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Key Points:8

• Global climate model simulated immersion-mode INP concentrations are one to9

three orders of magnitude lower than INP measurements.10

• Aerosol-INP closure is achieved (INPs within a factor of 10) for INPs simulated11

using the in situ aerosol measurements12

• Errors in the model-simulated aerosol properties are the dominant cause of the13

model INP discrepancy .14
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Abstract15

We assess the predictability of immersion-mode ice nucleating particles (INPs) at a remote16

marine site in the Eastern North Atlantic (ENA) using aerosol simulations from a global17

climate model as inputs to the immersion-mode INP parameterizations. While the model-18

simulated INP concentrations are lower by one to three orders of magnitudes compared19

to the measurements, we achieve aerosol-INP closure at ENA using the observed aerosol20

properties. We demonstrate a novel INP error decomposition approach to quantify the21

portion of total INP error from different error components. We conclude that inaccuracies22

in aerosols (surface area and composition) are the dominant cause of the model INP dis-23

crepancy at ENA. We recommend that, for future aerosol-INP closure studies, along with24

the measurements for total INP concentrations, campaigns should also collect co-located25

aerosol size-resolved composition measurements (in the INP-relevant size range) to better26

distinguish and quantify the error sources.27

Plain Language Summary28

We assess the predictability of ice nucleating particles (INPs) at a remote marine site in29

the Eastern North Atlantic (ENA) using aerosol simulations from a global climate model30

as inputs to the immersion-mode INP parameterizations. Model-simulated INP concentra-31

tions at ENA are lower by one to three orders of magnitude compared to the measurements.32

However, INPs predicted using the observed aerosol properties are within an order of mag-33

nitude from INP measurements. We quantify the portion of errors from aerosol and INP34

parameterization components. We conclude that inaccuracies in aerosol surface area and35

composition are the dominant causes for the model INP discrepancy at ENA.36

1 Introduction37

Mixed-phase clouds (MPCs) play a vital role in precipitation and radiation budget due to38

the presence of super-cooled liquid water and ice crystals (Korolev et al., 2017; Burrows39

et al., 2022). The dominant mechanism for heterogeneous ice formation in MPCs is the40

immersion-mode freezing of cloud droplets in the presence of ice nucleating particles (INPs)41

at temperatures warmer than −38 ◦C (Pruppacher et al., 1998; Vali et al., 2015). INPs are42

a rare subset of aerosols whose ice nucleating ability depends on the size-resolved particle43

composition, abundance, surface properties, and atmospheric conditions (e.g. DeMott et44

al., 2010; Boose et al., 2016).45

In general, the INP number concentrations in the marine atmosphere are lower by an order46

of magnitude or more compared to those in terrestrial regions (e.g. DeMott et al., 2016).47

However, sea spray (salt + organics) emitted from bubble bursting in the ocean and mineral48

dust transported to the marine atmosphere from deserts can significantly affect the INP49

population in the marine boundary layer (e.g. Creamean et al., 2019; McCluskey et al.,50

2019). Previous studies over remote marine regions have shown that presence of INPs can51

alter climate feedbacks (e.g. Vergara-Temprado et al., 2018; Tan et al., 2022), but climate52

models can exhibit significant bias in prediction of INPs (Raman et al., 2022).53

The predictive understanding of INPs in climate models is limited by sparse measurements54

of co-located aerosol size-resolved composition and INP number concentration. Recent INP55

studies have resorted to aerosol-INP closure experiments to investigate the error sources in56

INP prediction. Aerosol-INP closure for a given INP measurement temperature is defined57

as the agreement between the predicted INPs from observed aerosol properties and the mea-58

sured INP concentrations within measurement uncertainties (Burrows et al., 2022). Knopf59

et al. (2021) conducted aerosol-INP closure during a frontal passage at the Department of60

Energy (DOE) site in the Southern Great Plains, and found that size-resolved INP com-61
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position and individual INP propensity are especially important for closure in regions with62

frequent variations in meteorological and aerosol conditions.63

In this study, we assess the dominant cause of errors in the boundary-layer immersion-mode64

INP predictability during the DOE field campaign, Examining the Ice Nucleating Parti-65

cles from the Eastern North Atlantic (ExINP-ENA), from October 2020 to December 202066

(Hiranuma et al., 2022). We perform aerosol-INP closure at ENA (39.09◦N, 28.02◦W) (Text67

S1) and constrain the spread in modeled INP concentrations using different aerosol mea-68

surements and INP parameterizations. We introduce a novel error decomposition approach69

to quantify the portion of total INP discrepancy between model and observations associated70

with individual error sources. We illustrate the methods for the aerosol-INP closure and71

INP error decomposition in Section 2, describe and discuss our findings in Section 3 and72

Section 4.73

2 Methods74

2.1 Aerosol and INP Measurements75

We summarize the suite of aerosol and INP measurements in Table S1. We estimate the76

total aerosol surface area per unit volume (Saer [m2 m−3]) and related uncertainties using77

the ARM Aerosol Observing System (AOS) nephelometer-based aerosol scattering efficiency78

measurements (DeMott et al., 2016; Testa et al., 2021) at 450 nm wavelength (Text S3).79

We calculate six hourly averages of Saer estimates to match time stamps in the INP mea-80

surements. For particle-type classification, we use the elemental composition data (based81

on 100 particle samples) from scanning electron microscopy coupled with energy-dispersive82

X-ray spectroscopy (SEM-EDX) (China et al., 2017). We estimate the total atomic weight83

proportion for dust and sea spray particles using the classification techniques in Cheng et84

al. (2016) and Hiranuma et al. (2013) (Text S4 and Table S2).85

We use immersion mode ambient INP number concentrations measured with the Portable86

Ice Nucleation Experiment (PINE) chamber (Bilfinger Noel, model PINE-3) (Möhler et87

al., 2021) at temperatures between −14 ◦C and −33 ◦C. INP concentrations were measured88

approximately every 12 minutes, and measurements were averaged for six hours to obtain ad-89

equate sampling statistics in a clean marine environment. We derive temperature-dependent90

errors for INP concentrations (Hiranuma et al., 2022) in terms of a 95% confidence interval91

(CI) using the Poisson statistics (Krishnamoorthy & Lee, 2013) (Text S6).92

2.2 Model Overview and INP Parameterizations93

We use the U.S. DOE Energy Exascale Earth System Atmosphere Model version 1 (EAMv1)94

(Neale et al., 2010; Golaz et al., 2022) with the modal aerosol module with four log-normal95

modes (MAM4) (H. Wang et al., 2020) to simulate the size-resolved aerosol composition96

inputs for the INP parameterizations. We provide more details about the EAMv1 model in97

Text S7.98

We quantify the IN efficiency (ns(T ) [INP concentrations per unit area, m−2]) for dust99

and sea spray INPs using the temperature-dependent ice nucleation active site (INAS)100

parameterizations (Table S3). We derive INP concentrations by multiplying the ns(T )101

estimates with dust/sea spray surface area, depending on the INP type.102

We include only dust and sea spray INPs at ENA because these two aerosol types have103

been commonly observed at ENA in previous studies (Y. Wang et al., 2020; Zheng et al.,104

2018). We estimate sea spray ns(T ) following McCluskey et al. (2018). For dust INPs, we105

use multiple ns(T ) parameterizations: Boose et al. (2016) (B16 Morocco, B16 Pelopennese),106
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Ullrich et al. (2017) (UL17), and Reicher et al. (2019) (REI19 super-micron) (Text S8 and107

Text S9).108

2.3 Experiment Design and INP Closure109

We ran EAMv1 simulations for the period of January-December 2020 with approximately110

100 km horizontal resolution and 72 vertical layers using prescribed sea surface temperature111

and constrained meteorology (S. Zhang et al., 2022). We nudged the model winds at all112

model vertical levels using the Modern-Era Retrospective Analysis for Research and Appli-113

cations, version 2 (MERRA-2) reanalysis data (Gelaro et al., 2017) at a 6-h relaxation time114

scale.115

To permit spatial and temporal co-location between model outputs and INP measurements,116

we use the simulated aerosol fields at the nearest model grid box to the ENA station and use117

the 6-hourly averaged model outputs to estimate INP concentrations. We calculate the INP118

concentrations offline (i.e. model cloud microphysics is not affected by the INPs simulated119

in this study) by using the EAMv1-simulated and co-located dust and sea spray aerosols120

and the INP parameterizations.121

We characterize the INP discrepancy between EAMv1-predicted INPs and PINE measure-122

ments in terms of modified normalized bias (MNB) (Equation 1), which is calculated as123

the difference in two quantities divided by the sum of the quantities (Text S10). Equa-124

tion 1 shows a general formula for estimating MNB from two INP calculations, INP1(T )125

and INP2(T ).126

MNB (INP1(T ), INP2(T )) =
INP1(T )− INP2(T )

INP1(T ) + INP2(T )
. (1)

To quantify the aerosol-INP closure (schema in Figure S3), we estimate INP concentrations127

using the observed aerosol properties (’closure INPs’), nephelometer-estimated Saer and the128

SEM-EDX derived fraction of dust and sea spray in the total chemical composition for 100129

SEM-EDX samples. We declare aerosol-INP closure if the closure INP estimates are within130

a factor of 10 from the measurements. We express the closure error using the MNB metric.131

Several climate modeling studies in the literature have adopted error decomposition tech-132

niques to determine the dominant processes contributing to bias in GCM simulated feed-133

backs (e.g. Tian et al., 2009; Y. Zhang et al., 2021; Zelinka et al., 2016). For a given134

INP measurement temperature, we express the total predicted INP discrepancy (Ep) as a135

linear combination of three error sources: the portion of Ep associated with Saer (ESaer ),136

composition (Ec), and residual sources (Eres) (Equation 2). Finally, we quantify the un-137

certainty in each error source given the independent aerosol and INP measurements, each138

with an uncertainty (Table 2). We use an uncertainty propagation technique to quantify139

the uncertainties in Ec and Eres (Text S11).140

Ep = ESaer + Ec + Eres . (2)

141

3 Results142

3.1 Comparing Simulated and Observed Aerosol Properties143

Figure 1 compares the co-located surface level dust (Figure 1a), sea spray (Figure 1b), and144

total surface area (Figure 1c) from EAMv1 simulations and in situ measurements at ENA.145
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Experiment
name

Surface area Aerosol composition

INP E3SM Saer from E3SM for the size range 0.08− 10µm E3SMv1 simulations of dust and sea spray aerosol frac-
tions

INP E3SM
NEPH

Dust and sea spray aerosol surface were calculated using
Saer from the AOS nephelometer

E3SMv1 simulations of dust and sea spray aerosol frac-
tions

INP EDX E3SM Saer from E3SMv1 Aerosol fraction for dust and sea spray from SEM-EDX

INP EDX NEPH Saer from the nephelometer Aerosol fraction for dust and sea spray from SEM-EDX

Table 1. INP calculations using various observed and simulated aerosol quantities.

Overall, the EAMv1-simulated surface area estimates are typically lower by one to two orders146

of magnitude compared to the in situ measurements. For the particle-type fraction, EAMv1147

overestimates sea spray fraction and underestimates dust fraction compared to SEM-EDX148

measurements, both approximately by an order of magnitude. To better understand the149

aerosol classification at ENA, we compare our SEM-EDX classification with Knopf et al.,150

2022 analysis at the ENA site (Text S5).151

The biases in EAMv1-simulated aerosols over the remote marine regions are mainly due to152

the high vertical resolution and higher dry deposition rates in the model (a factor of two153

compared to CAM5 and other AeroCom (Aerosol Comparisons Observations and Models)154

models) (Wu et al., 2020; Feng et al., 2022). Such biases in dry deposition velocities are155

not uncommon to global models (e.g. Emerson et al., 2020). In addition to dry deposition,156

aerosol biases in EAMv1 are also affected by biases in other physical processes such as aerosol157

wet scavenging (K. Zhang et al., 2022). In marine regions where INP concentrations are158

already lower compared to continental regions, systematic differences between the simulated159

and observed aerosol surface area and composition as large as two orders of magnitude will160

directly affect the magnitude of INPs estimated using the simulated aerosol quantities.161

3.2 INP Concentrations at ENA162

Figure 2 compares the 6-hourly averaged INP number concentration measurements from163

PINE with EAMv1-simulated (and co-located) dust and sea spray INP concentrations for164

different measurement temperatures. The lack of strong seasonal variability in the INP165

measurements at ENA suggests that dust and sea spray INPs are persistent INP sources166

throughout the year. The INP number concentration measurements over the study pe-167

riod range from 0.1L−1 to 100L−1 for temperatures between −20 ◦C and −30 ◦C respec-168

tively. However, INP E3SM estimates (Blue lines in Figure 2) are generally lower by one169

to two orders of magnitudes compared to the INP measurements. We find that combin-170

ing EAMv1-simulated sea spray (M18) and dust INPs provides little improvement in the171

model-observation discrepancy at ENA.172

Among the dust INP parameterizations (Table S3), UL17, B16 Pelopennese, and B16 Mo-173

rocco show the maximum, median, and minimum discrepancies with measurements, respec-174

tively. Higher INP concentrations in B16 Morocco are likely due to the higher IN propensity175

of milled dust samples used for the development of the parameterization (Boose et al., 2016).176

Milling increases the surface irregularities, which in turn increases the IN activity (Reicher177

et al., 2019). Given these caveats about the IN efficiency of milled dust samples, it is possible178

that the good agreement between simulated B16 Morocco INPs and PINE measurements179

at ENA is likely due to the compensating errors between dust surface area underestimation180

in EAMv1 and ns(T ) overestimation in B16 Morocco.181
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Error source / Calculation Purpose Uncertainty
calculation

Ep = MNB(INPE3SM, INPOBS) Total predictive
skill error for E3SM
v1 simulated vs.
observed INP
concentrations

Associated with
different dust INP
parameterizations.

ESaer
= MNB(INPE3SM, INPE3SM NEPH) Portion of Ep

associated with
mismatch in
simulated and
observed Saer

Calculated using
uncertainties in the
nephelometer
scattering
coefficients, Q
(lower bound =
0.42, upper bound
= 3.0).

Ec = MNB(INPE3SM NEPH, INPEDX NEPH) Portion of ESaer

associated with
mismatch in
E3SMv1 simulated
vs. observed
aerosol
composition.

Calculated by
propagating
standard errors in
SEM-EDX aerosol
fraction to MNMB.
For E3SM NEPH,
we use a median Q
= 2.0.

Eres = MNB(INPEDX NEPH, INPOBS) Residual errors
(e.g., missing INP
sources, errors in
INP
parameterizations,
and atmospheric
transformation of
INPs.)

Calculated by
propagating
temperature
dependent errors in
measurements to
MNMB. We use a
median dust and
sea spray fraction
from EDX.

Table 2. INP error decomposition and uncertainty calculation for individual error components

–6–



manuscript submitted to Geophysical Research Letters

Figure 1. (a) Simulated (black) and observed (grey) dust surface area from E3SMv1 simulations

and SEM-EDX (dust fraction) + Nephelometer (total surface area), respectively, along with the

measurement uncertainties. (b) Same as (a) but comparing observations and model for sea spray

aerosol surface area. (c) Simulated (blue) and observed (red) total surface area from E3SMv1

and the Nephelometer, respectively, along with the Nephelometer surface area uncertainties (red

shaded region) calculated using the upper (3.0) and lower (0.42) bound for assumptions of scattering

coefficients. Surface area estimates shown here for EAMv1 cover the size range 80 nm to 10 µm. In

panels (a) and (b), observed surface area for dust and sea spray was estimated using the SEM-EDX

particle-type classification. Each SEM-EDX measurement represents a sampling period of two to

three days. To calculate the dust and sea spray surface area using the SEM-EDX particle-type

classification data, we used the total surface area from the Nephelometer corresponding to the last

day of the SEM-EDX measurement.

Overall, the uncertainty in the model discrepancies for different INP parameterizations is182

in the same order of magnitude as the discrepancy due to the simulated aerosol properties183

(Figure 2, blue and red lines). This leads to the next question, what is the dominant184

cause of the model INP discrepancies at ENA - aerosol errors or deficiencies in the INP185

parameterizations?186

3.3 INP Closure, Error Decomposition, and Uncertainty Propagation187

Figure 2 compares the closure INPs (green squares) predicted using the observed aerosol188

properties against the EAMv1-simulated (blue) and measured (black) INP concentrations.189

We find that adding sea spray and dust INPs does not reduce the closure. The closure INPs190

(Figure 2, green squares) are within an order of magnitude from the PINE measurements,191

the criterion we use in this study for aerosol-INP closure. These results confirm that the192
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EAMv1-simulated INP discrepancies as high as two to three orders of magnitude cannot be193

explained only by the deficiencies in the INP parameterizations.194

Figure 3 illustrates the decomposition of model INP discrepancies (Ep) into error compo-195

nents associated with the simulated surface area (ESaer ), composition (Ec), and the residual196

sources (closure error) (Eres). We find that ESaer
+ Ec together estimate 20-30% higher197

median MNB compared to the MNB for Eres. The opposite signs for Eres and aerosol198

components (ESaer
and Ec) indicate that these two error sources partially compensate for199

one another. Therefore, improving only the INP parameterization errors without improv-200

ing the aerosol errors in the model simulations will result in compensating biases in the201

model-predicted INPs.202

We conclude that the inaccuracies in aerosol surface area and composition simulated in203

EAMv1 are the major reasons for the large discrepancy in model-predicted INP concen-204

trations during the ExINP-ENA campaign. Along with improving the representation of205

aerosol properties in the model, accounting for deficiencies in the INP parameterizations by206

including missing INP sources and INP chemistry (e.g. biological INPs, coating of dust by207

sulfuric acid (Huang et al., 2021; Sullivan et al., 2010)) can further improve the INP closure208

at ENA.209

M
N
B

Figure 3. Decomposition of total INP discrepancies (dust and sea spray) at −29◦C into in-

dividual error components, ESaer , Ec, and Eres. Table 2 describes the error components and

uncertainties. The uncertainties in Ep are from using different dust INP parameterizations. For

other error components, we show results only for the B16 Pelopennese + M18 INPs which have the

least closure error compared to other dust parameterizations. Different nephelometer surface area

estimates are derived based on the uncertainties in the scattering coefficient assumptions. The MNB

range in ESaer corresponds to using the lower and upper bound for nephelometer-derived surface

area estimates in the INP parameterizations. Due to the limited number of temporally coincident

observations from EDX, Neph, and PINE, sampling days for error sources are not the same. The

number of days used for the calculation of Ep and ESaer and their associated uncertainties are:

238 and 226. Ec and Eres represent four coincident SEM-EDX and INP samples. Upper and lower

bounds for Ec are calculated using the variability in EDX errors in dust and sea spray fractions

for different days during the campaign. We calculate Eres only for −29◦C because of the limited

availability of coincident measurements for SEM-EDX particle-type classification, PINE INP mea-

surements, and temperature-dependent INP measurement errors at this temperature.
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4 Discussion and Conclusion210

In this study, we have investigated the predictive capability of EAMv1 and INAS-based INP211

parameterizations to simulate immersion-mode INP concentrations during the ExINPENA212

campaign at ENA, with an eye towards determining the leading cause of model-observation213

INP discrepancies. The EAMv1-simulated INP concentrations are one to three orders of214

magnitude lower than the INP measurements from PINE. We achieve INP closure (INP215

discrepancy within a factor of 10) when INPs are predicted using the measured aerosol216

properties from the AOS nephelometer and SEM-EDX. This evidence confirms that we217

cannot reduce such large discrepancies in the predicted INPs only by resolving the flaws in218

the INP parameterizations, but it is important to accurately represent the aerosol properties219

in the model to improve INP predictions.220

We have demonstrated a novel INP error decomposition to quantify the portion of total INP221

model-observation discrepancies from different error sources. At the ENA site, we find that222

the inaccuracy in the EAMv1-simulated aerosol properties is the leading cause for the model223

INP discrepancies. Therefore, we conclude that correctly simulating the aerosol physical and224

chemical processes in the model is critical for accurately predicting the immersion-mode INP225

concentrations at ENA.226

We note below some caveats of this study and their implications for the results. We used227

EAMv1-simulated aerosols for particle size range from 80 nm to 10 µm, whereas, PINE INP228

measurements are sensitive only up to 3µm. Additionally, SEM-EDX size distribution data229

for ENA (for 100 samples) showed that only 10 to 17% of the surface area is between 3 µm230

and 5 µm. Therefore, almost an order of magnitude difference between the observed and231

simulated INPs cannot be attributed predominantly to the differences in the size cut off232

between PINE and the nephelometer.233

We demonstrated the INP error decomposition method only for −29 ◦C, because we did not234

have co-located SEM-EDX and INP measurements for other temperatures. Although we235

have considered only the temperature-dependent errors associated with counting statistics236

in the closure calculations, we recognize that other systematic uncertainties (e.g. loss of237

larger ice crystals between the PINE chamber and the optical counter, overlap in the size238

distribution of smaller ice crystals with the larger particles not activated to droplets) can239

also affect the INP measurements. Möhler et al. (2021) showed that for immersion freezing240

of mineral dust aerosols, PINE INP measurements were within the experimental uncertain-241

ties (%20) of the INP measurements from the Aerosol Interaction and Dynamics in the242

Atmosphere cloud chamber experiments.243

Despite these caveats, this study provides key insights into the dominant sources of errors in244

immersion-mode INPs in the EAMv1 climate model. The INP error decomposition method245

we have demonstrated here can be modified and applied to other regions and field experi-246

ments. The information gained from the decomposition enables us to make recommendations247

for both model development and future field campaigns.248

Improving INPs in climate models can significantly impact the simulated super-cooled liquid249

water (SLW) in MPC clouds, albedo, and climate. For example, a global climate modeling250

study found that with fewer INPs, the negative cloud-phase feedback was weakened, and251

strongly impacting the sea ice loss and Arctic Amplication (Tan et al., 2022). Overall,252

by better diagnosing and reducing the causes of INP errors, we can improve confidence in253

the use of aerosol-aware INP parameterizations in climate models and consequently reduce254

uncertainites in climate predictions (Burrows et al., 2022).255
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