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Text S1. Solutions of internal solitary wave theories 

The Korteweg–de Vires (KdV) equation (Korteweg & de Vries, 1895) has the 

solution  

𝜂(𝑥, 𝑡) = 𝜂0sech2(𝑋 𝜆⁄ ), (S1) 

where 𝑋 = 𝑥 − 𝑐𝑡, 𝜂0 is the amplitude. 

𝑐0 = √
𝑔Δ𝜌

𝜌

ℎ1ℎ2

ℎ1 + ℎ2
, (S2) 

𝑐 = 𝑐0 +
𝛼𝜂0

3
, (S3) 

λ2 =
12𝛽

𝛼𝜂0
, (S4) 

where 𝑔 is the gravitational acceleration, Δ𝜌 is the density difference, 𝜌 is the reference 

density, ℎ1 and ℎ2 are the thickness of the upper layer and the lower layer, respectively. 

The parameters 

𝛼 =
3

2
𝑐0

ℎ1 − ℎ2

ℎ1ℎ2
, (S5) 

𝛽 =
𝑐0ℎ1ℎ2

6
. (S6) 

For Joseph–Kubota–Ko–Dobbs (JKKD) equation (Joseph, 1977; Kubota et al., 

1978), we consider the solution used by Zheng et al. (1993) 

𝜂(𝑥, 𝑡) =
𝜂0

[cosh2𝑎𝑋 + (sinh2𝑎𝑋) 𝑎2𝑏2⁄ ]
, (S7) 

𝑐0 = √
gΔ𝜌ℎ1

𝜌1
, (S8) 

𝑐 = 𝑐0 {1 +
ℎ1

2𝐻
[1 +

𝐻

𝑏
(1 − 𝑎2𝑏2)]} , (S9) 

𝑏 =
4ℎ1

2

3𝜂0
. (S10) 

The parameter 𝑎 is parameter satisfying the relationship 

𝑎𝑏tan(𝑎𝐻) = 1. (S11) 

The Benjamin–Ono (BO) equation (Benjamin, 1967; Ono, 1975) has the solution 
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𝜂(𝑥, 𝑡) =
𝜂0

1 + (𝑋 𝜆⁄ )2
. (S12) 

𝑐 = 𝑐0 +
𝛼𝜂0

4
, (S13) 

where 𝑐0 is the same as in Eq. S8. 

𝜆 =
4𝛽

𝛼𝜂0
, (S14) 

𝛼 = −
3𝑐0

2ℎ1
, (S15) 

𝛽 =
𝑐0ℎ1𝜌2

2𝜌1
. (S16) 

If the higher-order nonlinear terms were took into account in the KdV equation, the 

extended KdV (eKdV) equation (Grimshaw et al., 2004; Kakutani & Yamasaki, 1978) has 

the solution 

𝜂(𝑥, 𝑡) =
𝜂0

𝐵 + (1 − 𝐵)cosh2(𝑋 𝜆⁄ )
. (S17) 

𝑐 = 𝑐0 +
1

3
𝜂0 (𝛼 +

1

2
𝛾𝜂0) , (S18) 

𝜆2 =
12𝛽

𝜂0 (𝛼 +
1
2 𝛾𝜂0)

, (S19) 

𝐵 =
−𝛾𝜂0

2𝛼 + 𝛾𝜂0
, (S20) 

the parameters 𝛼 and 𝛽 are the same as in Eq. S5 and Eq. S6, the parameter  

𝛾 =
3𝑐0

(ℎ1ℎ2)2
[
7

8
(ℎ1 − ℎ2)2 − (

ℎ1
3 + ℎ2

3

ℎ1 + ℎ2
)] . (S21) 

The solution of Miyata–Choi–Camassa (MCC) equation (Camassa et al., 2006; 

Choi & Camassa, 1999; Miyata, 1988) is a nonlinear ordinary differential equation 

(
𝜕𝜂(𝑥, 𝑡)

𝜕𝑋
)

2

= 𝛿
𝜂2(𝜂 − 𝑎−)(𝜂 − 𝑎+)

𝜂 − 𝑎∗
, (S22) 

the parameter 

𝛿 =
3𝑔Δ𝜌

𝑐2(𝜌1ℎ1
2 − 𝜌2ℎ2

2)
, (S23) 
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𝑐2 =
𝑐0

2(ℎ1 − 𝜂0)(ℎ2 + 𝜂0)

ℎ1ℎ2 − (𝑐0
2 𝑔⁄ )𝜂0

, (S24) 

where 𝑐0 is the same as in Eq. S2. 

𝑎∗ =
ℎ1ℎ2

ℎ2 − ℎ1
, (S25) 

where 𝑎− and 𝑎+ are the two roots of a quadratic equation 

𝜂2 + 𝑞1𝜂 + 𝑞2 = 0, (S26) 

𝑞1 = −(𝑐2 𝑔⁄ ) + ℎ2 − ℎ1,  𝑞2 = ℎ1ℎ2(𝑐2 𝑐0
2⁄ − 1). (S27) 

Without any assumption about the wavelength and amplitude, Dubreil–Jacotin–

Long (DJL) (Long, 1953) is established, the equation is as follows 

𝛻2𝜂 +
𝑁2(𝑧 − 𝜂)

𝑐2
𝜂 = 0, (S28) 

where isopycnal displacement 𝜂 is a function of 𝑥 and 𝑧, 𝑐 is the phase speed, 𝑁 is the 

buoyancy frequency, expressed as: 

𝑁2(𝑧) = −
𝑔

𝜌0

𝑑𝜌(𝑧)

𝑑𝑧
, (S29) 

where 𝑔 is the gravitational acceleration, 𝜌(𝑧) is the density profile, 𝜌0 is the reference 

density. It should be noted that the DJL equation does not have explicit solutions, which 

can only be solved by the numerical method (Dunphy et al., 2011; Stastna & Lamb, 

2002).  
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Text S2. Iteration procedure of the solution of wave-induced velocity in inseparable 

form 

When the ISW which has a waveform of 𝜂(𝑥) exists, the buoyancy frequency in 

the domain can be expressed as  

𝑁𝑤𝑎𝑣𝑒
𝑖 [𝑧 + 𝜂𝑖−1(𝑥, 𝑧)] = {

0         0 ≤ 𝑧 ≤ −𝜂𝑖−1(𝑥, 𝑧)

𝑁𝑏(𝑧)   − 𝐻 − 𝜂𝑖−1(𝑥, 𝑧) ≤ 𝑧 < 0  
, (S30) 

where 𝐻 is the total depth of the domain,  𝑁𝑏(𝑧) is the background buoyancy frequency, 𝑖 

presents the iterations. The 𝜂𝑖−1(𝑥, 𝑧) is calculated by the following equation with the 

initial value of 𝜂(𝑥)  

𝜂𝑖(𝑥, 𝑧) = 𝜂(𝑥)𝜙𝑤𝑎𝑣𝑒
𝑖(𝑥, 𝑧),     𝜂0(𝑥, 𝑧) = 𝜂(𝑥), (S31) 

where the vertical structure function 𝜙𝑖(𝑥, 𝑧) is calculated by  

(
𝑑2

𝑑𝑧2
+

𝑁𝑤𝑎𝑣𝑒
2 𝑖

(𝑥, 𝑧)

𝑐0
2 ) 𝜙𝑤𝑎𝑣𝑒

𝑖(𝑥, 𝑧) = 0        𝜙𝑤𝑎𝑣𝑒(𝑥, −𝐻) = 𝜙𝑤𝑎𝑣𝑒(𝑥, 0) = 0, (S32) 

where 𝑐0 is the linear phase speed. Therefore, according to the convergent iteration results, 

the solution of wave-induced horizontal velocity can be expressed as  

𝑢(𝑥, 𝑧) = 𝑐
𝜕𝜂(𝑥, 𝑧)

𝜕𝑧
= 𝑐𝜂(𝑥)

𝜕𝜙𝑤𝑎𝑣𝑒(𝑥, 𝑧)

𝜕𝑧
. (S33) 
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Table S1. Summary of experimental conditions  

Case ℎ1(m) ℎ2(m) ℎ2/ℎ1 𝜂0/ℎ1 

1 0.04 0.12 3 0.21-0.89 

2 0.04 0.16 4 0.18-1.21 

3 0.04 0.20 5 0.49-1.71 

3(b) 0.08 0.40 5 0.34-1.49 

4 0.04 0.24 6 0.46-2.06 

5 0.04 0.28 7 0.50-2.35 

6 0.04 0.32 8 0.43-2.50 

7 0.04 0.40 10 0.46-2.36 
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Figure S1. The variation of the ratio of 𝐷𝑝−𝑝 to wavelength with amplitude. The green dots 

are measured in experiments, and the red and blue dots are calculated by the solution of 

velocity in separable and inseparable forms, respectively. Each color from light to dark 

corresponds to the ℎ2/ℎ1 from 3 to 10. 
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Figure S2.  Theoretical and experimental results of wavelength retrievals under different 

stratifications, (a)-(g) are the relationships between 𝐷𝑝−𝑝 and wavelength with ℎ2/ℎ1 from 

3 to 10 respectively. The red, magenta, yellow, green, light blue, and dark blue lines 

represent the KdV, JKKD, BO, eKdV, MCC, and DJL equations respectively, and the black 

diamond and circle represent the experimental results that ℎ1 = 0.04 m and 0.08 m, 

respectively. 
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Figure S3.  Theoretical and Experimental results of amplitude retrievals under different 

stratifications, (a)-(g) are the relationships between 𝐷𝑝−𝑝 and amplitude with ℎ2/ℎ1 from 

3 to 10 respectively. The red, magenta, yellow, green, light blue, and dark blue lines 

represent the KdV, JKKD, BO, eKdV, MCC, and DJL equations respectively, and the 

black diamond and circle represent the experimental results that ℎ1 =0.04 m and 0.08 m, 

respectively. 



 

 

5 

 

 

Figure S4.  Theoretical and Experimental results of phase speed retrievals under different 

stratifications, (a)-(g) are the relationships between 𝐷𝑝−𝑝 and phase speed with ℎ2/ℎ1 from 

3 to 10 respectively. The red, magenta, yellow, green, light blue, and dark blue lines 

represent the KdV, JKKD, BO, eKdV, MCC, and DJL equations respectively, and the black 

diamond and circle represent the experimental results that ℎ1 = 0.04 m and 0.08 m, 

respectively. 


