[bookmark: OLE_LINK4][bookmark: OLE_LINK2]
The First Integral and Analytical Solution of Chazy Equation with Movable Singular Line
Binbin Zhang 1*, Guoliang Xu 1, Guangbo Chen 2
1. School of Information Technology, Luoyang Normal University, Luoyang, 471022, PR China
2. Mining Research Institute, Inner Mongolia University of Science and Technology, Baotou,014010, PR China
Email address:
[bookmark: _GoBack]binbinzhanghkj@l163.com(Binbin Zhang), xu1guo2liang@foxmail.com(Guoliang Xu), cgb150617@126.com(Guangbo Chen)

*Corresponding author: Binbin Zhang




Abstract: The basic object of investigation is classical Chazy - a nonlinear third-order autonomous differential equation with movable singular line. In this paper, the first integral of Chazy equation is obtained with the help of Backlund transformation, which is a transcendental dependence on the function  and its derivatives . The general solution of equation is represented by Laurent series in the punctured neighborhood of point at infinity, and in the domain  is represented by Taylor series. It is proved that the obtained Laurent and Taylor series all converge absolutely in their defined domains. Under the situation that the analytic continuation of solutions of differential equation with movable singular line cannot be realized, a necessary and sufficient condition is presented for obtaining the two-parameter rational solution of Chazy equation from its general solution constructed by Taylor series. And the research results can be applied in the analytic theory of ordinary differential equations.
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1. Introduction 



In order to have single-valued solutions, it has been turned out (by Martynov [1] and Ablowitz [2]) that all resonances of non-linear differential equations should be distinct integers, moreover, one of them is equal to . Resonance method which commonly used for Painlevé classification of ordinary differential equations often detects negative resonances (except –1). Clarkson (see [3], 1995) asserted that the nature of negative resonances “are still not fully understood and at the present stage are of great interest”. Some problems arose as how to use negative resonances to obtain information about the analytic properties of solutions of differential equations [4] and, in particular, to construct two-parameter rational solutions [5, 6]. The Chazy equation came up in the course of Chazy’s extension of Painleve’s program to third-order equations [7-9]. By scaling transformation , Chazy equation with movable singular line can be written as

                                  (1)
for which all resonances are negative. The two-parameter rational solution 

                           (2)
of equation (1) was revealed in [7]. According to analytical theory of differential equations, the movable singular line is a circle (or a straight line, depending on the choice of the initial conditions) on boundary of specific region, inside which there are no multi-valued singular points [10]. Under the situation, the analytic continuation of solutions of differential equations cannot be realized. The purpose of this paper is to provide a necessary and sufficient condition for obtaining the two-parameter rational solution (2) of Chazy equation from its general solution constructed by Taylor series, and build the first integral of equation (1) with the help of Backlund transformation.
2. The first integral of Chazy equation

The third-order differential equation

                            (3)
with movable singular line was shown in [11], which has two-parameter rational solution 

                           (4)
Backlund transformations between equations (1) and (3) were given in [12]:

                             (5)


We can obtain differential equation (1) by eliminating function  from relations (5), which is the solution of equation (3). Meanwhile, equation (3) can be obtained by eliminating function  from (5).
It follows from [13] that the second-order equation



where R – rational functions in  has no solutions with singular line. Therefore, equations (1) and (3) have no first integrals of the form




where – arbitrary constant, f – rational functions in  However, the first integral of equation (3) was obtained in [14]:

                (6)


In formula (6), there is an algebraic dependence on derivatives  and transcendental dependence on the function 

Lemma 1. The rational solution (4) satisfies equation (6) when 
By using (6) and Backlund transformations (5), the first integral of equation (1) will be constructed. Assume that 

                              (7)
obviously

                             (8)
and equations (1), (3) and (6) can be written respectively as:

                            (9)

                        (10)

                     (11)
Theorem 1. The Chazy equation (1) has the first integral of the form

                     (12)


where – arbitrary constant; and the function  is such that

             (13)

Proof. Letting  from (5) we get

                           (14)
Differentiating the first equality of relations (5), occurs that


Then 

                               (15)
so 

              (16)                            
It can be found from formula (15)  

                             (17)
According to (14), (16) and (17), there is

                        (18)

Substituting (16) and (18) in (6), the first integral (12) of Chazy equation is obtained, in which By differentiating the logarithmic form of equality (12) we obtain

 
then


Theorem 1 is proved.

   At the same time, eliminating the constant  from equation (11), there is


and then



                    (19)

If , equation (10) is followed from (19). 
3. The necessary and sufficient condition for obtaining rational solution of Chazy equation from its general solution


The general solution of equation (1) in the punctured neighborhood of point at infinity  can be represented by the Laurent series

                      (20) 

and in the domain  can be represented by the Taylor series

                          (21)


where  can be expressed in terms of  and inversely [15].

Substituting (20) and (21) into equation (1), we obtain the recurrent formulas of the coefficients  respectively:




             (22) 


The necessary and sufficient condition for obtaining two-parameter rational solutions (2) from its general solutions (20) has been proved in [16], that is, the coefficients  need to satisfy the relationship


[bookmark: _Hlk77757687]In the case that the analytic continuation of solutions of equation (1) with movable singular line cannot be realized, this paper presents a necessary and sufficient condition for obtaining the rational solution (2) of equation (1) from its general solution (21). 




Lemma 2. Let  There exist real number  such that if  then 
Proof. From (22) can get





because of 
According to the method of mathematical induction, it can be concluded that the formula 

                                  (23) 

holds for 
Corollary. Series (21) converges absolutely if


In fact, taking into account the condition (23), the series


will be majorant for (21).
Lemma 3. Assuming in the expression (21) 

                            (24)
if 

                             (25)
then 

                                 (26)
Proof. It is easy to find from (22) that


Taking into account (24), (25) and (26), we conclude that 

                           (27) 


Theorem 2. For obtaining the rational solution (2) of equation (1) from general solution (21), it is necessary and sufficient that the coefficients  need to satisfy the relationship

                         (28)

Proof. Counting  and substituting (27) into the expansion (21), it is obvious that




where 

On the other hand, assuming  from (2) we obtain




When b and c are eliminated from , we can get the formula (28). Thus, theorem 2 is proved.
4. Conclusion 



With the help of Backlund transformation (5), we constructed the first integral (12) of classical Chazy equation (1), which is a transcendental dependence on the function  and its derivatives . The general solution of Chazy equation was represented by the Laurent series (20) in the punctured neighborhood of point at infinity, and in the domain  was represented by the Taylor series (21). It was proved that the series (20) and (21) all converge absolutely in their defined domains. Additionally, under the situation that the analytic continuation of solutions of differential equation with movable singular line couldn’t be realized, a necessary and sufficient condition (28) was presented for obtaining the two-parameter rational solution (2) of Chazy equation (1) from its general solution (21) constructed by Taylor series.
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