References:
1. Park B, Wannemuehler K, Marston B, Govender N, Pappas P, Chiller T: Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS (London, England) 2009, 23(4):525-530.doi:10.1097/QAD.0b013e328322ffac.
2. Zaragoza O: Basic principles of the virulence of Cryptococcus. Virulence 2019, 10(1):490-501.doi:10.1080/21505594.2019.1614383.
3. Tran-Ly AN, Reyes C, Schwarze F, Ribera J: Microbial production of melanin and its various applications. World journal of microbiology & biotechnology 2020, 36(11):170.doi:10.1007/s11274-020-02941-z.
4. Goncalves SM, Duarte-Oliveira C, Campos CF, Aimanianda V, Ter Horst R, Leite L, Mercier T, Pereira P, Fernandez-Garcia M, Antunes D et al : Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nat Commun 2020, 11(1):2282.doi:10.1038/s41467-020-16120-z.
5. Stappers MHT, Clark AE, Aimanianda V, Bidula S, Reid DM, Asamaphan P, Hardison SE, Dambuza IM, Valsecchi I, Kerscher B et al : Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature 2018, 555(7696):382-386.doi:10.1038/nature25974.
6. Huffnagle GB, Chen GH, Curtis JL, McDonald RA, Strieter RM, Toews GB: Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J Immunol 1995, 155(7):3507-3516.doi.
7. Tajima K, Yamanaka D, Ishibashi KI, Adachi Y, Ohno N: Solubilized melanin suppresses macrophage function. FEBS Open Bio 2019, 9(4):791-800.doi:10.1002/2211-5463.12615.
8. Jacobson ES, Tinnell SB: Antioxidant function of fungal melanin. J Bacteriol 1993, 175(21):7102-7104.doi:10.1128/jb.175.21.7102-7104.1993.
9. Wang Y, Aisen P, Casadevall A: Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 1995, 63(8):3131-3136.doi:10.1128/iai.63.8.3131-3136.1995.
10. Nosanchuk JD, Stark RE, Casadevall A: Fungal Melanin: What do We Know About Structure? Front Microbiol 2015, 6:1463.doi:10.3389/fmicb.2015.01463.
11. Upadhya R, Lam WC, Maybruck B, Specht CA, Levitz SM, Lodge JK: Induction of Protective Immunity to Cryptococcal Infection in Mice by a Heat-Killed, Chitosan-Deficient Strain of Cryptococcus neoformans. mBio 2016, 7(3).doi:10.1128/mBio.00547-16.
12. Takeuchi O, Akira S: Pattern recognition receptors and inflammation. Cell 2010, 140(6):805-820.doi:10.1016/j.cell.2010.01.022.
13. Chang SS, Zhang Z, Liu Y: RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol 2012, 66:305-323.doi:10.1146/annurev-micro-092611-150138.
14. Lye LF, Owens K, Shi H, Murta SM, Vieira AC, Turco SJ, Tschudi C, Ullu E, Beverley SM: Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS pathogens 2010, 6(10):e1001161.doi:10.1371/journal.ppat.1001161.
15. Moazed D: Small RNAs in transcriptional gene silencing and genome defence. Nature 2009, 457(7228):413-420.doi:10.1038/nature07756.
16. Kim VN, Han J, Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009, 10(2):126-139.doi:10.1038/nrm2632.
17. Villalobos-Escobedo JM, Herrera-Estrella A, Carreras-Villasenor N: The interaction of fungi with the environment orchestrated by RNAi. Mycologia 2016, 108(3):556-571.doi:10.3852/15-246.
18. Skowyra ML, Doering TL: RNA interference in Cryptococcus neoformans. Methods in molecular biology 2012, 845:165-186.doi:10.1007/978-1-61779-539-8_11.
19. Liu H, Cottrell TR, Pierini LM, Goldman WE, Doering TL: RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 2002, 160(2):463-470.doi:10.1093/genetics/160.2.463.
20. Dang Y, Yang Q, Xue Z, Liu Y: RNA interference in fungi: pathways, functions, and applications. Eukaryotic cell 2011, 10(9):1148-1155.doi:10.1128/EC.05109-11.
21. Bose I, Doering TL: Efficient implementation of RNA interference in the pathogenic yeast Cryptococcus neoformans. Journal of microbiological methods 2011, 86(2):156-159.doi:10.1016/j.mimet.2011.04.014.
22. Lin L, Chen S, Zhang J, Li X, Wu J, Lin N: Cryptococcus neoformans CAP10 Gene Regulates the Immune Response in Mice. J Mycol Med 2021, 31(4):101160.doi:10.1016/j.mycmed.2021.101160.
23. Panepinto J, Komperda K, Frases S, Park YD, Djordjevic JT, Casadevall A, Williamson PR: Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 2009, 71(5):1165-1176.doi:10.1111/j.1365-2958.2008.06588.x.
24. Morio F, Lombardi L, Butler G: The CRISPR toolbox in medical mycology: State of the art and perspectives. PLoS pathogens 2020, 16(1):e1008201.doi:10.1371/journal.ppat.1008201.
25. Raschmanova H, Weninger A, Glieder A, Kovar K, Vogl T: Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects. Biotechnology advances 2018, 36(3):641-665.doi:10.1016/j.biotechadv.2018.01.006.
26. Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith A: Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res 2015, 43(7):3407-3419.doi:10.1093/nar/gkv226.
27. Fuller KK, Chen S, Loros JJ, Dunlap JC: Development of the CRISPR/Cas9 System for Targeted Gene Disruption in Aspergillus fumigatus. Eukaryotic cell 2015, 14(11):1073-1080.doi:10.1128/EC.00107-15.
28. Matsu-Ura T, Baek M, Kwon J, Hong C: Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2015, 2:4.doi:10.1186/s40694-015-0015-1.
29. Liu R, Chen L, Jiang Y, Zhou Z, Zou G: Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 2015, 1:15007.doi:10.1038/celldisc.2015.7.
30. Schwartz CM, Hussain MS, Blenner M, Wheeldon I: Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica. ACS Synth Biol 2016, 5(4):356-359.doi:10.1021/acssynbio.5b00162.
31. Jacobs JZ, Ciccaglione KM, Tournier V, Zaratiegui M: Implementation of the CRISPR-Cas9 system in fission yeast. Nat Commun 2014, 5:5344.doi:10.1038/ncomms6344.
32. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM: Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 2013, 41(7):4336-4343.doi:10.1093/nar/gkt135.
33. Zhang P, Wang Y, Li C, Ma X, Ma L, Zhu X: Simplified All-In-One CRISPR-Cas9 Construction for Efficient Genome Editing in Cryptococcus Species. J Fungi (Basel) 2021, 7(7).doi:10.3390/jof7070505.
34. Wang Y, Wei D, Zhu X, Pan J, Zhang P, Huo L, Zhu X: A ’suicide’ CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans. Sci Rep 2016, 6:31145.doi:10.1038/srep31145.
35. Xie S, Shen B, Zhang C, Huang X, Zhang Y: sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PloS one 2014, 9(6):e100448.doi:10.1371/journal.pone.0100448.
36. Camacho E, Vij R, Chrissian C, Prados-Rosales R, Gil D, O’Meally RN, Cordero RJB, Cole RN, McCaffery JM, Stark RE et al : The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans. J Biol Chem 2019, 294(27):10471-10489.doi:10.1074/jbc.RA119.008684.
37. Pukkila-Worley R, Gerrald QD, Kraus PR, Boily MJ, Davis MJ, Giles SS, Cox GM, Heitman J, Alspaugh JA: Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryotic cell 2005, 4(1):190-201.doi:10.1128/EC.4.1.190-201.2005.
38. Brummelkamp TR, Bernards R, Agami R: A system for stable expression of short interfering RNAs in mammalian cells. Science 2002, 296(5567):550-553.doi:10.1126/science.1068999.
39. Ou QS, Su XJ, Lin N, Jiang L, Yang B: Construction of a capsule associated protein 10 gene eukaryotic expression vector for RNA interference and confirmation of biologic relevance. Chin Med J (Engl) 2011, 124(17):2741-2745.doi.
40. Norton EL, Sherwood RK, Bennett RJ: Development of a CRISPR-Cas9 System for Efficient Genome Editing of Candida lusitaniae. mSphere 2017, 2(3).doi:10.1128/mSphere.00217-17.
41. Enkler L, Richer D, Marchand AL, Ferrandon D, Jossinet F: Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system. Sci Rep 2016, 6:35766.doi:10.1038/srep35766.
42. Hui SW: Overview of drug delivery and alternative methods to electroporation. Methods in molecular biology 2008, 423:91-107.doi:10.1007/978-1-59745-194-9_6.