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Image Credit: NASA

Made using an 
ultraviolet filter in 
its imaging system, 
the photo has been 

colour-enhanced 
to bring out 

Venus’s cloudy 
atmosphere as the 
human eye would 

see it.

In this view the North 
Pole clockwise vortex 

is top left and the 
South Pole anti-

clockwise vortex is 
bottom right.

On Venus the sun rises 
in the west so the 

dawn terminator is 
seen on the right side 

of this image.
The bow-shockwave in 

centre of the disk is 
the solar zenith 

tracking east, the 
disruptor point of 

maximum solar 
heating.

Figure 1: NASA 1974 Mariner 10's Portrait of Venus.
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Figure 1a: Planetary Rotation and the Conservation of Angular Momentum
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1. Method
• Modelled Pressure Profile for Venus Atmosphere from 

Surface to 100 Km at 1 metre increments [1].

• Two Equations of State Used:

• The Pressure Volume Temperature (PVT) Relationship of 
Boyle’s Law

• Newton’s Gravity Law of Spherical Shells [1].

• Four Linked Predictive Lapse Rate Equations based on 
Published Data Calibrated to a Revised Surface Datum 
Temperature of 699 Kelvin [2, 3].

• Using the thermal lapse rate for the troposphere of Venus 
in its top-down mode of application, we calculate the 
depth below the tropopause that solar irradiance is able to 
achieve effective heating of the Venusian atmosphere.
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Location
Latitude 

(Degrees)
Elevation Angle 

(Degrees)

Solar Power 
Intensity 
(W/m2)

Effective Flame 
Temperature 

(Kelvin)

Quenching 
Limit Height 

(Km)

North Pole 90.00 0 0.00

Z1: Heating Limit 86.43 3.57 37.25 160.10 110.000

Z1: 85 5 52.15 174.14 88.092

Z1: 80 10 103.89 206.89 76.617

Z1: 75 15 154.85 228.60 70.502

Z1: 70 20 204.63 245.10 64.669

Z1: 65 25 252.85 258.41 61.065

Z5: Hemisphere 
Average Flux

60 30 299.15 269.51 58.461

Z1: 55 35 343.17 278.92 56.454

Z1: 50 40 384.58 286.97 54.850

Z1: 45 45 423.06 293.90 53.540

Z1: 40 50 458.32 299.84 52.461

Z1: 35 55 490.10 304.91 51.570

Z1: 30 60 518.14 309.18 50.839

Z1: 25 65 542.24 312.71 50.247

Z1: 20 70 562.22 315.55 49.798

Z1: 15 75 577.91 317.73 49.474

Z1: 10 80 589.21 319.27 49.244

Z1: 5 85 596.02 320.19 49.107

Z1: Equator 0 90 598.30 320.50 49.061

Figure 2: Venus Lit Hemisphere Illumination Interception Geometry.
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Figure 3: Venusian Atmosphere: Temperature versus Altitude Go Back
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Figure 4: Venus Atmospheric Solar Radiant Thermal Heating Pool
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Figure 5: Venusian Tropopause: Temperature versus Altitude Go Back



2. Results
• Using the troposphere model lapse rate profile as the 

constraint on cooling by vertically convecting air, we 
show here that the height of the tropopause 
convection limit is a close match to the level of the 
observed static atmosphere height for the 250 Kelvin 
freezing point level of 75% by weight of concentrated 
sulphuric acid, the primary condensing volatile in the 
Venusian atmosphere [4, 5].

• We hypothesise that the impact on planetary albedo by 
the solidification of this planet’s atmospheric 
condensing volatile suggests that the observed albedo 
is a response to and not a cause of planetary 
atmospheric solar radiant forcing.

• We have established that this radiant quenching depth 
delineates a pool of upper tropospheric air that both 
captures and responds to solar radiant forcing.

• We note that the observed cloud patterns on Venus 
recorded in 1974 by the Mariner 10 NASA probe do 
appear to support the development of this type of 
insolation induced convective disturbance. It is the 
solar induced disruption of the mass/gravity lapse rate 
slope at upper levels that forces convection to begin. Go Back



3. Deductions
• As a consequence of this top of the troposphere 

insolation forcing, a process of full troposphere 
convective overturn occurs and delivers solar heated 
air to the ground via the action of forced air descent 
in the twin polar vortices of Venus.

• This forced descent of the topside heated air means 
that it undergoes adiabatic heating as it falls in the 
gravity field of Venus [6]. The descending mass flow 
within the polar vortex provides a hydrodynamic 
piston drive that causes the planet’s air to circulate 
vertically in a pair of giant hemispheres 
encompassing Hadley cells.

• By this means the compressed air is heated as it 
falls, therefore the thermal limit to radiative forcing 
set by the insolation of Venus is easily surpassed [7].

• From this analysis we conclude that the high surface 
temperatures observed at the surface of Venus are a 
direct consequence of, and maintained by, a process 
of topside thermal radiant capture by the air 
followed by mass motion energy delivery to the 
surface. Go Back



4. Conclusions
• With the Dynamic-Atmosphere Energy-Transport (DAET) framework 

we have the first model of a planetary surface and atmosphere 
which treats each as a separate grey body with both in equilibrium 
with each other [8].

• It is that internal system equilibrium that makes it possible to 
regard the system as a whole as a black body for radiation purposes 
when viewed from outside.

• By splitting the planet into an energy collection region and an 
energy discharge region we can achieve equilibrium by having the 
two sides mirroring each other as a by product of hydrostatic 
equilibrium.

• It follows that once hydrostatic equilibrium is in place one can also 
treat objects within an atmosphere as black bodies because they 
are in thermal equilibrium with the mobile gases surrounding them.

• It is only when hydrostatic equilibrium is lost that the surface and 
atmosphere become grey bodies again and that never happens in 
normal circumstances due to convective adjustments. Go Back
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Figure 6: Scaled Comparison Chart of Pressure, Gravity, Discrete Mass, Discrete 
Potential Energy (PE) and Cumulative PE Curves for Venus.
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