Table 3. Second-Generation Epigenetic Clocks
Reference:
1. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews Genetics. 2012;13(7):484-492.
2. Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging cell.2015;14(6):924-932.
3. Zeilinger S, Kühnel B, Klopp N, et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PloS one. 2013;8(5):e63812.
4. de Prado-Bert P, Ruiz-Arenas C, Vives-Usano M, et al. The early-life exposome and epigenetic age acceleration in children. Environment International.2021;155:106683.
5. Legaki E, Arsenis C, Taka S, Papadopoulos NG. DNA methylation biomarkers in asthma and rhinitis: Are we there yet? Clinical and translational allergy.2022;12(3):e12131.
6. Titus AJ, Gallimore RM, Salas LA, Christensen BC. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum Mol Genet. 2017;26(R2):R216-r224.
7. Grant OA, Wang Y, Kumari M, Zabet NR, Schalkwyk L. Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array. Clin Epigenetics. 2022;14(1):62.
8. Bjornsson HT, Sigurdsson MI, Fallin MD, et al. Intra-individual change over time in DNA methylation with familial clustering. Jama. 2008;299(24):2877-2883.
9. Rakyan VK, Down TA, Maslau S, et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20(4):434-439.
10. Martino DJ, Tulic MK, Gordon L, et al. Evidence for age-related and individual-specific changes in DNA methylation profile of mononuclear cells during early immune development in humans. Epigenetics. 2011;6(9):1085-1094.
11. Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet.2014;23(5):1186-1201.
h12. Bell CG, Lowe R, Adams PD, et al. DNA methylation aging clocks: challenges and recommendations.Genome biology. 2019;20(1):249.
13. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing.Nature Reviews Genetics. 2018;19(6):371-384.
14. Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis.Clin Epigenetics. 2019;11(1):62.
15. Dugué PA, Bassett JK, Joo JE, et al. DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies. International journal of cancer. 2018;142(8):1611-1619.
16. Chen BH, Marioni RE, Colicino E, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 2016;8(9):1844-1865.
17. Verschoor CP, Lin DTS, Kobor MS, et al. Epigenetic age is associated with baseline and 3-year change in frailty in the Canadian Longitudinal Study on Aging. Clin Epigenetics. 2021;13(1):163-163.
18. Grodstein F, Lemos B, Yu L, et al. The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes. Neurobiology of disease.2021;157:105428.
19. Peng C, Cardenas A, Rifas-Shiman SL, et al. Epigenetic age acceleration is associated with allergy and asthma in children in Project Viva. J Allergy Clin Immunol.2019;143(6):2263-2270.e2214.
20. Cardenas A, Sordillo JE, Rifas-Shiman SL, et al. The nasal methylome as a biomarker of asthma and airway inflammation in children. Nature Communications.2019;10(1):3095.
21. Barker DJ. The origins of the developmental origins theory. Journal of internal medicine.2007;261(5):412-417.
22. Ghildayal N, Fore R, Lutz SM, et al. Early-pregnancy maternal body mass index is associated with common DNA methylation markers in cord blood and placenta: a paired-tissue epigenome-wide association study. Epigenetics.2022;17(7):808-818.
23. Park J, Kim WJ, Kim J, et al. Prenatal Exposure to Traffic-Related Air Pollution and the DNA Methylation in Cord Blood Cells: MOCEH Study. International journal of environmental research and public health. 2022;19(6).
24. Akhabir L, Stringer R, Desai D, et al. DNA methylation changes in cord blood and the developmental origins of health and disease - a systematic review and replication study. BMC genomics. 2022;23(1):221.
25. Chowdhury NU, Guntur VP, Newcomb DC, Wechsler ME. Sex and gender in asthma. European Respiratory Review. 2021;30(162):210067.
26. DeVries A, Vercelli D. Epigenetic Mechanisms in Asthma. Annals of the American Thoracic Society.2016;13 Suppl 1(Suppl 1):S48-50.
27. Strichman-Almashanu LZ, Lee RS, Onyango PO, et al. A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res.2002;12(4):543-554.
28. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. Journal of molecular biology.1987;196(2):261-282.
29. Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences of the United States of America.2006;103(5):1412-1417.
30. Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature genetics.2007;39(4):457-466.
31. Bibikova M, Le J, Barnes B, et al. Genome-wide DNA methylation profiling using Infinium® assay.Epigenomics. 2009;1(1):177-200.
32. Bibikova M, Barnes B, Tsan C, et al. High density DNA methylation array with single CpG site resolution.Genomics. 2011;98(4):288-295.
33. Pidsley R, Zotenko E, Peters TJ, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome biology. 2016;17(1):208.
34. Bell JT, Tsai PC, Yang TP, et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS genetics. 2012;8(4):e1002629.
35. Day K, Waite LL, Thalacker-Mercer A, et al. Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome biology. 2013;14(9):R102.
36. Heyn H, Li N, Ferreira HJ, et al. Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences. 2012;109(26):10522-10527.
37. Talens RP, Christensen K, Putter H, et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs.Aging cell. 2012;11(4):694-703.
38. Herbstman JB, Wang S, Perera FP, et al. Predictors and consequences of global DNA methylation in cord blood and at three years. PloS one. 2013;8(9):e72824.
39. Martino D, Loke YJ, Gordon L, et al. Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome biology.2013;14(5):R42.
40. Acevedo N, Reinius LE, Vitezic M, et al. Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes. Clin Epigenetics. 2015;7(1):34.
41. Lasky-Su J, Himes BE, Raby BA, et al. HLA-DQ strikes again: genome-wide association study further confirms HLA-DQ in the diagnosis of asthma among adults. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2012;42(12):1724-1733.
42. Waage J, Standl M, Curtin JA, et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nature genetics. 2018;50(8):1072-1080.
43. Daya M, Cox C, Acevedo N, et al. Multiethnic genome-wide and HLA association study of total serum IgE level. J Allergy Clin Immunol. 2021;148(6):1589-1595.
44. Ramasamy A, Kuokkanen M, Vedantam S, et al. Genome-wide association studies of asthma in population-based cohorts confirm known and suggested loci and identify an additional association near HLA. PloS one. 2012;7(9):e44008.
45. Asai Y, Eslami A, van Ginkel CD, et al. A Canadian genome-wide association study and meta-analysis confirm HLA as a risk factor for peanut allergy independent of asthma.J Allergy Clin Immunol. 2018;141(4):1513-1516.
46. Madore AM, Vaillancourt VT, Asai Y, et al. HLA-DQB1*02 and DQB1*06:03P are associated with peanut allergy. Eur J Hum Genet. 2013;21(10):1181-1184.
47. Wieczorek M, Abualrous ET, Sticht J, et al. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation.Frontiers in immunology. 2017;8:292.
48. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age.Proceedings Biological sciences. 2015;282(1821):20143085.
49. Berger A. Th1 and Th2 responses: what are they? BMJ (Clinical research ed). 2000;321(7258):424.
50. Holgate ST. Innate and adaptive immune responses in asthma. Nature medicine. 2012;18(5):673-683.
51. Zhang H, Tong X, Holloway JW, et al. The interplay of DNA methylation over time with Th2 pathway genetic variants on asthma risk and temporal asthma transition. Clin Epigenetics. 2014;6(1):8.
52. Alisch RS, Barwick BG, Chopra P, et al. Age-associated DNA methylation in pediatric populations.Genome Res. 2012;22(4):623-632.
53. Horvath S. DNA methylation age of human tissues and cell types. Genome biology. 2013;14(10):R115.
54. Snir S, Farrell C, Pellegrini M. Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics. 2019;14(9):912-926.
55. Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences.2005;102(30):10604-10609.
56. Poulsen P, Esteller M, Vaag A, Fraga MF. The Epigenetic Basis of Twin Discordance in Age-Related Diseases. Pediatric Research. 2007;61(7):38-42.
57. Bocklandt S, Lin W, Sehl ME, et al. Epigenetic predictor of age. PloS one. 2011;6(6):e14821.
58. Vaiserman A. Developmental Tuning of Epigenetic Clock. Front Genet. 2018;9.
59. Perna L, Zhang Y, Mons U, Holleczek B, Saum K-U, Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort.Clin Epigenetics. 2016;8(1):64.
60. de Prado-Bert P, Ruiz-Arenas C, Vives-Usano M, et al. The early-life exposome and epigenetic age acceleration in children. Environ Int. 2021;155:106683.
61. Simpkin AJ, Hemani G, Suderman M, et al. Prenatal and early life influences on epigenetic age in children: a study of mother-offspring pairs from two cohort studies. Hum Mol Genet. 2016;25(1):191-201.
62. Quach A, Levine ME, Tanaka T, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging. 2017;9(2):419-446.
63. Song AY, Feinberg JI, Bakulski KM, et al. Prenatal Exposure to Ambient Air Pollution and Epigenetic Aging at Birth in Newborns. Front Genet. 2022;13:929416.
64. Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society Series B (Statistical Methodology).2005;67(2):301-320.
65. Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. DNA Methylation Clocks in Aging: Categories, Causes, and Consequences. Molecular cell.2018;71(6):882-895.
66. Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan.Aging. 2018;10(4):573-591.
67. Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular cell. 2013;49(2):359-367.
68. Horvath S, Oshima J, Martin GM, et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging.2018;10(7):1758-1775.
69. McEwen LM, O’Donnell KJ, McGill MG, et al. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proceedings of the National Academy of Sciences. 2020;117(38):23329-23335.
70. Teschendorff AE, Menon U, Gentry-Maharaj A, et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res.2010;20(4):440-446.
71. Koch CM, Wagner W. Epigenetic-aging-signature to determine age in different tissues.Aging. 2011;3(10):1018-1027.
72. McEwen LM, Jones MJ, Lin DTS, et al. Systematic evaluation of DNA methylation age estimation with common preprocessing methods and the Infinium MethylationEPIC BeadChip array.Clin Epigenetics. 2018;10(1):123.
73. El Khoury LY, Gorrie-Stone T, Smart M, et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome biology.2019;20(1):283-283.
74. Knight AK, Craig JM, Theda C, et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome biology. 2016;17(1):206.
75. Horvath S. DNA methylation age of human tissues and cell types. Genome Biology. 2013;14(10):3156.
76. Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan.Aging. 2019;11(2):303-327.
77. Horvath S, Gurven M, Levine ME, et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome biology. 2016;17(1):171.
78. Bantz SK, Zhu Z, Zheng T. The Atopic March: Progression from Atopic Dermatitis to Allergic Rhinitis and Asthma. J Clin Cell Immunol. 2014;5(2):202.
79. McGeachie MJ, Stahl EA, Himes BE, et al. Polygenic heritability estimates in pharmacogenetics: focus on asthma and related phenotypes. Pharmacogenetics and genomics.2013;23(6):324-328.
80. Thomsen SF. Genetics of asthma: an introduction for the clinician. European clinical respiratory journal. 2015;2.
81. Xu CJ, Söderhäll C, Bustamante M, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. The Lancet Respiratory medicine.2018;6(5):379-388.
82. Forno E, Wang T, Qi C, et al. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. The Lancet Respiratory medicine.2019;7(4):336-346.
83. Paller AS, Spergel JM, Mina-Osorio P, Irvine AD. The atopic march and atopic multimorbidity: Many trajectories, many pathways. J Allergy Clin Immunol.2019;143(1):46-55.
84. Daley D. The evolution of the hygiene hypothesis: the role of early-life exposures to viruses and microbes and their relationship to asthma and allergic diseases.Curr Opin Allergy Clin Immunol. 2014;14(5):390-396.
85. Pischedda S, Rivero-Calle I, Gómez-Carballa A, et al. Role and Diagnostic Performance of Host Epigenome in Respiratory Morbidity after RSV Infection: The EPIRESVi Study. Frontiers in immunology. 2022;13:875691.
86. Chlamydas S, Markouli M, Strepkos D, Piperi C. Epigenetic mechanisms regulate sex-specific bias in disease manifestations. Journal of molecular medicine (Berlin, Germany).2022;100(8):1111-1123.
87. Taneja V. Sex Hormones Determine Immune Response. Frontiers in immunology. 2018;9:1931.
88. Patel R, Solatikia F, Zhang H, et al. Sex-specific associations of asthma acquisition with changes in DNA methylation during adolescence. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.2021;51(2):318-328.
89. Han L, Zhang H, Kaushal A, et al. Changes in DNA methylation from pre- to post-adolescence are associated with pubertal exposures. Clinical Epigenetics. 2019;11(1):176.
90. Kananen L, Marttila S, Nevalainen T, et al. The trajectory of the blood DNA methylome ageing rate is largely set before adulthood: evidence from two longitudinal studies.AGE. 2016;38(3):65.
91. Fuseini H, Newcomb DC. Mechanisms Driving Gender Differences in Asthma. Curr Allergy Asthma Rep.2017;17(3):19.
92. Shah R, Newcomb DC. Sex Bias in Asthma Prevalence and Pathogenesis. Frontiers in immunology.2018;9:2997.
93. Weidner CI, Lin Q, Koch CM, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome biology. 2014;15(2):R24.
94. Castle JR, Lin N, Liu J, et al. Estimating breast tissue-specific DNA methylation age using next-generation sequencing data. Clin Epigenetics. 2020;12(1):45.
95. Haftorn KL, Lee Y, Denault WRP, et al. An EPIC predictor of gestational age and its application to newborns conceived by assisted reproductive technologies. Clin Epigenetics. 2021;13(1):82.