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Abstract 28 

Nutrient limitation is widespread in terrestrial ecosystems. Accordingly, representations of 29 

nitrogen (N) limitation in land models typically dampen rates of terrestrial carbon (C) accrual, 30 

compared with C-only simulations. These previous findings, however, rely on soil 31 

biogeochemical models that implicitly represent microbial activity and physiology. Here we 32 

present results from a biogeochemical model testbed that allows us to investigate how an explicit 33 

vs. implicit representation of soil microbial activity, as represented in the MIcrobial-MIneral 34 

Carbon Stabilization (MIMICS) and Carnegie–Ames–Stanford Approach (CASA) soil 35 

biogeochemical models, respectively, influence plant productivity and terrestrial C and N fluxes 36 

at initialization and over the historical period. When forced with common boundary conditions, 37 

larger soil C pools simulated by the MIMICS model reflect longer inferred soil organic matter 38 

(SOM) turnover times than those simulated by CASA. At steady state, terrestrial ecosystems 39 

experience greater N limitation when using the MIMICS-CN model, which also increases the 40 

inferred SOM turnover time. Over the historical period, however, higher rates of N 41 

mineralization were fueled by warming-induced acceleration of SOM decomposition over high 42 

latitude ecosystems in the MIMICS-CN simulation reduce this N limitation, resulting in faster 43 

rates of vegetation C accrual. Moreover, as SOM stoichiometry is an emergent property of 44 

MIMICS-CN, we highlight opportunities to deepen understanding of sources of persistent SOM 45 

and explore its potential sensitivity to environmental change. Our findings underscore the need to 46 

improve understanding and representation of plant and microbial resource allocation and 47 

competition in land models that represent coupled biogeochemical cycles under global change 48 

scenarios.  49 

Plain Language Summary 50 

Nitrogen limitation of terrestrial ecosystems is common and crates feedbacks between 51 

aboveground and belowground biogeochemical cycles. We present a novel analysis looking at 52 

how the explicit vs. implicit represention of soil microbial activity influences ecosystem carbon 53 

and nitrogen fluxes in a global biogeochemical model. With the microbial explicit model, 54 

MIMICS-CN, we found increases in the inferred turnover time of soil organic matter that were 55 

caused by plant-soil feeedbacks from nitrogen limitation of plant productivity. Over the 56 

historical period, we found that warming-induced acceleration of soil organic matter 57 

decomposion resulted in higher rates of nitrogen mineralization and vegetation biomass acurall. 58 

Collectively, these findings illustrate the feasibility of simulating global carbon-nitrogen 59 

biogeochemical cycles with the explicit representation of microbial decomposers that presents 60 

new opportunities to investigate plant-soil interactions. 61 

1 Introduction 62 

Terrestrial ecosystems are characterized by widespread nutrient limitation, especially of 63 

nitrogen (N; Elser et al., 2007; LeBauer & Treseder, 2008). These limitations fundamentally 64 

shape ecosystem feedbacks between above- and belowground processes (Wardle et al., 2004). 65 

Plant investment in belowground carbon (C) allocation and nutrient acquisition strategies 66 

influences soil biogeochemical cycles, notably through the formation and decomposition of soil 67 

organic matter (SOM; Averill et al., 2014). Moreover, microbial biomass is a major driver of 68 

nitrogen mineralization rates (Li et al., 2019). Thus, shifting patterns of plant and microbial 69 

stoichiometry, allocation, and activity in response to global change drivers will likely influence 70 

terrestrial ecosystem responses to climate change (Wieder, Cleveland, et al., 2015; Zaehle et al., 71 
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2015). Accurately capturing these ecological processes and plant-soil feedbacks in models that 72 

are used for climate change projections remains a challenge. 73 

Part of this uncertainty reflects gaps in our theoretical understanding of plant-soil 74 

feedbacks and their influence on nutrient availability. Notably, emerging theories emphasize the 75 

importance of microbial-mineral interactions that govern SOM persistence (Cotrufo et al., 2013; 76 

Lehmann et al., 2020; Lehmann & Kleber, 2015). Yet, explicit representations of microbial 77 

activity, microbial functional traits, and the protection of soil C via organo-mineral interactions 78 

are notably absent from models that are used to project C cycle–climate feedbacks (Todd-Brown 79 

et al., 2013). The introduction of global-scale, microbial explicit soil biogeochemical models has 80 

opened new lines of research (Ye Huang et al., 2018; Sulman et al., 2014; Wieder et al., 2013; 81 

Wieder, Grandy, et al., 2015), but much of the work to date only focuses on the representation of 82 

soil C biogeochemistry. Results from ecosystem-scale simulations show the potential for models 83 

that explicitly simulate microbial-mineral interactions to advance understanding of coupled 84 

carbon-nitrogen (CN) dynamics (Eastman et al., 2023; Kyker-Snowman et al., 2020; Thum et al., 85 

2019; G. Wang et al., 2020; Y. Zhang et al., 2021). Now, application of microbial explicit CN 86 

soil models is feasible at global scales (Y. Huang et al., 2021; Sulman et al., 2019), although to 87 

date analyses of global terrestrial C and N dynamics from this class of models are sparse.  88 

The current generation of global models consistently show that representing terrestrial 89 

nutrient limitation  dampens of terrestrial ecosystem responses to elevated CO2 (Thornton et al., 90 

2007; Y. P. Wang et al., 2010; Zaehle et al., 2010).  However, these results come from models 91 

that implicitly represent soil microbial activity. Preliminary work with models that explicitly 92 

represent microbial activity demonstrate shifts in the timing and magnitude of ecosystem C 93 

fluxes, relative to models that make microbial implicit assumptions (Basile et al., 2020; Jian et 94 

al., 2021; Wieder et al., 2018; Wieder et al., 2019). This suggests that models based on distinct 95 

underlying structural assumptions will also generate differences in soil N fluxes that may 96 

feedback onto ecosystem productivity and response to global change.  97 

We begin to explore these dynamics by coupling two different soil biogeochemical 98 

models that represent C and N biogeochemistry to a common vegetation model. This 99 

biogeochemical model testbed allows us to investigate how alternative soil model structures and 100 

assumptions ultimately influence plant productivity and ecosystem C storage. This is one of the 101 

first global-scale applications of a microbially explicit model to look at ecosystem C and N 102 

responses at initialization and in historical simulations (see also Dunne et al., 2020; Sulman et 103 

al., 2019). Our objectives are to describe differences in the underlying assumptions of both 104 

microbial explicit and microbial implicit model structures that are applied by the MIcrobial-105 

MIneral Carbon Stabilization (MIMICS; Wieder et al., 2014; Wieder, Grandy, et al., 2015) and 106 

Carnegie–Ames–Stanford Approach (CASA; Y. P. Wang et al., 2010) soil biogeochemical 107 

models, respectively. Subsequently, we describe global scale patterns of soil biogeochemical 108 

states and fluxes that are simulated by MIMICS and CASA under steady-state conditions. 109 

Finally, we explore the transient biogeochemical response of terrestrial ecosystems over the 110 

historical period and discuss future opportunities for representing CN biogeochemistry with 111 

microbial explicit structures in land models.  112 
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2 Materials and Methods 113 

2.1 Biogeochemical model testbed and forcing  114 

Simulations presented here build on the C-only version of the biogeochemical model 115 

testbed, which couples the CASA vegetation model with the CASA or MIMICS soil 116 

biogeochemical models (Wieder et al., 2018; Wieder et al., 2019). Additional developments to 117 

represent soil CN biogeochemistry in site-level simulations with MIMICS-CN are provided in 118 

Kyker-Snowman et al. (2020). Here we present a global application of MIMICS-CN that 119 

connects with representation of vegetation nutrient limitation and soil N transformations that are 120 

also applied in CASA-CNP (Y. P. Wang et al., 2010). We compare global-scale results of 121 

vegetation and soil pools and fluxes from simulations with C-only and CN configurations of both 122 

MIMICS and CASA soil biogeochemical models. As this work builds on an extensive body of 123 

literature, including ecosystem scale simulations with the biogeochemical model testbed 124 

presented by Eastman et al. (2023), we largely highlight modifications that were implemented in 125 

the development and evaluation of global scale simulations with MIMICS-CN in the 126 

biogeochemical model testbed.  127 

The biogeochemical model testbed requires daily inputs of gross primary production 128 

(GPP), air temperature, soil temperature, and soil moisture. We generated these boundary 129 

conditions by running a historical simulation of the Community Land Model, version 5, with 130 

satellite phenology (CLM5-SP) that was driven with atmospheric forcing from the Global Soil 131 

Wetness Program, version 3 (GSWP3, see Lawrence et al., 2019). Our previous work with the 132 

biogeochemical model testbed used an older version of CLM (version 4.5) and CRU-NCEP 133 

forcing (Wieder et al., 2018). Comparison of CLM model versions and forcing data are described 134 

in Lawrence et al. (2019) and Bonan et al. (2019). Daily history files from the nominal two 135 

degree-resolution CLM5-SP simulations were processed to generate the required meteorological 136 

forcings, or met files, that are needed to run the biogeochemical model testbed (see technical 137 

documentation in Wieder et al., 2023). This processing step involves calculating depth weighted 138 

mean daily soil temperature along with volumetric liquid and frozen soil water content for the 139 

top six soil layers that are simulated by CLM5 (roughly corresponding to 0-50 cm depth). The 140 

met files also include daily GPP, air temperature, and N deposition that are simulated by CLM5 141 

and required to run CASA-CNP. Additional input data needed to run the biogeochemical model 142 

testbed include soil texture (sand and clay fraction) and dominant plant functional type (PFT) 143 

distributions, which are also taken from CLM5 surface datasets.  144 

Initial conditions in the biogeochemical model testbed were generated by spinning up 145 

vegetation and soil C pools by cycling over simulation years from (1901-1920) until steady-state 146 

conditions were reached. We did this in four model experiments: for C-only and CN versions of 147 

both MIMICS and CASA that were coupled to the CASA vegetation model. GPP was identical 148 

in all four of these simulations. Net primary production (NPP) and litterfall fluxes were identical 149 

for both of the MIMICS and CASA C-only simulations, reflecting autotrophic respiration 150 

parameterizations in the C-only CASA vegetation model. Nitrogen limitation of NPP, however, 151 

reduced litterfall fluxes in the CN experiments – reflecting differences in the N limitation 152 

experienced by plants, given the feedback from different soil biogeochemical models. The 153 

CASA vegetation model increases autotrophic respiration fluxes, thereby reducing NPP, when 154 

daily inorganic N pools are less than 1g N m
-2

. Differences in steady-state initial conditions are 155 

described in section 3.1. Subsequently we ran transient simulations over the historical period 156 
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from 1901-2014 for each of our four model experiments, with results described in section 3.2. 157 

We did not run the biogeochemical model testbed with transient land use or land cover change.  158 

2.2 MIMICS-CN  159 

In this section we describe highlights of this global-scale implementation of CN 160 

biogeochemistry in MIMICS and provide relevant information about underlying assumptions and 161 

approaches taken in the MIMICS and CASA soil models. Notable features of MIMICS include 162 

the representation of metabolic and structural litter pools (LITm and LITs), explicit representation 163 

of fast and slow growing microbial functional groups (MICr and MICK), and the representation 164 

of physicochemically protected, chemically protected, and available soil organic matter pools 165 

(SOMp, SOMc, and SOMa; Figure 1). The basic structure of the model has not been changed 166 

from the C-only version of MIMICS (Wieder et al. 2015) with addition of CN biogeochemistry 167 

described in Kyker-Snowman et al. (2020) and Eastman et al. (2023). As in our previous work 168 

(Wieder et al., 2018; Wieder et al., 2019), MIMICS-CN uses temperature-sensitive reverse 169 

Michaelis-Menten kinetics to describe microbial community catabolic capacity (blue lines, Fig 170 

1), which determine rates of litter and SOM decomposition that are modified by soil liquid water 171 

availability. MIMICS-CN also represents microbial growth efficiency that controls the fate of C 172 

and N fluxes in soils through microbial carbon use efficiency, nitrogen use efficiency, and 173 

microbial turnover (CUE, NUE, and 𝞃, respectively; green lines, Fig. 1), which are a function of 174 

substrate quality and microbial functional groups. Microbial necromass fluxes from each 175 

microbial functional group are allocated to different SOM pools, which vary as a function of soil 176 

clay content and litter quality (orange lines, Fig. 1). Litter quality determines allocation of 177 

microbial residues (fc) that enter the chemically protected (SOMc) pool. Soil clay content 178 

controls allocation to and turnover (fp and D, respectively) of the physicochemically protected 179 

(SOMp) pool in MIMICS.  180 

 181 

Figure 1. Pools of litter, microbial biomass and soil organic matter (LIT, MIC, and SOM, 182 

respectively) that are represented in MIMICS-CN. Microbial catabolic potential (blue lines) 183 

varies with daily soil temperature and soil moisture and drives the decomposition of litter and 184 
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soil organic matter. Microbial growth rates (green lines) are determined by carbon use efficiency, 185 

nitrogen use efficiency, and turnover (CUE, NUE and 𝞃). CUE and NUE contribute to 186 

heterotrophic respiration and nitrogen mineralization fluxes, which occur for all fluxes into 187 

microbial biomass pools (but are not shown for clarity). Microbial necromass is partitioned into 188 

SOM pools as a function of soil clay content and litter quality (orange lines).  189 

 190 

Litterfall inputs (I) in MIMICS and CASA are partitioned into litter pools based on 191 

chemical quality, specifically the weighted average lignin:N ratio of all litter inputs determines 192 

the fraction of metabolic litter (fMET) as in Parton et al. (1987) and applied by Wieder et al. 193 

(2014). One notable difference, however, is that fluxes from the decay of coarse woody debris 194 

are transferred into structural litter pools in MIMICS, thus the lignin:N ratio associated with this 195 

flux is also included in the calculation of fMET. By contrast, fluxes of coarse woody debris in 196 

CASA are transferred directly to SOM pools and, therefore, not included in the CASA 197 

calculation of fMET. In MIMICS-CN we hold the stoichiometry of the metabolic litter inputs (and 198 

therefore the LITm pool) constant, assuming that this relatively labile litter flux has a high 199 

chemical quality (C:N = 15). Thus, the C:N of structural litter inputs (and the LITs pool) varies to 200 

conserve total N inputs from litterfall (Kyker-Snowman et al., 2020). A fraction of litter inputs 201 

bypasses the litter, and therefore microbial biomass pools, in MIMICS (fi, Figure 1). The current 202 

parameterization of the model assumes a larger fraction of low quality, structural litter inputs are 203 

passed directly to the chemically protected SOM pool, which we think of as being analogous to a 204 

particulate organic matter pool (POM; fi, struc = 0.3, or 30% of structural litter inputs). By 205 

contrast, relatively little metabolic litter directly contributes to the formation of 206 

physicochemically protected SOM, which we consider to be more like a mineral associated 207 

organic matter pool (MAOM; fi, met = 0.005, or 0.5% of metabolic litter fluxes). This change was 208 

made with the representation of N biogeochemistry in MIMICS-CN for site-level simulations by 209 

Kyker-Snowman et al. (2020) to increase the C:N ratio of bulk SOM pools, and also applied for 210 

global scale MIMICS C-only and  CN runs presented here. Lower input rates and turnover times 211 

to SOMp pools were also implemented in the parameterization of MIMICS-CN presented here to 212 

achieve longer turnover times of this MAOM-like pool (Pierson et al., 2022; Wieder et al., 2019; 213 

H. Zhang et al., 2020). 214 

The microbial functional groups represented in MIMICS are intended to represent 215 

functional trait tradeoffs between microbial growth rates (blue lines in Fig 1) and microbial 216 

growth efficiency and turnover (green lines in Fig. 1) (Joshua P. Schimel & Schaeffer, 2012; 217 

Wieder et al., 2014). The model parameters reflect assumptions that a fast-growing microbial 218 

functional group (MICr) has a greater affinity for organic matter substrates with higher chemical 219 

quality (LITm) but has a lower CUE than a slower growing microbial functional group (MICK), 220 

which has a greater affinity for low chemical quality substrates (LITs) (Wieder et al., 2018).  221 

Microbial stoichiometry in MIMICS-CN builds on this functional trait framework. We 222 

assumed that the higher catabolic potential (Vmax) of MICr communities requires more nitrogen, 223 

resulting in lower microbial biomass C:N ratios, compared to slower growing copiotrophs. 224 

Kyker-Snowman et al. (2020) assign fixed C:N ratios for MICr and MICK – 6 and 10 225 

respectively, which generally reflects the mean C:N stoichiometry of bacteria and fungi 226 

(Cleveland & Liptzin, 2007). Total microbial biomass stoichiometry, therefore, reflects the 227 

relative abundance of these functional groups. Preliminary results using this approach in the 228 

biogeochemical model testbed, however, produced relatively constrained estimates for 229 

ecosystem microbial C:N ratios, compared to results from cross-biome syntheses (Cleveland & 230 
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Liptzin, 2007)and subsequent global extrapolations (Gao et al., 2022; Xu et al., 2013). Substrate 231 

quality, however, influences microbial community composition and stoichiometry (N. Fanin et 232 

al., 2013; Nicolas Fanin et al., 2014; Nemergut et al., 2010). Thus, we developed a simple 233 

parameterization that modifies the target microbial biomass stoichiometry as a function of litter 234 

quality (eq. 1) 235 

 236 

𝐶𝑁𝑡𝑎𝑟𝑔𝑒𝑡 =  𝐶𝑁𝑏𝑎𝑠𝑒 √(𝐶𝑁𝑚𝑜𝑑/𝑓𝑀𝐸𝑇)      eq.1 237 

 238 

Where the target CN ratio is the product of the base C:N ratio for copiotrophs and oligotrophs (6 239 

and 10, respectively) and an empirical function using a CN modifier term (0.4 for these 240 

simulations) and fMET (from litterfall inputs, Fig 1). This parameterization allows for somewhat 241 

greater spatial variability in microbial C:N ratios and is applied in the results presented here. 242 

Accordingly, the emergent microbial biomass stoichiometry that is simulated by MIMICS still 243 

reflects the relative abundance of microbial functional groups, but also the influences of litter 244 

quality.  245 

Heterotrophic respiration fluxes in MIMICS are determined by the fluxes of C entering 246 

microbial biomass pools and associated CUE (Fig 1). In MIMICS, CUE varies by microbial 247 

functional group (higher for MICK than MICr, with a particular substrate) and substrate quality 248 

(e.g., LITm has a higher CUE than LITs for a given microbial functional group) (see technical 249 

documentation Wieder et al., 2023). We assume that ‘messy eating’ results in a 85% NUE on 250 

fluxes entering microbial biomass pools, with the remaining 15% of decomposed organic N 251 

being transferred to the dissolved inorganic nitrogen pool (DIN; models in the testbed do not 252 

simulate individual pools of ammonium and nitrate).  253 

After accounting for these C and N losses from donor pool fluxes (coming from LITm, 254 

LITs, or SOMa), MIMICS-CN evaluates the stoichiometry of incoming fluxes to the receiver 255 

pools (going to MICr or MICK) and their target stoichiometry. If the C:N ratio of total fluxes into 256 

microbial biomass pools is lower than their respective target, then this excess N is mineralized 257 

into the DIN pools. Conversely, if the C:N ratio of inputs to microbial biomass pools is higher 258 

than their respective targets then overflow respiration occurs, with this excess C added to the 259 

heterotrophic respiration flux. With the current model parameterization, microbial functional 260 

groups in MIMICS-CN are not generally C limited, which is generally consistent with empirical 261 

measurements and theoretical understanding (Soong et al., 2020), so overflow respiration fluxes 262 

are very small. Thus, in MIMICS-CN decomposition of litter and SOM pools proceeds 263 

independent from the size of the inorganic N pool. This approach differs from assumptions in the 264 

CASA soil biogeochemical model, which downregulates heterotrophic activity if inorganic N 265 

pools are < 1gN m
-2

 (Y. P. Wang et al., 2010). Similar assumptions are made in other soil 266 

biogeochemical models that downregulate decomposition rates under nitrogen limitation (Bonan 267 

et al., 2013; Thomas et al., 2015).  268 

2.3 Analyses 269 

We inferred soil C turnover times as the ratio of total soil C stocks and NPP simulated by 270 

the models at each grid cell at initialization (1901-1920 mean) (Koven et al., 2017). To compare 271 

inferred soil C turnover times between CN and C-only versions of both soil biogeochemical 272 

models we calculated response ratios, which were calculated as the natural log of the quotient of 273 

results from the CN and C-only versions of MIMICS and CASA; thus, response ratios of 0 274 

signify that the CN and C-only versions of the model are identical.  We assessed N limitation as 275 
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the difference of NPP from CN and C-only simulations, such that more negative values reflect 276 

greater N limitation. We calculated net ecosystem production (NEP) as the difference of GPP 277 

and ecosystem respiration fluxes; thus positive values of NEP values reflect net land C uptake. 278 

By definition NEP is zero under steady-state, initial conditions. 279 

We compared the latitudinal distribution and global sums for soil biogeochemical states 280 

and fluxes that were simulated by MIMICS and CASA with globally gridded estimates from 281 

database products. Specifically, we included total soil C stocks for 0-1 m depth from the 282 

Harmonized World Soils Database, version 1.2 (HWSD; FAO et al., 2012) that was regridded to 283 

a nominal 1 degree resolution (Wieder et al 2014), Soil Grids, version 2.0 (Poggio et al., 2021; 284 

500m resolution was also regridded to a nominal 1 degree resolution), and the Northern 285 

Circumpolar Soil Carbon Database (NCSCD; Hugelius et al., 2013). We also compared 286 

microbial C and microbial C:N estimates from Xu et al. (2013); (see also Xu et al., 2014) and 287 

Serna-Chavez et al. (2013), heterotrophic respiration fluxes derived by Hashimoto et al. (2015), 288 

and soil C:N derived from the ratio of organic C and total N (0-1 m depth) from the Global Soil 289 

Dataset for use in Earth System Models (GSDE; Shangguan et al., 2014). We note that we are 290 

comparing steady state model results, intended to represent conditions at the start of the 20th 291 

century (1901-1920 mean state), with observations that are intended to be more representative of 292 

contemporary conditions. For slow turnover pools like bulk SOM, we feel the latitudinal patterns 293 

we present are unlikely to have appreciably changed over the historical period, but acknowledge 294 

that microbial biomass and heterotrophic respiration are likely changing more rapidly. 295 

3 Results 296 

3.1 Initial conditions 297 

For initialization, all simulations received identical fluxes of GPP (106 Pg C y
-1

, global 298 

mean 1901-1920; Table 1). Lower NPP fluxes in MIMICS-CN and CASA-CN simulations 299 

reflect N limitation on plant growth, relative to the C-only simulations. MIMICS-CN simulated 300 

greater N-limitation in boreal forests (Figure S1), and had slightly lower NPP globally than 301 

results from CASA-CN (Table 1). With lower NPP and subsequent litterfall fluxes, steady-state 302 

soil C pools were also lower for CN versions of MIMICS and CASA than soil C stocks in each 303 

models’ C-only counterpart. Initial global soil C stocks simulated by MIMICS totaled 1516 and 304 

1582 Pg C (for CN and C-only simulations, respectively, including the sum of all litter, microbial 305 

biomass and soil C pools at 0-100 cm depth; Table 1). Initial soil C stocks simulated by CASA 306 

totaled 887 and 997 Pg C (again for CN and C-only simulations, respectively, Table 1).  307 

  308 
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Table 1. Summary of annual fluxes and states simulated by MIMICS and CASA models with 309 

CN and C- only biogeochemistry at initialization. Values represent globally integrated means of 310 

annual data simulated from 1901-1920. By definition, soil heterotrophic respiration fluxes (HR) 311 

are equal to net primary production (NPP) at initialization. Total soil C includes all litter, 312 

microbial biomass and soil carbon pools simulated by the models. Relative microbial biomass is 313 

the fraction of the total soil C pool composed of microbial biomass and is shown as the global 314 

mean across all vegetated grid cells. Similarly, total soil C:N and microbial biomass C:N reflect 315 

global means for these quantities.  316 

 

MIMICS-

CN 

MIMICS C-

only 

CASA-CN CASA C-only 

GPP (Pg C y
-1

) 106 106 106 106 

NPP (Pg C y
-1

) 38.2 42.0 38.9 42.0 

HR (Pg C y
-1

) 38.2 42.0 38.9 42.0 

Total soil C (Pg C) 1516 1582 887 997 

Total vegetation C  

(Pg C) 
287 333 298 333 

Microbial biomass  

(Pg C) 
13.4 14.8 - - 

Relative microbial 

biomass C (%) 
0.88 0.92 - - 

Net N mineralization  

(Tg N y
-1

) 
876 - 888 - 

Total soil C:N 11.8 - 18.5 - 

Microbial C:N 
6.8 - - - 

 317 

Larger soil C pools in MIMICS-CN reflect longer inferred soil carbon turnover times 318 

than those simulated by CASA-CN (Fig. 2a). Similar results were reported for the C-only 319 

versions of these models (Wieder et al., 2018) and reflect parametric and structural differences 320 

between the MIMICS and CASA soil biogeochemical models. The apparent banding in CASA 321 

simulations (Fig. 2a) result from biome-specific soil C turnover times of slow and passive soil C 322 

pools, including notably rapid turnover times in agricultural soils (Y. P. Wang et al., 2010). 323 

MIMICS does not share this feature. Instead, longer turnover times simulated by MIMICS 324 

emerge from a common, global parameterization of the model.  325 

The representation of CN biogeochemistry does not meaningfully alter soil C turnover 326 

times that are simulated by CASA-CN, but it does in MIMICS (Fig. 2b). In colder and drier 327 

biomes that are less productive, soil C turnover times increase in MIMICS-CN, relative to the C-328 
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only version of the model. Since N limitation of NPP reduces litterfall fluxes, it also reduces the 329 

size of the microbial biomass pool in MIMICS-CN (Table 1). The response ratios of microbial 330 

biomass and inferred turnover times with MIMICS-CN show a strong, negative linear correlation 331 

(Fig. 2c). Thus, longer soil C turnover times in MIMICS-CN resulted from N limitation of plant 332 

production that reduced microbial biomass pools and slowed turnover times, especially across 333 

high latitude ecosystems (Fig. 2d). 334 

 335 

Figure 2. Inferred soil C turnover times as a function of mean annual air temperature (a) for all 336 

grid cells for MIMICS-CN and CASA-CN simulations (blue & orange points, respectively) and 337 

(b) the difference in turnover times in CN configurations compared to the C-only versions of 338 

each model. Soil C turnover is calculated as the ratio of total soil C stocks and NPP simulated by 339 

the models at initialization (1901-1920 mean). In MIMICS (c) the microbial biomass C response 340 

ratio in each grid cell is negatively correlated with the soil C turnover time response ratio. The 341 

(d) soil C turnover time response ratio in MIMICS-CN is greatest in high-latitude ecosystems 342 

that also show stronger N limitation of NPP.  343 

 344 

All models (C-only and CN versions of CASA and MIMICS) show latitudinal 345 

distributions of soil C stocks that agree reasonably well with observationally derived estimates 346 

(Fig. 3a) and global soil C stocks to 1 m depth (1690 Pg C from SoilGrids and 1260 Pg C for the 347 

HWSD; Table 1). Microbial biomass carbon totals 13.1 and 14.8 Pg C globally in the CN and C-348 

only versions of MIMICS (Table 1). Global extrapolations from observational syntheses estimate 349 
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microbial biomass C ranging from 14.6 to 23.2 Pg C (0-100 cm depth; Serna-Chavez et al., 2013; 350 

Xu et al., 2013). Both versions of MIMICS simulate larger microbial biomass pools in high 351 

latitude ecosystems, which fall within the large uncertainty from observationally upscaled 352 

estimates (Fig. 3b). Globally, relative microbial biomass C (microbial C as a percent of total soil 353 

C stocks) is roughly 0.9% in MIMICS (Table 1), which is lower than observationally derived 354 

estimates of 1.2% from Serna-Chavez et al. 2013 (Fig. 3c). Notably, MIMICS simulates larger 355 

relative microbial biomass pools in temperate and tropical forests and smaller relative microbial 356 

biomass pools in arid regions and boreal forests. While these patterns agree with observational 357 

estimates, spatial biases persist, especially in temperate and tropical forests (Fig. 3c). 358 

Heterotrophic respiration fluxes that are simulated by MIMICS and CASA generally match 359 

latitudinal patterns from database estimates reported by Hashimoto et al. (2015; Fig. 3d). At 360 

steady state, heterotrophic respiration fluxes are equal to NPP (Table 1). As such, this 361 

observational target provides more information about the quality of input data (here GPP derived 362 

from CLM and subsequent NPP calculated by the CASA vegetation model) than it does about 363 

heterotrophic respiration fluxes that are simulated by any of the soil biogeochemical models.  364 



manuscript submitted to JAMES 

 

 365 

Figure 3. Zonal mean plots for MIMICS and CASA simulations (blue and orange lines, 366 

respectively) with coupled CN biogeochemistry and C-only configuration (solid and dashed 367 

lines, respectively) and relevant observations (black lines with gray shading showing +/- 1 368 

standard deviation of mean). Panels show (a) soil C stocks (kgC m
-2

, 0-100 cm depth), (b) soil 369 

microbial biomass C stocks (gC m
-2

, 0-100 cm depth), (c) relative microbial biomass C 370 

(microbial C as a percent of total soil C stocks) (d) soil heterotrophic respiration fluxes (gC m
-2

 371 

y
-1

), (e) soil organic matter C:N ratio, and (f) microbial biomass C:N ratios. See methods for 372 

references of observations used in this analysis.  373 

 374 

Soil stoichiometry is prescribed for each plant functional type in CASA-CN, which 375 

produces high soil C:N ratios in semi-tropic, arid regions (Fig 3e). By contrast, the soil 376 
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stoichiometry simulated by MIMICS-CN is an emergent property of the model. Both models 377 

demonstrate a relatively good match with global observations from Shangguan et al. (2014; Fig. 378 

3e), although MIMICS-CN underestimates soil C:N ratios across boreal forests and, to a lesser 379 

extent, in the tropics. MIMICS-CN predicts a latitudinal gradient in soil stoichiometry that 380 

largely reflects differences in microbial biomass and litterfall stoichiometry (Fig. 4). Microbial 381 

biomass stoichiometry in MIMICS-CN is flexible within narrow ranges (see methods), but is 382 

also dependent on the relative abundance of microbial functional types (fast vs. slow). This 383 

approach produces global estimates of microbial C:N ratios of 6.8 (Table 1), which are close to 384 

observationally based upscaled estimates reported by Xu et al. (2013; global mean microbial C:N 385 

= 7.6), but lower than estimates from Gao et al. (2022; global mean microbial C:N = 10; Fig. 3f). 386 

The C:N ratio of SOM, microbial biomass, and litterfall fluxes that are simulated by 387 

MIMICS-CN are highest in boreal forests and lower in the tropics, especially in grassland and 388 

savanna regions (Fig. 4a-c). The stoichiometry of litter inputs as well as soil moisture control the 389 

relative abundance of fast vs. slow microbial functional groups in the model. Accordingly, 390 

forests and arid regions tend to have a lower relative abundance of fast growing, copiotrophic 391 

microbes (Fig. 4d).  392 

 393 

Figure 4. Spatial distribution of mean (a) soil C:N, (b) microbial biomass C:N, (c) litterfall C:N, 394 

and (d) the relative abundance of MICr:MICK that were simulated by MIMICS-CN at 395 

initialization (1901-1920). 396 

 397 

Soil texture and litter stoichiometry interact to determine the soil C:N ratios that are 398 

simulated by MIMICS-CN (Fig. 5). For a given litter quality, higher clay fraction results in lower 399 

soil C:N ratios. For a given clay fraction, decreasing litter quality (higher litterfall C:N ratios) 400 

results in higher soil C:N ratios that are simulated by MIMICS. Both of these occur in MIMICS 401 

because increasing litter quality and clay content also increase the fraction of SOM that persists 402 

in the physicochemically protected SOM pool of the model (SOMp). By contrast, CASA-CN 403 

parameterized soil stoichiometry based on plant functional type, resulting in higher soil C:N 404 

ratios than those simulated by MIMICS-CN (Fig. 3e), but without evidence of the soil properties 405 

and litter quality effects on SOM stoichiometry (Fig 5b). 406 
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 408 

Figure 5. Soil texture and litter quality effects on soil C:N ratio that are simulated in (a) 409 

MIMICS-CN but not (b) CASA-CN. MIMICS assumes that clay content and litterfall chemistry 410 

interact to determine bulk soil C:N ratios. By contrast, CASA applies a biome-specific soil 411 

stoichiometric parameterization and does not reflect influences of soil texture or litter quality on 412 

soil C:N ratios. Coarse woody debris stoichiometry is considered in the litterfall C:N ratio in 413 

MIMICS-CN, but not in CASA-CN, which produces different litterfall stoichiometry estimates 414 

between the two models. The color bars used here match the one used in Fig 4c. 415 

3.2. Transient response 416 

Global GPP simulated by CLM5 increased from 106 Pg C y
-1

 at the start of the 20th 417 

century to 125 Pg C y
-1

 by the end of the historical period (here 2014). This led to an increase in 418 

NPP simulated by all the models, with the C-only models showing a slightly higher increase in 419 

NPP than the CN models (Table 2, Figs. 6a, S2). These increases in productivity and modest 420 
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climate warming drove accelerated rates of heterotrophic respiration and net N mineralization in 421 

both models (Fig. 6 c-d). On balance, CASA simulations show accumulations of soil organic C 422 

and a more robust land C sink than MIMICS simulations, which indicate soil C losses and 423 

weaker (or neutral) land C uptake over the historical period (Figs. 6 e-f; S2).  424 

Table 2. Summary of the change in annual fluxes and states simulated by MIMICS and CASA 425 

models with CN and C-only biogeochemistry at the end of the historical period. Values represent 426 

global sums and means of annual data from 1995-2014 subtracted by those calculated at 427 

initialization in Table 1. 428 

Δ in fluxes and states MIMICS-CN 
MIMICS C-

only 
CASA-CN CASA C-only 

GPP (Pg C y
-1

) 15.5 15.5 15.5 15.5 

NPP (Pg C y
-1

) 5.5 5.6 5.5 5.6 

HR (Pg C y
-1

) 5.4 5.7 4.5 4.9 

Total soil C (Pg C) -14 -24 7 6 

Total vegetation C (Pg 

C) 
27 28 25 28 

Microbial Biomass (Pg 

C) 
1.2 1.2 - - 

Relative microbial 

biomass C (%) 
0.1 0.1 - - 

Net N mineralization  

(Tg N y
-1

) 
119 - 107 - 

Total soil C:N -0.07 - -0.03 - 

Microbial C:N  -0.03 - - - 

 429 

At initialization, MIMICS-CN showed slightly stronger N-limitation of NPP than CASA-430 

CN (Table 1; Fig. S1). Over the historical period, N limitation increased in both models, but 431 

more so in CASA-CN (Fig 6b). Greater vegetation C accumulation in MIMICS-CN, compared to 432 

CASA-CN (Table 2) was fueled by changes in soil biogeochemistry. Over the historical period, 433 

MIMICS-CN simulated larger increase in heterotrophic respiration and net N mineralization that 434 

resulted in soil C losses and a weak to neutral land C sink compared to CASA-CN, which 435 

accumulated soil C over this time and showed a stronger land C sink (Table 2; Figs. 6c-f, S2). 436 

Notably, MIMICS also simulated greater interannual variability in global C and N fluxes, 437 

compared to CASA simulations, despite receiving identical climate forcings (Fig. 6b-d).  438 
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Figure 6. Change in global ecosystem stocks and fluxes simulated by MIMICS and CASA (blue 440 

and orange lines, respectively) with coupled CN biogeochemistry and C-only configuration 441 

(solid and dashed lines, respectively). Panels show changes in global (a) net primary production 442 

(NPP), (b) nitrogen limitation of NPP (difference of CN and C-only simulations), (c) 443 

heterotrophic respiration, (d) net nitrogen mineralization, (e) total soil C, and (f) cumulative net 444 

ecosystem production (NEP). In all plots, the change in annual values from the historical 445 

simulation are subtracted from the initial (1901-1920) global mean.  446 

 447 

A closer look at regional dynamics helps illuminate differences in MIMICS vs. CASA 448 

simulations. Here we focus on the mean climatology of daily results simulated over a boreal 449 

forest region in Northern Europe (60-70°N & 0-100°E) at initialization (1901-1905 mean) and at 450 

the end of the historical period (2010-2014 mean). At steady state, MIMICS is more N limited 451 

than CASA (both globally and in this region; Figs. S1, Fig. 7). Over the historical period, 452 

however, MIMICS becomes less N limited, largely because of temperature driven increases in 453 

SOM turnover at high latitudes (Fig 7; Fig S2).   454 

In our region of focus, mean NPP simulated during the model initialization period was 455 

217 vs. 265 gC m
-2

 y
-1 

for MIMICS-CN and CASA-CN, respectively (Fig. 7a; dashed lines). 456 

Low soil inorganic N concentrations simulated by both models caused this N limitation (Fig. 7c, 457 

7e). Collectively, these results illustrate differences in model sensitivities to cold soil 458 

temperatures that characterize the region. For most of the year, frozen soils more strongly limit 459 

microbial activity in MIMICS-CN, resulting in lower heterotrophic respiration and N 460 

mineralization fluxes in the boreal winter, spring, and fall, but higher rates during the warmer 461 

summer months (Fig. 7b, 7d, 7f). Notably, annual heterotrophic respiration fluxes are equal to 462 

NPP fluxes that are simulated by both models at initialization; therefore, initial NEP equals zero 463 

for both models, but differences in the environmental sensitivities of MIMICS and CASA results 464 

in distinct seasonal climatologies of the timing of these fluxes during the year.  465 

By the end of the historical period, differences in annual productivity that are simulated 466 

by the two models are reduced (Fig. 7). Annual NPP totaled 291 vs. 313 gC m
-2

 y
-1

 in MIMICS-467 

CN and CASA-CN, respectively; an increase of 34% and 18%, relative to their initial rates. 468 

Concurrently, in both models, warmer soil temperatures and higher productivity accelerate soil 469 

biogeochemical transformations. By the end of the historical period, annual heterotrophic rates 470 

increased by 30% and 14% in MIMICS-CN and CASA-CN, respectively, while net N 471 

mineralization rates increased by 39% and 20%, relative to their initial rates. This increases 472 

inorganic N availability, decreases the extent of N limitation, and fuels greater NPP. Although 473 

MIMICS-CN shows a stronger acceleration of NPP and HR fluxes over this domain, it still has 474 

dampened terrestrial C uptake (regional mean NEP = 9.1 and 10.0 gC m
-2

 y
-1

 in MIMICS-CN 475 

and CASA-CN, respectively). By comparison NEP fluxes over this domain for C-only models 476 

show much larger spread (regional mean NEP = -12.0 and 10.9 gC m
-2

 y
-1

 in the C only versions 477 

of MIMICS and CASA, respectively). Thus, inclusion of coupled CN biogeochemistry dampens 478 

the net carbon cycle response of both models over the historical period, relative to the C-only 479 

models, a result that is also evident in our global results (Fig. 6f). 480 
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 482 

Figure 7. Mean annual cycle of ecosystem fluxes and states simulated by MIMICS and CASA 483 

(blue and orange lines, respectively) with coupled CN biogeochemistry at the start (1901-1905; 484 

dashed line) end of the historical simulation (2010-2014; solid lines) over Northern Europe (60-485 

70 °N & 0-100 °E). Panels show the annual cycle in the regionally averaged (a) net primary 486 

production (NPP), (b) soil temperature, (0-50 cm) (c) mineral N stocks, (d) heterotrophic 487 

respiration, (e) N limitation of NPP, and (f) net N mineralization rates.  488 

4 Discussion 489 

With common boundary conditions, the addition of coupled CN biogeochemistry to the 490 

MIMICS and CASA soil biogeochemical models produces global-scale results that are largely 491 

comparable with their respective C-only versions (Table 1). Steady-state soil C pools and 492 

turnover times that are simulated by MIMICS and CASA still show notable differences in their 493 

global sums and latitudinal distribution (Figs. 2-3). Furthermore, simulation of coupled CN 494 

biogeochemistry dampens the C cycle response in transient simulations. Increasing N limitation 495 

in CASA-CN resulted in lower rates of vegetation C accrual over the historical period, compared 496 
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with the C-only simulations (Table 2, Fig. 6); a finding that is consistent with previous modeling 497 

studies (Thornton et al., 2007; Y. P. Wang et al., 2010; Zaehle et al., 2010). By contrast, 498 

vegetation C accrual in MIMICS-CN nearly matched the C-only version of the model (Table 2). 499 

This occurred because higher rates of N mineralization were fueled by warming-induced 500 

accelerations of SOM decomposition over high latitude ecosystems during the historical period 501 

(Figs. 6-7, S2 see also Wieder et al. 2018). Thus, simulating CN biogeochemistry attenuated high 502 

latitude soil C losses that were simulated by MIMICS over the historical period, which actually 503 

increased cumulative NEP, relative to the C-only version of this model.  504 

Collectively, differences between MIMICS and CASA are larger than the effects of 505 

considering CN biogeochemistry in the respective models (see also Wieder et al., 2018; Wieder 506 

et al., 2019). Differences in model parameterizations and model structures are responsible for 507 

these findings, and should be explored in future research (Luo et al., 2016; Pierson et al., 2022; 508 

Shi et al., 2018; Ying‐Ping Wang et al., 2021; H. Zhang et al., 2020). Instead, we emphasize 509 

some of the theoretical differences between explicit and implicit representations of microbial 510 

activity and their influence on emergent properties of the biogeochemical system. We first 511 

discuss how these results highlight differences in the underlying assumptions of MIMICS and 512 

CASA. Subsequently, we discuss the advantages and drawbacks of using SOM C:N 513 

stoichiometry as an emergent property in soil biogeochemical models. Finally, we explore 514 

implications and future directions for applying microbial explicit structures to explore coupled 515 

C-nutrient dynamics in land models.  516 

4.1 Underlying model assumptions  517 

The representation of CN biogeochemistry does not modify the steady-state turnover time 518 

of SOM pools that are represented by CASA, but it does in MIMICS (Fig. 2). Models that 519 

implicitly represent microbial activity assume that the turnover time of SOM pools are 520 

determined by the inherent biochemical quality of substrates and modified by environmental 521 

scalars (Luo et al., 2016; Joshua P. Schimel, 2001). Accordingly, CASA simulations show no 522 

change in the inferred soil C turnover times with coupled CN biogeochemistry. By contrast, 523 

models that explicitly represent microbial activity assume that SOM turnover times are 524 

influenced by the size and activity of microbial biomass pools. This has important implications 525 

for both steady-state soil C pools, as well as seasonal dynamics of heterotrophic respiration 526 

(Basile et al., 2020; Jian et al., 2021) and N mineralization fluxes in microbially-explicit models 527 

like MIMICS (Fig 7).  528 

Microbial biomass pools in MIMICS both build and decay SOM. The size of microbial 529 

biomass pools simulated in the model are proportional to litterfall C inputs (Wieder, Grandy, et 530 

al., 2015). Nitrogen limitation of NPP reduces litterfall, which also reduces microbial biomass 531 

pools that are simulated by MIMICS-CN (Table 1; Fig. 3). Across all gridcells globally, the 532 

response of soil C turnover times in MIMICS-CN is negatively correlated with these changes in 533 

microbial biomass (Fig. 2c). Thus, N limitation of NPP in the MIMICS-CN simulations reduces 534 

microbial biomass C and microbial catabolic potential to decompose SOM. This results in longer 535 

soil C turnover times, relative to the C-only simulations in MIMICS-CN. We see the largest 536 

effects of N-limitation on NPP across high latitude ecosystems (Fig. S1), where N effects on 537 

SOM turnover times are also most pronounced (Fig. 2).  538 

Explicitly representing microbial activity also influences temporal dynamics of soil 539 

biogeochemical fluxes that are simulated by MIMICS, and other microbial explicit models (Y. 540 

Huang et al., 2021). This is evident in the higher interannual variability of heterotrophic 541 
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respiration and N mineralization fluxes that are simulated by MIMICS-CN (Fig. 6). For example, 542 

regional biogeochemical fluxes that are simulated by MIMICS-CN show higher seasonal 543 

amplitude, a larger response to warming over the historical period, and a slight temporal lag in 544 

peak fluxes, relative to the CASA-CN simulations (Fig. 7). Previous work found similar patterns 545 

with C-only versions of these models (Wieder et al., 2018) that have important implications on 546 

global estimates of terrestrial net ecosystem exchange of CO2 with the atmosphere (Basile et al., 547 

2020). The differences simulated by MIMICS and CASA, therefore, present opportunities for 548 

future studies to consider how changes in microbial physiology and phenology may impact the 549 

temporal dynamics of N mineralization rates and their feedback to ecosystem C and N fluxes 550 

under climate change scenarios.  551 

The mathematical representation of nutrient limitation in land models continues to be 552 

challenging (Kou-Giesbrecht et al., 2023; Thomas et al., 2015). We recognize that CASA-CNP 553 

applies a relatively simplistic approach to plant N limitation by downregulating NPP and 554 

heterotrophic respiration rates when inorganic N pools are small (< 1g N m
-2

; Wang et al. 2010). 555 

Similar assumptions are made by other microbial implicit soil biogeochemical models, which 556 

calculate potential rates of soil biogeochemical fluxes that are downregulated by nutrient 557 

availability (Lawrence et al., 2019; Yang et al., 2019; Zhu et al., 2019). By contrast, potential 558 

rates of litter and SOM decomposition are not downregulated by inorganic N availability in 559 

MIMICS-CN (Kyker-Snowman et al., 2020). Instead, if N availability is inadequate to meet 560 

microbial stoichiometric demands, then microbes reduce their effective CUE through overflow 561 

respiration fluxes that essentially burn off the excess carbon being decomposed. Additionally, the 562 

target stoichiometry of microbial communities varies as a function of litter quality in MIMICS-563 

CN. Thus, the relative abundance of microbial functional groups shifts as a function of litter 564 

quality, but so too do their target C:N ratios (Fig. 4; eq. 1). Although this approach still 565 

simplifies the diversity of strategies different decomposers use to meet stoichiometric imbalances 566 

between microbial communities and their resources (Mooshammer et al., 2014; Zechmeister-567 

Boltenstern et al., 2015), the assumptions made in MIMICS-CN are more in line with concepts 568 

of microbial trait theory than those in CASA-CN.  569 

In MIMICS, the size of the microbial biomass pool moderates SOM turnover times, and 570 

therefore N mineralization rates (Fig. 2c). Accordingly, the relative size of microbial biomass 571 

pools, as a fraction of total soil C stocks, is a useful, first-order benchmark by which to evaluate 572 

microbial explicit models (Fierer et al., 2009; Serna-Chavez et al., 2013; Xu et al., 2013). The 573 

parameterization of MIMICS simulates larger relative microbial biomass pools in wetter 574 

ecosystems that support higher NPP (tropical and temperate forests) and smaller relative 575 

microbial biomass pools in drier, lower productivity regions (Fig. 3c). This pattern aligns well 576 

with observational estimates synthesized by Serna-Chavez et al. (2013), who similarly found a 577 

correlation between moisture availability and relative microbial biomass C. We note that another 578 

synthesis (Xu et al., 2013) reports similar patterns, but also reports even higher relative microbial 579 

biomass C in deserts.  580 

Beyond microbial biomass, cross-biome differences in microbial traits may ultimately be 581 

more valuable for informing and evaluating models that explicitly represent microbial activity. 582 

For example, plant trait variation across environmental gradients may be critical for representing 583 

biotic control (and variation) in terrestrial energy, water, and biogeochemical fluxes (Butler et 584 

al., 2017; Díaz et al., 2022). Similar information about environmental controls over soil 585 

microbial traits will be critical to further developing models that explicitly represent microbial 586 

activity. For example, cross-system syntheses suggest that the microbial strategies and 587 
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biogeochemical function in arid systems may be distinct from more mesic environments (Fierer 588 

et al., 2012). Historical climate legacies may influence the physiological response of microbial 589 

communities to environmental change (Bradford et al., 2021; Evans & Wallenstein, 2014; 590 

Hawkes et al., 2020; Polussa et al., 2021). Finally, the phenology of microbial activity may lead 591 

to distinct seasonal shifts in microbial community composition (Lipson & Schmidt, 2004). In 592 

summary, mounting evidence suggests that microbial physiological traits show ecologically 593 

important variability over space and time, but they remain coarsely represented in the global 594 

parameterization of MIMICS-CN presented here. Thus, we see opportunities to further refine the 595 

model structure and parameterizations to improve the representation of microbial community 596 

composition and activity. 597 

4.2 Stoichiometry as an emergent property 598 

The stoichiometry of SOM in MIMICS-CN is an emergent property of the model, 599 

presenting opportunities to investigate model assumptions that produce variations in microbial 600 

biomass and SOM stoichiometry across climate, ecosystem, and edaphic gradients. In MIMICS-601 

CN we assume that the higher catabolic capacity of fast growing copiotrophic microbial 602 

communities require more N and, therefore, these communities have a lower microbial biomass 603 

C:N ratio than slower growing oligotrophic communities. We also assume that the chemical 604 

quality of litter inputs modifies microbial biomass C:N, similar to  assumptions made about litter 605 

quality and SOM stoichiometry in CASA and the CENTURY model (Parton et al., 1993). This 606 

results in relatively constrained estimates of microbial biomass C:N by MIMICS-CN, consistent 607 

with findings from observational syntheses (Cleveland & Liptzin, 2007; Xu et al., 2013). The 608 

spatial variation in microbial stoichiometry that is simulated by MIMICS is consistent with 609 

observationally derived extrapolations across latitudes (Fig. 3f; Gao et al., 2022; Xu et al., 2013) 610 

and largely reflects differences in the relative abundance of fast and slow growing microbes and 611 

the chemical quality of litter inputs (Figs. 4, 5). Still, real ecosystems have larger variation in 612 

microbial stoichiometry than the MIMICS-CN simulations presented here (Kyker-Snowman et 613 

al., 2020), presenting opportunities to deepen understanding of the ecological factors that may 614 

mediate microbial community stoichiometry within and among ecosystems.  615 

In MIMICS-CN we not only assume that microbial biomass pools determine rates of 616 

decomposition, but also the formation of persistent SOM (orange lines, Fig 1). Accordingly, the 617 

stoichiometry of SOM pools show a strong microbial signature, in line with current 618 

understanding of SOM formation (Fig. 4; Kyker-Snowman et al., 2020; Whalen et al., 2022). 619 

This results in somewhat narrower latitudinal gradients and spatial variation in SOM C:N than 620 

observationally derived estimates (Fig. 3e). Collectively, however, MIMICS-CN makes clear 621 

assumptions that  litter quality and soil texture are dominant controls over bulk soil C:N ratios 622 

that are simulated across ecosystems (Fig. 5). Bulk soil C:N values more broadly reflect the 623 

relative abundance of physically vs. chemically protected SOM, as expected theoretically and 624 

shown in observational data (Buchkowski et al., 2019; Cotrufo et al., 2019). For example, we 625 

assume clay-rich soils have a higher proportion of total SOM stocks in physicochemically 626 

protected (MAOM-like) pools (Grandy & Neff, 2008; Wieder et al., 2014). In MIMICS-CN the 627 

SOMp pool has a low C:N ratio that reflects the dominant role of microbial residues in forming 628 

this persistent pool of SOM that has long turnover times. By contrast, in sandier soils MIMICS-629 

CN assumes a higher proportion of total SOM stocks are in chemically protected (POM-like) 630 

pools. The SOMc pool has a higher C:N ratio that reflects greater contributions of plant residues. 631 

Relative to the C-only version of MIMICS, the parameterization used in MIMICS-CN assumes 632 
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that a greater fraction of structural litter inputs bypass the microbial filter to form SOMc, which 633 

is similar to a particulate organic matter (POM) pool (see also Kyker-Snowman et al., 2020). 634 

This modification was needed to increase the total soil C:N that is simulated in MIMICS-CN, 635 

although we also recognize that the current parameterization may overestimate the size of the 636 

SOMc pool globally, and especially at high latitudes (Wieder et al., 2019).  637 

Potential low bias in bulk soil C:N ratios that are simulated by MIMICS-CN also 638 

underscore challenges in understanding plant vs. microbial contributions to SOM formation 639 

(Simpson et al., 2007; Whalen et al., 2022). This is especially true for SOM that is protected by 640 

minerals and aggregates, which tend to have longer turnover times. In MIMICS-CN, we assume 641 

that plant-derived biomolecules have a higher C:N ratio than those that are microbial-derived 642 

(Cleveland & Liptzin, 2007; Mooshammer et al., 2014), reflecting stoichiometric differences that 643 

may be helpful in evaluating the underlying assumptions in the model. Notably, recent work 644 

finds that plant-derived biomolecules are abundant within protected SOM, especially in forested 645 

ecosystems (Angst et al., 2021). Elsewhere, Heckman et al. (2023) found that MAOM from 646 

humid, forest soils tends to have higher C:N ratios that is less decomposed than MAOM from 647 

drier, grassland ecosystems. Additionally, exo-enzyme transformation of plant inputs, as opposed 648 

to microbial turnover, may increase OM contribution to MAOM with a more plant-like signature 649 

(Liang et al., 2017). Collectively, these findings underscore broader uncertainties in quantifying 650 

plant vs. microbial contributions to SOM formation (Whalen et al., 2022), but they also suggest 651 

that the current parameterization of MIMICS-CN may overemphasize the importance of 652 

microbial biomass contributions to protected SOM, which may also explain some of the low 653 

biases in bulk soil C:N ratios in our results.  654 

In contrast to the emergent stoichiometry that reflects underlying assumptions made in 655 

MIMICS-CN, spatial variation in soil stoichiometry simulated by CASA-CN is less nuanced 656 

(Fig. 5). In models that implicitly represent microbial activity (including CASA-CNP) receiver 657 

pool stoichiometry is parameterized, either with a fixed value for particular pools (e.g.; lower 658 

C:N targets for the passive pool, ~11-12, compared to the slow pool, C:N ~12-20), that may also 659 

vary plant functional type (Koven et al., 2013; Y. P. Wang et al., 2010). This PFT-specific 660 

parameterization of SOM stoichiometry results in latitudinal gradients of soil C:N ratios 661 

simulated by CASA-CN (Fig. 3e). Stoichiometric flexibility is achieved through a linear function 662 

between soil C:N ratios and soil mineral N availability, which reduces receiver pool demand for 663 

N when mineral N availability is low and buffers soil C turnover from becoming limited by 664 

inorganic N availability (Bonan et al., 2013; Meyerholt & Zaehle, 2015; Parton et al., 1993; Y. P. 665 

Wang et al., 2010). Warmer sites have higher N mineralization rates and (slightly) lower soil 666 

C:N ratios, but in general soil stoichiometry simulated by CASA-CN largely reflects the PFT-667 

specific parameterization applied in the model. While this parameterization of stoichiometric 668 

flexibility reflects foundational understanding of N mineralization, it has recently been suggested 669 

that N mineralization may be limited by desorption of N-rich MAOM, which is not well 670 

represented in MIMICS-CN or CASA-CN (Jilling et al., 2018; Jilling et al., 2021; J. P. Schimel 671 

& Bennett, 2004). 672 

4.3 Implications and future directions  673 

Our results illustrate the feasibility of conducting global scale simulations with a 674 

microbial explicit soil biogeochemical model under climate change scenarios. In both MIMICS 675 

and CASA simulations the inclusion of CN biogeochemistry attenuates or dampens the 676 

magnitude of ecosystem C responses to climate change over the historical period. The explicit 677 
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representation of microbial activity in MIMICS-CN modifies steady-state and transient behavior 678 

of the model, relative to its C-only counterpart. For example, by reducing litterfall and microbial 679 

biomass C, representing CN biogeochemistry increases the steady-state turnover time of SOM 680 

that is simulated by MIMICS-CN. Moreover, whereas nutrient limitation typically slows down 681 

decomposition of SOM pools that are simulated by microbial implicit models, MIMICS does not 682 

share this assumption, allowing for overflow respiration of excess C instead. However, 683 

concentration alone may not predict nutrient availability and future model development could 684 

include plant and microbial competition and other mechanisms underlying nutrient availability.   685 

Beyond this direct consideration of nutrient limitation, shifts in plant and microbial 686 

resource allocation in response to global change drivers are important to consider, but only 687 

rudimentarily represented in the biogeochemical model testbed. For example, elevated CO2 and 688 

N enrichment can alter plant belowground allocation, fine root stoichiometry, and microbial 689 

community composition (Drigo et al., 2010; Jia et al., 2023; Knops et al., 2007). Recent evidence 690 

shows that belowground C inputs are more efficiently stabilized on mineral surfaces and in 691 

aggregates (Austin et al., 2017; Sokol & Bradford, 2018). At the same time, root exudates and 692 

organic acids can prime decomposition of existing SOM and even destabilize MAOM to 693 

accelerate heterotrophic respiration and ecosystem C losses (Keiluweit et al., 2015; van 694 

Groenigen et al., 2014). Thus, the net effects of changing belowground C inputs on the long term 695 

persistence of SOM, N mineralization rates, and feedbacks to NPP ultimately influence the 696 

magnitude and direction of net terrestrial exchange of CO2 with the atmosphere. Current 697 

assumptions made in the biogeochemical model testbed do not easily allow consideration of 698 

these dynamics. Future research will refine understanding of plant-soil feedbacks and apply these 699 

insights in an ensemble of models that represent coupled CN biogeochemistry. 700 

Finally, by allowing SOM stoichiometry to be an emergent property of the model, we see 701 

opportunities to use MIMICS-CN to deepen understanding of plant vs. microbial sources of 702 

persistent SOM (Whalen et al., 2022). MIMICS-CN could also be altered to test alternative 703 

controls of N mineralization, such as desorption from the N-rich MAOM pool (Jilling et al., 704 

2018). Further, soil C:N is a valuable metric for understanding soil C storage, N availability, and 705 

the N requirement of C storage (Averill, 2014; Cotrufo et al., 2019). The emergent stoichiometry 706 

in MIMICS-CN will allow for exploration of potential sensitivities of soil C:N to environmental 707 

change across gradients in soil properties, ecosystems, and climate, which have been 708 

inconsistently documented in observational studies (Keller et al., 2022; Rocci et al., 2022; Yue et 709 

al., 2017). Overall, applying coupled CN biogeochemistry in a microbially explicit model at the 710 

global scale for the first time allowed us to evaluate the effect of including microbes explicitly 711 

and also N, rather than solely C, which provided insight for model parameterizations but also 712 

future avenues of exploration.  713 
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