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1 | INTRODUCTION

In the modelling of various processes in mathematics physics, biology, dynamical systems, control systems, engineering and
so on H2BELIOTE  fractional partial differential equations are utilized since the results of fractional mathematical models have
better results than other mathematical models. Therefore quite a few research such as existence, uniqueness and regularity of
solutions, on the processes of heat diffusion, modelled by fractional differential equations®19!11
differential equations plays an important role in science and technology. In the establishment of the solutions for fractional
nonlinear problems, integral transform techniques are the common ones®!2. This result lead us to establish numerical solutions
of nonlinear FPDEs by means of the combination of Daftardar-Jafari method (DJM) and Shehu transform.The encountered
fractional nonlinear problems, modelling real life pheonema are analyzed and solved by taking physical knowledge and physical
properties of the nonlinear problem into consideration. Shehu transform, introduced by Shehu Maitama and Weidong Zhao'l?,
is an integral transformation converting the ordinary and partial differential equations into simpler equations. It is obtained by
generalizing Laplace transformation. Moreover it is a linear transformation like Laplace and Sumudu transformations. Laplace
and Yang integral transformations are obtained from Shehu transformation by taking ¢ = 1 and p = 1 respectively. From this
point of view, it could be better to use Shehu transform instead of Laplace or Yang transforms'3.

The aim of this research is to extend Shehu Transform iterative method (STIM) to construct truncated solutions of time-space
FPDEs. The STIM method is applied to solve a various linear and nonlinear FPDEs. The truncated solutions are established in
terms of Mittag-Leffler functions and fractional trigonometric functions. The advantages of this method can be listed as follows:
1. CPU time is shorter,

2. Robust method for nonlinear and linear FPDEs,

3. Less calculation time,

4. Less margin of error.

As aresults, it is clear that utilizing STIM is one of the best choice for the establishment of the solutions for linear and nonlinear
mathematical models including FPDEs.

. The contribution of fractional

TThis is an example for title footnote.
0Abbreviations: FPDEs, fractional partial differential equations; DJM, Daftardar-Jafari method; STIM, Shehu Transform iterative method
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2 | PRELIMINARIES

Essential knowledge such as notations and features of the fractional calculus are presented in this subsection®, The definition
of Riemann-Liouville time-fractional integral of a real valued function u(x, t) is given as
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where @ > 0 represents the order of the integral.

o' order the Caputo time-fractional derivative operator of u(x, t) is defined as
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Mittag-Leffler function with two parameters is defined as
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where a and f are parameters.
The following set of functions has Shehu transformation
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For a™ order the Caputo time-fractional derivative of f(x, t), the Shehu transformation has the following form 14l
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3 | THE IMPLEMENTATION OF STIM

The implementation of STIM for mathematical models, including space time fractional differential equations, are presented in
this section. Now take the following problem
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into consideration where f = f(x,t) is the function to be determined and

oxn’ ox!

[
F ( x, 2L, % ) denotes linear or nonlinear function. After carrying out the Shehu transform to Eq. (8) and rearrangement,

we have
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Enforcing the inverse Shehu transform of Eq. (I0) leads to
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Here G represent a linear or nonlinear operator and the function g is given.

In order to construct the solution of Eq. , the DIM introduced by Daftardar-Gejji and Jafari'? is employed.

The solution is established in the series form as follows:
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where the terms f, are determined recursively.After decomposition of the operator G, we have
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Plugging Egs. (T4), (I6) into Eq. (I2) leads to
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The following recurrence relation is established:
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The truncated solutions of r- terms of Egs. (§), (9) is established as f = f, + f; + ... + f,_;. For the convergence of DIM,
we refer the reader to'®

a7

4 | ILLUSTRATIVE EXAMPLE

Take the following mathematical model

e IF\° o
2/ <67{:> _y (a_xf> (5,067 € (0,11, (18)

with the initial condition

u(x,0)=3+ %En(x”). 19
into account. Applying the Shehu transform to Eq. (T8) leads to

=[5 (5]

The property (7) allow us to have the following
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Carrying out the inverse Sumudu transform to Eq. (20) leads to
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Utilizing the recurrence relation (I7), we have
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TABLE 1 Comparison of the exact solution with the 10-term truncated solutions by SVIM for various ¢ and # for example 1.

SVIM Exact SVIM Exact SVIM Exact
t ¢,n=0.9 ¢,n=0.9 ¢, n=0.95 ¢,n=0.95 ¢,n=1 ¢,n=1
time= 0.1139s time= 0.1173s time= 0.1125s

0 9.9292 9.9292 9.8664 9.8664 9.7957 9.7957
0.1 7.7178 8.0988 7.8855 8.0681 8.0344 8.0344
0.2 6.4308 6.7935 6.5797 6.7610 6.7296 6.7296
0.3 5.5702 5.8563 5.6615 5.8082 5.7629 5.7629
04 4.9704 4.9495 5.0029 4.3881 5.0468 5.0468
0.5 4.5413 4.5055 4.5245 4.3661 4.5163 4.5163
0.6 4.2280 42772 4.1736 3.9080 4.1233 4.1233
0.7 3.9958 4.0783 3.9139 39112 3.8322 3.8322
0.8 3.8225 3.8596 3.7204 3.9075 3.6166 3.6165
0.9 3.6965 3.6961 3.5763 3.5912 3.4571 3.4567
1 3.6187 3.5796 3.4712 3.4481 3.3398 3.3383

0_§l[<§) (xO)]—3+ SE,(x")
n=st ()™ (s[(5e) - (52)])] = -
rms ()7 (o] (22) - (222))
s ONCCREIES
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__ 405 E, (x)
47 Torec+D)
Finally, the solution of the problem (TI8)-(19) is obtained in series form as follows: f (x,1) = fo+ fi + fo + f3+ ... =
3+ [%E ¢ (-3¢ )] E,(x"), which is the same exact solution obtained in'*
Notice that the values of the solution for { = #n = 1 and exact solution are almost the same which implies that the method
implemented in this study is one of the best one for the solution of space-time fractional differential equations of any order. The
programming language is MATLAB 2016b. The computer used has an Intel (R) Core (TM) i3 CPU M 370.

S | CONCLUSION

In this study we build numerical or analytical solutions of mathematical models including nonlinear space time FPDEs by
means of STIM which is formed by the combination of DIM'" and Shehu transform. It is proved that this approach is more
convenient and effective for nonlinear FPDEs than the methods obtained by taking the combinations of Laplace transformation
and homotopy, Sumudu or Adomian polynomials. This result is verified by the illustrative example.
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FIGURE 1 Figures of 10-term truncated solution and exact solution for different { and # at x = 1.
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