2600 masl can vary by 40% depending on the aspect (Sharma & Baduni386

2000). The potential insolation variable used in the models, which is a function of elevation, terrain slope,387

aspect, and topographic shading (Bohner & Antonic 2009), varies based on topographic position. The388

significant mediation of the relationship between forest carbon and climate by topography most likely389

reflects the impact of slope angle and orientation on the spatial distributions of soil moisture (Kopeckỳ &390

Čížková 2010), solar insolation (Zhang et al. 2017) and evapotranspiration potential (Huang et al. 2019).391

Examination of forest carbon density as a function of biophysical constraints, such as water,392

energy, and disturbance, provided valuable insights into the relative impacts of these constraints across393

a large heterogeneous study area in the Central Himalayas. Moreover, the significant effect of fine-394

scale topographic attributes on the relationship between coarse climatic variables and forest carbon395

density confirmed that the variation in topoclimate determines the variation in forest carbon distribution.396

By extrapolating these broad-scale gradients and fine-scale variations in forest carbon, forest carbon397

distribution can be predicted beyond the locations of forest inventory plots.398
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0.5 Conclusions399

Topoclimatic gradients in the Central Himalayas create highly heterogeneous landscapes and influence the400

species composition, structure, and carbon stock of forests. Structural equation modelling was found to401

be a useful approach for exploring the relationship between multiple variables and forest carbon stocks.402

The results indicated that the variation in forest carbon stocks was related to metrics or proxies of forest403

habitat conditions, such as climatic energy, water availability, and disturbance regimes. Furthermore,404

the findings showed that topography modified the predominant drivers by adding fine-scale variation in405

climatic water and energy availability, as well as the likelihood of human disturbances. This provides406

a better understanding of the relative role of these key drivers in explaining the spatial variation of407

forest carbon stocks in the Central Himalayas, which is important for improving forest carbon estimates408

and emission reduction targets such as Reducing Emissions from Deforestation and Forest Degradation409

(REDD+).410
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