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Abstract: 13 

A 1D model of the CS2 reaction network with the addition of the photo-oxidation pathway 14 

has been developed. The sulfur flux analysis was applied to determine the importance of the 15 

photo-oxidation pathway in the atmospheric CS2 sink, 15.8% of sulfur flux passes through 16 

the photo-oxidation pathway under the global average solar radiation conditions and ranging 17 

from 8.1% to 18% depending on the local irradiance intensity. The concentration of COS and 18 

SO2, the main products of CS2 atmospheric oxidation, changed slightly from the sulfur cycle 19 

developed with the updated CS2 reaction network. 5% of the COS comes from the new 20 

pathway and a total of 47% of COS comes from the conversion of CS2. The sulfur budget for 21 

the main species in the sulfur cycle is constructed and the CS2 lifetime is estimated as 2-3 22 

days. The newly added photo-oxidation pathway plays an important role in the CS2 reaction 23 

network and has a high variability under specific geochemical conditions. 24 

1 Introduction 25 

Carbon disulfide (CS2) is a common atmospheric trace gas mainly distributed in the 26 

troposphere. The oxidation of CS2 accounts for 30-75% of the global carbonyl sulfide (COS) 27 

budget [Chin and Davis, 1993; Khalil and Rasmussen, 1984; Toon et al., 1987; Whelan et al., 28 

2018]. COS has a long lifetime (> 1 year) [Mopper et al., 2015], and it can transport to the 29 

upper atmosphere and produce stratospheric sulfur aerosol (SSA) [Crutzen, 1976; Weisenstein 30 

et al., 1997], which is important for shielding radiation and regulating global temperature. CS2 31 

also produces sulfur dioxide (SO2), and it directly participates in the formation of acid rain [Sze 32 

and Ko, 1980], harming plants and animals [Hajer, 2002]. Anthropogenic sources account for 33 

60% of total CS2 emissions [Chin and Davis, 1993], mainly from industrial production and 34 

transportation [C-L Lee and Brimblecombe, 2016], and has a year-on-year trend of increasing 35 

[Bandy et al., 1981; Khalil and Rasmussen, 1984; Weisenstein et al., 1997]. Therefore, the 36 

impact of CS2 on the environment cannot be ignored. 37 

CS2 is mainly depleted in the lower atmosphere and is hardly detected at 5-6 km, suggesting 38 

the ground-based sources and rapid atmospheric removal [Bandy et al., 1981]. Current 39 

understanding expounds that the main CS2 sink is through the oxidation with OH radicals to 40 

produce COS and SO2 as the end-oxidized products [Khalil and Rasmussen, 1984]. A previous 41 

model study suggests OH-oxidation pathway shares 75-88% of CS2 global removal [Khan et 42 

al., 2017]. In addition, the calculated residence time in the atmosphere is from a few days to 43 

half of a month, varying according to the extent of pollution and human activities [Khalil and 44 

Rasmussen, 1984]. 45 

The UV absorption spectrum of CS2 shows two distinct highly structured bands [Burkholder et 46 

al., 2020]. The strong absorption band extending from 185-230 nm denotes the CS2 photolysis 47 

reaction and is included in some CS2 model studies [Khan et al., 2017; Kjellström, 1998; 48 

Weisenstein et al., 1997]. However, due to the strong absorption by air gases such as oxygen 49 

and ozone, the UV light with wavelength shorter than 320 nm can hardly reach the surface, 50 

resulting in the CS2 photolysis reaction barely occurring in the troposphere. Meanwhile, the 51 

weaker band extending from 290-380 nm excites the CS2 molecule (the excited state is 52 

expressed as CS2
* in this study) and triggers a photo-oxidation pathway, producing the same 53 

products as the OH-oxidation pathway through a series of oxidation reactions [Wood and 54 
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Heicklen, 1971]. Although the CS2 absorption band that triggers the photolysis reaction are 55 

three orders of magnitude larger than the cross-sections of the photo-excitation reaction 56 

[Grosch et al., 2015], CS2 can hardly reach the upper atmosphere, resulting in the CS2 57 

photolysis being irrelevant in the atmospheric sulfur cycle, consequently CS2 photochemistry 58 

has been neglected in the previous sulfur cycle model studies [Brühl et al., 2011; Kremser et 59 

al., 2016; Mills et al., 2017; Sheng et al., 2015; Weisenstein et al., 1997]. The solar radiation at 60 

different altitudes was calculated using a 1D chemical transport model PATMO (Planetary 61 

ATMOSpheres) [Danielache et al., 2023], which compares favorably with reference data [Kerr 62 

and Fioletov, 2008]. Figure 1 shows that the atmospheric absorption is very weak for 63 

irradiance with wavelengths longer than 320 nm, indicating the long wavelength solar radiation 64 

can reach the ground and provide enough photons for the CS2 photo-excitation reaction to occur 65 

in the lower atmosphere. Several studies have been conducted to detect the fluorescence of CS2 66 

under long wavelength radiation [Brus, 1971; Lambert and Kimbell, 1973] and the photo-67 

oxidation pathway was elaborated as a potential atmospheric COS source [Lambert and 68 

Kimbell, 1973]. However, there are no quantitative studies to elucidate the role of new reaction 69 

pathways in the reaction network of CS2 and the contribution to atmospheric COS.  70 

Figure 1. Solar irradiance at different altitudes using the opacity values calculated from 71 

the PATMO (Planetary ATMOSphere). The daytime-weighted method is applied to 72 

counteract the spatial-temporal variation in the 1D model and to represent the global 73 

averaging solar irradiance level. 74 

This study discusses the CS2 reaction network and applies a sulfur flux analysis method to 75 

study the influence of the CS2 photo-oxidation pathway on the atmospheric sulfur cycle. A 76 

revised atmospheric CS2 reaction network with the addition of the photo-oxidation pathway is 77 

introduced and tested in a 1D model PATMO.  78 
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2 Model Description 79 

The chemistry of atmospheric CS2 has been incorporated into the 1D chemical transport model 80 

PATMO, which has been proven reliable for atmospheric chemistry simulation [Avila et al., 81 

2021] and is designed to handle photochemistry with high-resolution absorption spectra 82 

[Danielache et al., 2023]. The model calculates photodissociation and photo-excitation rate 83 

constants at each layer. The altitude-dependent rate constants are calculated by correcting for 84 

the solar flux changes caused by the absorption of photosensitive species upon the solar flux 85 

entering the atmosphere. Details of the photochemical calculation in the model can be found in 86 

the work of Danielache et al. [2023]. 87 

To compensate for the 1D model’s common inability to account for spatial-temporal variation, 88 

we choose the daytime-weighted method by setting the zenith angle 𝜃  at 60° and solar 89 

constant 𝐼(∞, λ) at half to counteract the cyclical fluctuations of solar flux from annual cycle 90 

and diurnal cycle. More studies on radiative-convective equilibrium [Manabe and Strickler, 91 

1964; Manabe and Wetherald, 1967; Ramanathan, 1976], the exoplanetary climate 92 

[Wordsworth et al., 2010], and the estimates of the global radiative forcing caused by aerosols 93 

and clouds [Fu and Liou, 1993; L. Zhang et al., 2013] showed that the agreements on using the 94 

daytime-weighted adjustment to reduce the solar radiation bias in the 1D model simulation. 95 

The cross-section of Rayleigh scattering to air in the UV band is less than one-thousandth of 96 

the cross-section of photochemical reactions in the model [Bates, 1984; He et al., 2021; 97 

Thalman et al., 2014]. Meanwhile, atmospheric gas molecules are too small for the Mie 98 

scattering induced by solar radiation in the atmosphere [Seinfeld and Pandis, 2006], and 99 

aerosols are not the focus of this study. Therefore, light scattering by molecules and aerosols is 100 

not included. Only the direct solar radiation attenuated by the absorption of photochemically 101 

relevant molecules at each layer is considered for light intensity calculation. 102 

Table 1. Emission rates and deposition velocities of the sulfur compounds. 103 

Species Emission  

(Tg year-1) 

Dry deposition  

(cm s-1) 

Henry’s constant 

(M atm-1) 

COS 1.3 9.5×10-3 0.02 

CS2 1.2 4.48×10-2 0.05 

SO2 105.4 1 4000 

H2S 7.72 1.7×10-1 0.1 

DMS 65.57 1.48×10-1 —— 

SSA  ——  —— 5×104 

Note. Emission rates [C-L Lee and Brimblecombe, 2016; Watts, 2000; Zhong et al., 2020] and deposition 104 

velocities of CS2 and its end-oxidation products COS and SO2 [Belviso et al., 2013; Burkholder et al., 105 

2020; C-L Lee and Brimblecombe, 2016; Seinfeld and Pandis, 2006] are prepared for CS2 reaction 106 

network. Dry deposition of CS2 and SO2 is calculated from reference lifetime data [Colman and Trogler, 107 

1997; C Lee et al., 2011]. Emission rates [C-L Lee and Brimblecombe, 2016; Watts, 2000] and deposition 108 

velocities [Cope and Spedding, 1982; Judeikis and Wren, 1977] for H2S and DMS are added for complete 109 

sulfur cycle calculation. The effective Henry’s constant for SO2 is suggested by Giorgi and Chameides 110 

[1985], and the rest uses recommended data from Burkholder et al. [2020]. 111 
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Emission processes are set as a continuous flux of CS2, COS, and SO2 species into the 112 

lowermost layer. The estimated global emission data are listed in Table 1, in teragrams per 113 

year units (Tg year−1) in the model, this data is converted to number density flux 114 

(molecule cm−3 s−1) following the expression: 115 

𝐸𝑖(𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑐𝑚−3 𝑠−1) =
𝐸𝑖(𝑇𝑔 𝑦𝑒𝑎𝑟−1) × (1 × 1012)

(3.154 × 107) × 𝑀𝑖
× 𝑁𝐴/(𝑉𝐵) 116 

Where 𝐸𝑖(𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑐𝑚−3 𝑠−1) is the emission of species 𝑖 in the unit of 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑐𝑚−3 𝑠−1; 117 

𝐸𝑖(𝑇𝑔 𝑦𝑒𝑎𝑟−1) is the emission of species 𝑖  in the unit of 𝑇𝑔 𝑦𝑒𝑎𝑟−1 ; the constant 1 × 1012 118 

represents the unit conversion from Tg to g; the constant 3.154 × 107  represents the unit 119 

conversion from year to second; 𝑀𝑖 is the molar mass (g mol−1) of the species 𝑖; 𝑁𝐴 is the 120 

Avogadro number; and 𝑉𝐵  (cm3)  is the volume of the boundary cell where the emission 121 

process happens, and it is approximated by: 122 

𝑉𝐵 =
4

3
× 𝜋 × (𝑟1

3 − 𝑟2
3) 123 

Where 𝑟2 is the average radius of the Earth, which is approximated as 6.371 × 108 𝑐𝑚, and 124 

considering the model cell is set as 1km in height, thus the 𝑟1 equals to 6.372 × 108 cm. 125 

Dry deposition represents a range of material removal processes, including sedimentation, 126 

diffusion processes, or impact and interception due to turbulent transport [Jacobson, 2005; 127 

Seinfeld and Pandis, 2006]. The dry deposition flux 𝐹𝑑 (molecule cm−2 s−1) is calculated 128 

based on the reported dry deposition velocity 𝑣𝑑 (cm s−1) [Belviso et al., 2013; Burkholder 129 

et al., 2020; Cope and Spedding, 1982; Judeikis and Wren, 1977; C-L Lee and Brimblecombe, 130 

2016; Seinfeld and Pandis, 2006] following the expression: 131 

𝐹𝑑,𝑖 = −𝑣𝑑,𝑖 × 𝑛𝑖 132 

Where the number density 𝑛𝑖  (molecule cm−3)  of species 𝑖  is approximated by the 133 

following expression under steady-state conditions [Seinfeld and Pandis, 2006]: 134 

𝑛𝑖 = 𝜏𝑖 × 𝑃𝑖 = 𝜏𝑖 × 𝑅𝑖 135 

That 𝜏𝑖  (s)  is the estimated lifetime of species 𝑖 ; and the rate of injection 𝑃𝑖 136 

(molecule cm−3 s−1) of the species 𝑖 equals its rate of removal 𝑅𝑖 (molecule cm−3 s−1) 137 

[C-L Lee and Brimblecombe, 2016; Zhong et al., 2020]. 138 

Wet deposition is defined as natural processes by which the material is scavenged by 139 

atmospheric hydrometers and transported to the Earth’s surface [Seinfeld and Pandis, 2006]. 140 

Considering that the amount of water in the atmosphere is too small above an altitude of 12 km 141 

and that the low temperature makes it in the form of ice, this means that the absorption process 142 

can be neglected, therefore the wet deposition process is restricted to take place below 12 km 143 

in the model. The effective Henry’s law coefficients for SO2 [Giorgi and Chameides, 1985], 144 

CS2, and COS [Burkholder et al., 2020] are listed in Table 1, and the wet deposition mechanism 145 
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follows the work of Giorgi and Chameides [1985]. 146 

This study focuses on the chemical transformation of sulfur species, and therefore the 147 

atmospheric profiles of common gases, which are N2, O2, O3, OH, O, CO2, CO, HO2, H2O, and 148 

NO2, are set at the steady state conditions [Hu et al., 2012; Krueger and Minzner, 1976; Turco 149 

et al., 1979]. Environmental parameters such as temperature, pressure, and diffusion coefficient 150 

at each layer are all set as constant parameters [Hu et al., 2012; Krueger and Minzner, 1976]. 151 

The vertical transport of gaseous species occurs by the eddy diffusion coefficient derived from 152 

the work of Massie and Hunten [1981]. 153 

The simulation period is set to 10 years to ensure the gas mixtures have enough time to diffuse 154 

into the upper atmosphere to participate in the reactions, and each species can achieve the 155 

steady state from production and removal processes. 156 

3 CS2 Reaction Pathways 157 

CS2 has strong regional and near-surface distribution characteristics [Bandy et al., 1981], 158 

indicating active sinks in the CS2 reaction network. The main reaction channels are illustrated 159 

in Figure 2, where, despite the dry deposition, the main sink of CS2 comes from the 160 

competition between the OH-oxidation and photo-oxidation pathways. The full CS2 reaction 161 

network is listed in Table A1 and Table A2. More details of these two pathways are discussed 162 

below. 163 

 164 

Figure 2. The main reaction pathways of CS2 in the atmosphere. Each sulfide reactant 165 

represents a node in the reaction network. Despite the dry deposition occurring at the 166 

surface, the main competition is between the OH oxidation pathway and the photo-167 

oxidation pathway, and both pathways produce the same end-oxidation products COS 168 

and SO2. The figure does not include branching reactions with sulfur fluxes less than 1%. 169 
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3.1 Photo-oxidation pathway 170 

The CS2 photo-oxidation pathway is the first time added to the 1D chemical transport model. 171 

Experiments have been carried out to confirm the existence of CS2 fluorescence under UV light 172 

with a wavelength over 300 nm [Brus, 1971; Lambert and Kimbell, 1973], implying the 173 

transition from ground 𝑋1Σ
𝑔

+
 state to the excited 𝐵2 multiplet component of a 3A2 electronic 174 

state (1B2
3A2 state) [Sorgo et al., 1965], following the rapid quenching reaction with the 175 

estimated rate coefficient 𝑘𝑅1,𝑅2  ≥ 2.5 × 10−11 cm3 molecule−1 s−1 which occurs mainly 176 

through the collision with air molecules (simplified as collision with O2 and N2 molecules) 177 

[Brus, 1971; Lambert and Kimbell, 1973; Wine et al., 1981]. The CS2 photo-excitation (R28) 178 

and CS2
* quenching reactions (R1, R2) are given below: 179 

R28:  CS2 + ℏν → CS2
∗ 180 

R1:  CS2 ∗ + O2 → CS2 + O2 181 

R2:  CS2 ∗ + N2 → CS2 + N2 182 

The latest high-resolution UV absorption spectrum for CS2 at 298 K is from the work of Grosch 183 

et al. [2015] and made available through the MPI-Mainz UV/Vis Spectral Atlas database 184 

[Keller-Rudek et al., 2013]. However, cross-section data for many wavelengths longer than 350 185 

nm are still unreliable. Instead, we use the suggested absorption cross-section in the 290-350 186 

nm region from Burkholder et al. [2020] for the R28. 187 

The end-product analysis experiments reported by Wood and Heicklen [1971] revealed the 188 

existence of the CS2
 photo-oxidation pathway. They deduced the rate coefficient ratio between 189 

O2 oxidation and quenching reactions that kR3/kR1 ≈ 0.05 . The CS2
* oxidation reaction 190 

produces CS and SO2 according to: 191 

R3:  CS2 ∗ + O2 → CS + SO2 192 

The CS radical then undergoes the following four reaction pathways: 193 

R10:   CS + O → S + CO 194 

R11:  CS + O2 → COS + O 195 

R12:  CS + O2 → SO + CO 196 

R13:  CS + O3 → COS + O2 197 

Considering the atmospheric concentration of O2 is many orders of magnitude higher than that 198 

of O(3P) and O3, R11 and R12 are the main competing oxidation channels. Richardson [1975] 199 

presented evidence that the rate coefficient ratio kR11/kR12 > 10  via a fast-flow study. A 200 

more precise determination based on the work of Black et al. [1983] suggested the rate 201 

coefficient for R11 as 2.9 × 10−19 cm3 molecule−1 s−1. 202 

The SO radical generated by R12 is further oxidized to SO2 through the following three 203 

reaction channels: 204 

R18:  SO + O2 → SO2 + O 205 
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R19:  SO + O3 → SO2 + O2 206 

R20:  SO + OH → SO2 + H 207 

R18 dominates due to the relatively high atmospheric content of O2. The rate coefficient uses 208 

Burkholder et al. [2020], which takes the average of values computed by Black et al. [1982] 209 

and Schurath and Goede [1984] and presents them in the form of the Arrhenius expression as 210 

1.6 × 10−13 × exp(−2280/T). 211 

3.2 OH-oxidation pathway 212 

The OH oxidation pathway produces the same oxidation end-products as the photo-oxidation 213 

pathway. The two initial reactions are given below: 214 

R4:  CS2 + OH → COS + SH 215 

R5:  CS2 + OH → SCSOH 216 

Experimental evidence shows that R4 proceeds very slowly as a direct bimolecular process at 217 

298 K and 1 atm [Iyer and Rowland, 1980; Wine et al., 1980]. An upper limit of 2 × 10−15 218 

cm3 molecule−1 s−1 for kR5 (298K) was suggested by Burkholder et al. [2020]. 219 

R5 dominates the initial reaction in the OH-oxidation pathway, and it has been observed that 220 

the existence of O2 has an accelerating effect [Barnes et al., 1983; Hynes et al., 1988; Jones et 221 

al., 1982]. Moreover, several experiments demonstrated the R5 reaction process that the adduct 222 

formation followed by the adduct decomposition in competition with the long-lived adduct 223 

oxidation reaction R6 [Hynes et al., 1988; Murrells et al., 1990]: 224 

R6:  SCSOH + O2 → COS + HSO2 225 

The molecule structure configuration of the adduct SCSOH follows theoretical studies which 226 

provided evidence that the formation of the S-adduct SCS-OH followed by the addition of O2 227 

to the carbon atom in the initial step. A subsequent step appears to be the transfer of an O(3P) 228 

atom to the sulfur-bearing hydroxyl group, leading directly to the formation of COS and HSO2 229 

as shown in R6 [McKee and Wine, 2001; Luning Zhang and Qin, 2000]. A more recent density 230 

functional theory calculation of the energy and intermediate molecule structures gave 231 

theoretical support for the priority production of the S-adduct in the atmospheric condition 232 

[Zeng et al., 2017]. 233 

The negative temperature-dependent rate coefficient was determined in the experiment by 234 

Hynes et al. [1988] experiment and the effective 𝑘𝑅5  was suggested as (1.25 ×235 

10−16 exp(4550/T))/(T + 1.81 × 10−3 exp(3400/T))  cm3 molecule−1 s−1 . eesides, the 236 

subsequent adduct oxidation 𝑘𝑅6 = 2.8 × 10−14 cm3 molecule−1 s−1  takes the suggestion 237 

from Burkholder et al. [2020]. The molecule rearrangement step for the adduct is simplified 238 

and not included as an independent reaction in this study considering that the effective rate 239 

coefficient is used. 240 

The HSO2 generated in R6 will be oxidized rapidly through R26 as shown below: 241 

R26:  HSO2 + O2 → SO2 + HO2 242 
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That Lovejoy et al. [1990] found the formation of SO2 and HO2 are equal and near unity in the 243 

experiment. His later work showed that the 18O atom in the 18OH reactant is transferred 244 

predominantly (90 ± 20)% to the SO2 product, indicating the S-O bonded SCS-OH adduct 245 

formation and the preservation of the S-O bind in the steps leading to SO2 formation as 246 

described in R26 [Lovejoy et al., 1994]. The rate coefficient data takes the suggestion from 247 

Burkholder et al. [2020] as kR26 = 3.0 × 10−13 cm3 molecule−1 s−1. 248 

4 Results & Discussions 249 

4.1 Sulfur Flux Analysis of CS2 Reaction Network 250 

In order to understand the rate of CS2 conversion among its different oxidation channels, we 251 

performed a sulfur flux analysis based on the model-derived reaction rates. The analysis shows 252 

the mechanism of the detailed CS2 oxidation pathways. For the flux flow at a particular sulfide 253 

reactant node in the reaction network as shown in Figure 2, we used the concept of local 254 

consumption to illustrate the percentage of a target element flux from the reactant to each 255 

product. The equation is shown as: 256 

𝐿𝑟𝑖,𝑆 =
𝑟𝑖

∑ 𝑟𝑗
𝑚
𝑗=1

× 100% 257 

Where 𝐿𝑟𝑖,𝑆 is the percentage consumption of species 𝑆 in reaction 𝑟𝑖; and 𝑚 is the number 258 

of reactions consuming species 𝑆. 259 

The local consumption condition at the node of the initial reactant CS2 is shown in Figure 3, 260 

that at the surface, 88.8% of CS2 molecules participate in the photo-excitation reaction R28 to 261 

produce the excited state CS2
*, only 5.4% of CS2 molecules participate in the OH-addition 262 

reaction R5 to form the relatively long-lived S-adduct SCSOH, and 5.8% of CS2 are removed 263 

by dry deposition. With increasing altitude, the ratio of CS2 participating in the photo-excitation 264 

reaction reaches its maximum of 95.5% at 3 km, gradually decreasing to 88.7% at 10 km. The 265 

result shows that the photo-excitation reaction in the photo-oxidation pathway dominates in the 266 

initial reactions of the CS2 reaction network. 267 
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 268 

Figure 3. Local consumption situation of CS2 initial reactions at each height in 1-10 km. 269 

However, most excited state CS2
* molecules formed by photo-excitation reactions are 270 

quenched back to the ground state collision with N2 and O2 molecules [Wine et al., 1981]. 271 

Figure 4 shows the local consumption situation at the node of CS2
* between 1 and 10 km, 272 

about 99% of excited CS2
* molecules are quenched to the ground state through R1 and R2, and 273 

only 1% of CS2
* molecules are further oxidized through reaction R3 to form CS radical and 274 

SO2. The highly reactive intermediate CS2
* is in a pseudo-steady state of the CS2-CS2

*  275 

equilibrium where CS2
* is consumed virtually as rapidly as they are formed and consequently 276 

exist at very low concentrations. 277 

 278 

Figure 4. Local consumption situation at the node of CS2
* at each height in 1-10 km. 279 

The CS radical formed from the CS2
* oxidation reaction R3 is further oxidized through several 280 

reaction channels, where R11 and R12 play a major role, consuming about 90% and 9% of the 281 

sulfur flux, respectively. However, the result is based on the reaction coefficients inferred from 282 

previous studies using the product ratio method [Black et al., 1983; Richardson, 1975] and 283 
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more accurate and targeted experiments are needed. In conclusion, the photo-oxidation 284 

pathway gives a product ratio COS:SO2≈9:11 as shown in Figure 5. Meanwhile, in the OH-285 

oxidation pathway, R4 is too slow to occur in the atmosphere and R5 dominates as the initial 286 

reaction of the OH-oxidation pathway that forms the S-adduct SCSOH. The following 287 

oxidation reactions R6 and R26 are fast and produce COS and SO2 in the ratio of 1:1. 288 

 289 

Figure 5. Sulfur flux ratio in each oxidation pathway. 290 

A comparison of reaction rates between the S-adduct SCSOH oxidation reaction R6 and excited 291 

state CS2
* oxidation reaction R3 at different altitudes was conducted to determine the 292 

proportion of sulfur flux through the two oxidation pathways. This is in consideration of the 293 

fact that most of the CS2
* returns to the ground state and that the oxidation reactions of both 294 

intermediates are irreversible. This means that once the sulfur flux passes through the 295 

intermediate reactions R3 and R6 and will eventually be converted to the end-oxidation 296 

products COS and SO2. The red line in Figure 6 illustrates the proportion of sulfur flux that 297 

passes through the photo-oxidation pathway under the global average solar radiation condition. 298 

The figure also shows that about 15% of the sulfur flux is involved in the photo-oxidation 299 

pathway at the surface. This ratio reaches its peak at 3 km, which is about 18%, and gradually 300 

decreases to 7% at 10 km. For a vertical distribution, a concentration-weighted average 15.8% 301 

of the sulfur flux passes through the photo-oxidation pathway. 302 
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 303 

Figure 6. The percentage of sulfur flux passes through the photo-oxidation pathway in 304 

the two main CS2 sink pathways at each altitude in 1-10 km. 305 

The above results are all based on solar irradiance using the daytime-weighted method [Cronin, 306 

2014] that represents the global average irradiance level of about 342 W/m2. The annual mean 307 

solar irradiance received at different latitudes on Earth varies approximately from 160 W/m2 308 

in the arctic area to 400 W/m2 in the tropic area [Liou, 1980]. To investigate the ratio of CS2 309 

oxidized through the photo-oxidation pathway under different solar irradiance conditions, we 310 

also performed a sulfur flux analysis for each radiation condition and the results are shown as 311 

the black and blue line in Figure 6. As expected, more sulfur fluxes enter the photo-oxidation 312 

pathway under stronger solar irradiance condition. At low latitudes in the tropic region where 313 

sunlight is strongest on average, about 17% of the surface oxidized CS2 passes through the 314 

photo-oxidation pathway to produce COS and SO2, and this proportion reaches about 21% at 315 

3 km. Even in the polar regions at high latitudes, where the average annual solar irradiance is 316 

less than half the global average, the sulfur flux in the photo-oxidation pathway is nearly 8% 317 

at the surface, again peaking at about 10% at 3 km altitude. All these results show that the 318 

photo-oxidation pathway shares an important proportion in the atmospheric removal of CS2. 319 

Taking the concentration-weighted method as above, at low latitudes with the highest sunlight 320 

radiation (400 W/m2) and high latitudes with the lowest sunlight radiation (160 W/m2), 18% 321 

and 8.1% of the sulfur flux passes through the photo-oxidation pathway in the two main sink 322 

pathways of CS2, respectively. 323 
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 324 

Figure 7. The schematic diagram of the reproduced atmospheric sulfur cycle in this study 325 

with the addition of the CS2 photo-oxidation pathway. 326 

4.2 Effect of photo-oxidation pathway on atmospheric COS 327 

The introduction of the photo-oxidation pathway to the CS2 reaction network changes the 328 

original product balance according to the sulfur flux analysis above. To investigate the effect 329 

of the CS2 photo-oxidation pathway in the atmospheric sulfur cycle, we add the CS2 reaction 330 

network to the sulfur cycle with the schematic diagram as illustrated in Figure 7. The scheme 331 

shows the main channels for generating COS and SO2, from oxidation of atmospheric reduced 332 

sulfur species as well as the further production of sulfate aerosols and its removal from the 333 

atmosphere by deposition processes. The emission and deposition data are listed in Table 1. 334 

The process of aerosol formation, including complex physical condensation and chemical 335 

reactions, is simplified in this study. The formation of sulfuric acid aerosol is based on the 336 

scheme proposed by Hamill et al. [1977]. This aerosol formation scheme proposes that 337 

aggregated nuclei are formed under the condition where partial pressure versus vapor pressure 338 

is larger than 1. The sulfuric acid aerosol particle size was assumed to be 0.3 μm, and the 339 

gravitational deposition velocity was taken from Kasten [1968]. The additional reactions added 340 

to the CS2 reaction network are listed in Table A3 and Table A4. 341 

The model reproduced the vertical distribution of CS2, COS, and SO2 in the atmosphere as 342 

shown in Figure 8. The CS2 concentration at surface is calculated as 2.69 pptv, which compares 343 

favorably with the estimated range in the free troposphere [Bandy et al., 1981] and reported 344 

field measurement [Khalil and Rasmussen, 1984] and decreases rapidly with increasing 345 

altitudes and is below 0.01 pptv over 10 km. The modeled COS concentration at surface is 346 

521.62 pptv which compares favorably with tropospheric field measurements [Carroll, 1985; 347 

Maroulis et al., 1977; Torres et al., 1980], and when it rises to the stratosphere, the photolysis 348 

reaction rapidly depletes COS resulting in a sharp decrease in concentration. The high 349 

uncertainty of SO2 dry deposition rates could cause the deviation of SO2 concentration 350 

[Garland, 1977; Seinfeld and Pandis, 2006], and modeled SO2 is 288.4 pptv at surface which 351 

is within the estimated range of the background troposphere [Jacobson, 2005]. With increasing 352 

altitude, the SO2 concentration decreases faster than the measured values [Höpfner et al., 2015], 353 

and when it comes to the upper atmosphere over 35 km, the simulated SO2 concentration is 354 
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lower than the measured data [Rinsland et al., 1995]. The most likely source of errors is likely 355 

related to the uncertainties associated with the photodissociation process of molecular H2SO4 356 

prior formation of SSA. Considering that the SSA generation scheme is simplified and that SO2 357 

is not the main objective of this study, the difference in SO2 concentration between the model 358 

simulation and field measurements is within one order of magnitude. We thus assume the 359 

overall result is reasonable. The other sulfur compounds DMS, H2S, H2SO4, and aerosol are all 360 

compared favorably with field measurements [Jacobson, 2005; Maroulis and Bandy, 1977; 361 

Turco et al., 1979]. 362 

 363 

Figure 8. The vertical distribution of sulfur compounds in the reproduced sulfur cycle. 364 

 365 
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Figure 9. Schematic diagram of the sulfate budget in the model. Boxes show the sulfur 366 

quantity of each sulfate in the unit of kilotons of sulfur. Solid line arrows show net sulfur 367 

fluxes of sulfate emissions from the surface and chemical exchange rates in the unit of 368 

kilotons of sulfur per year. Dashed lines with arrows show the washout sulfur fluxes with 369 

the same unit used in solid line arrows. 370 

A schematic diagram of the sulfur budget from this model study is shown in Figure 9, where 371 

each sulfur gas burden is shown in the box in kiloton of sulfur units. The solid line arrows 372 

represent the net sulfur fluxes of sulfur emissions from the surface and chemical exchange rates 373 

in kilotons of sulfur per year units, and the dashed line arrows represent the washout sulfur 374 

fluxes in kilotons of sulfur per year units. The complex oxidation processes of DMS in the 375 

atmosphere were simplified under the scheme presented by Weisenstein et al. [1997], and only 376 

the conversion of DMS to SO2 was used since the other minor product MSA is not relevant to 377 

this study. Sulfides associated with aerosol formation such as SO3, H2SO4, and aerosols are 378 

considered a single chemical species, therefore the sulfur quantity for minor sulfide species 379 

might have discrepancies with the real atmosphere. The aerosols sections are added mainly for 380 

atmospheric removal of other sulfides to achieve the model’s mass balance and sulfide 381 

equilibrium. 382 

Surface emission brings 1026 kilotons of sulfur per year to the global CS2 burden, and CS2 383 

contributes 480 kilotons of sulfur per year to the COS burden and 487 kilotons of sulfur per 384 

year to the SO2 burden, leading to 7.05 kilotons of sulfur in CS2 burden after deposition 385 

processes. The COS/CS2 product balance change from adding the new CS2 photo-oxidation 386 

pathway is about 1.5%. The CS2 lifetime in the troposphere is about 2 to 3 days from model 387 

estimation and consistent with values reported by Khan et al. [2017]. About 47% of 388 

atmospheric COS burden comes from the chemical transformation of CS2. Combined with the 389 

sulfur flux analysis results above, about 5% of the COS at surface comes from the CS2 photo-390 

oxidation pathway under the global average solar radiation condition. Meanwhile, the impact 391 

of CS2 on atmospheric SO2 is relatively small, mainly because SO2 has large emissions from 392 

the surface and a significant amount of chemical transformations from DMS and H2S, 393 

compared to the relatively minor sulfur flux from CS2 chemical transformations. In summary, 394 

the photo-oxidation pathway accounts for an important share of the atmospheric CS2 sink, but 395 

its introduction brings relatively small changes to the global COS and SO2 concentrations. 396 

5 Conclusion 397 

In this study, we have constructed a 1D model of the CS2 reaction network and extended it to 398 

a sulfur cycle. The daytime-weighted zenith angle and solar constant are applied to counteract 399 

the spatial-temporal variation and simulate the global average solar radiation. Modeled sulfur-400 

bearing species concentrations reproduced field measurements or other model estimations. 401 

From the sulfur flux analysis, we found that the photo-oxidation and OH-oxidation pathways 402 

contain near-magnitude sulfur fluxes in the CS2 reaction network and that 15.8% of sulfur flux 403 
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passes through the photo-oxidation pathway under global average solar irradiance condition. 404 

Depending on the local solar radiation intensity, this proportion ranges from 8.1% to 18%. The 405 

sulfur budget of the sulfur cycle in this study is determined and it is concluded that the addition 406 

of the CS2 photo-oxidation pathway has a relatively minor change (1.5%) on the product ratio 407 

between COS and SO2. Nevertheless, it is still recommended to include the photo-oxidation 408 

pathway of CS2 in future model studies, considering the important proportion of the photo-409 

oxidation pathway in the CS2 sink. 410 

  411 
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Appendix 412 

Table A1: Non-photochemistry reaction in the CS2 reaction network. 413 

No. Reaction Rate Constant References 

1 CS2
*+O2→CS2 2.5×10-11 

Brus [1971]; Lambert and 

Kimbell [1973] 

2 CS2
*+N2→CS2 2.5×10-11 

Brus [1971]; Lambert and 

Kimbell [1973] 

3 CS2
*+O2→CS+SO2 1.25×10-12 Wood and Heicklen [1971] 

4 CS2+OH→COS+SH 2×10-15 Burkholder et al. [2020] 

5 CS2+OH→SCSOH 
(1.25×10-16×exp(4550/T))/ 

(T+1.81×10-3exp(3400/T)) 
Burkholder et al. [2020] 

6 SCSOH+O2→COS+HSO2 2.8×10-14 Burkholder et al. [2020] 

7 CS2+O→CS+SO 3.2×10-11×exp(-650/T) Burkholder et al. [2020] 

8 CS2+O→COS+S 2.72×10-12×exp(-650/T) Burkholder et al. [2020] 

9 CS2+O→S2+CO 9.6×10-13×exp(-650/T) Burkholder et al. [2020] 

10 CS+O→S+CO 2.7×10-10×exp(-760/T) Burkholder et al. [2020] 

11 CS+O2→COS+O 2.9×10-19 Burkholder et al. [2020] 

12 CS+O2→SO+CO 2.9×10-20 Burkholder et al. [2020] 

13 CS+O3→COS+O2 3.0×10-16 Burkholder et al. [2020] 

14 S+O2→SO+O 1.6×10-12×exp(100/T) Burkholder et al. [2020] 

15 S+O3→SO+O2 1.2×10-11 Burkholder et al. [2020] 

16 S+OH→SO+H 6.6×10-11 Burkholder et al. [2020] 

17 S2+O→S+SO 1.6×10-13 
Hills et al. [1987]; Singleton 

and Cvetanović [1988] 

18 SO+O2→SO2+O 1.6×10-13×exp(-2280/T) Burkholder et al. [2020] 

19 SO+O3→SO2+O2 3.4×10-12×exp(-1100/T) Burkholder et al. [2020] 

20 SO+OH→SO2+H 2.6×10-11×exp(330/T) Burkholder et al. [2020] 

21 SH+O→SO+H 1.6×10-10 Burkholder et al. [2020] 

22 SH+O2→SO+OH 4.0×10-19 Burkholder et al. [2020] 

23 SH+O3→HSO+O2 9.0×10-12×exp(-280/T) Burkholder et al. [2020] 

24 HSO+O2→SO2+OH 2.0×10-17 Burkholder et al. [2020] 

25 HSO+O3→SO2+SH 1.0×10-13 Burkholder et al. [2020] 

26 HSO2+O2→SO2+HO2 3.0×10-13 Burkholder et al. [2020] 

 414 

  415 
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Table A2: Photochemistry reactions in the CS2 reaction network. 416 

  417 

No. Reaction References 

27 CS2+hv→CS+S 

180-194 nm: Chen and Robert Wu [1995]  

194-205 nm: Sunanda et al. [2015]  

205-275 nm: Grosch et al. [2015]  

28 CS2+hv→CS2
* 

275-370 nm: Burkholder et al. [2020]  

370-400 nm: No data 

29 SO+hv→S+O 
180-260 nm: Danielache et al. [2014]  

260-400 nm: No data 
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Table A3: Additional non-photochemical reactions that constitute the complete sulfur 418 

cycle.  419 

  420 

No. Reaction Rate Constant References 

30 COS+OH→CO2+SH 1.1×10-13×exp(-1200/T) Burkholder et al. [2020] 

31 COS+O→CO+SO 2.1×10-11×exp(-2200/T) Burkholder et al. [2020] 

32 H2S+OH→H2O+SH 6.1×10-12×exp(-75/T) Burkholder et al. [2020] 

33 H2S+O→OH+SH 9.22×10-12×exp(-1803/T) Burkholder et al. [2020] 

34 H2S+H→H2+SH 8×10-13 Burkholder et al. [2020] 

35 H2S+HO2→H2O+HSO 3×10-15 Burkholder et al. [2020] 

36 SO2+HO2→OH+SO3 1×10-18 Burkholder et al. [2020] 

37 SO2+O3→O2+SO3 3×10-12×exp(-7000/T) Burkholder et al. [2020] 

38 HSO3+O2→HO2+SO3 1.3×10-12×exp(-330/T) Burkholder et al. [2020] 

39 SO2+O→SO3 1.80×10-33×(T/300)2 Burkholder et al. [2020] 

40 SO2+OH→HSO3 3.30×10-31×(T/300)-4.3 Burkholder et al. [2020] 

41 SO3+H2O→H2SO4 1.2×10-15 Burkholder et al. [2020] 

42 H2SO4→SO2+2OH 1.2×10-15 Burkholder et al. [2020] 

43 CH3SCH3+O→SO2 1×10-11×exp(410/T) Weisenstein et al. [1997] 

44 CH3SCH3+OH→SO2 1.2×10-11×exp(-260/T) Weisenstein et al. [1997] 

45 
CH3SCH3+OH→ 

SO2+CH4O3S 
3.04×10-12×exp(350/T) Weisenstein et al. [1997] 

46 SO2→SO4 
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Table A4: Additional photochemical reactions that constitute the complete sulfur cycle. 421 

  422 

No. Reaction References 

47 COS+hv→CO+S 

180-185 nm: No data  

185-195 nm: Limão-Vieira et al. [2015]  

195-260 nm: Hattori et al. [2011]  

260-300 nm: Limão-Vieira et al. [2015]  

300-400 nm: No data 

48 SO2+hv→SO+O 

180-189.5 nm : Danielache et al. [2008]  

189.5-225 nm: Endo et al. [2015]  

225-239 nm: Wu et al. [2000]  

239-400 nm: Bogumil et al. [2003] 

49 O3+hv→O2+O 
180-230 nm: Burkholder et al. [2020]  

230-400 nm: Malicet et al. [1995] 

50 O2+hv→2O 

180-181 nm: Kockarts [1976]  

181-235 nm: Ogawa [1971]  

235-400 nm: Bogumil et al. [2003] 

51 SO3+hv→SO2+O 
180-330 nm: Burkholder et al. [2020]  

330-400 nm: No data 

52 H2S+hv→SH+H 

180-260 nm: Wu and Chen [1998]  

260-370 nm: Grosch et al. [2015]  

370-400 nm: No data 
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