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Abstract. In this paper, we study the existence and asymptotic properties of solutions
to the following fractional Schrödinger equation

(−∆)σu = λu+ |u|q−2u+ µ (Iα ∗ |u|p) |u|p−2u in RN

under the normalized constraint ∫
RN

u2 = a2,

where N ≥ 2, σ ∈ (0, 1), α ∈ (0, N), q ∈ (2 + 4σ
N ,

2N
N−2σ ], p ∈ [2, 1 + 2σ+α

N ), a > 0, µ > 0,

Iα(x)= |x|α−N and λ∈R appears as a Lagrange multiplier. In the Sobolev subcritical case
q∈(2 + 4σ

N ,
2N

N−2σ ), we show that the problem admits at least two solutions under suitable

assumptions on α, a and µ. In the Sobolev critical case q = 2N
N−2σ , we prove that the

problem possesses at least one ground state solution. Furthermore, we give some stability
and asymptotic properties of the solutions. We mainly extend the results in S. Bhattarai
[1](J. Differ. Equ. 2017) and B. H. Feng et al. in [21]( J. Math. Phys. 2019) concerning
the above problem from L2-subcritical and L2-critical setting to L2-supercritical setting
with respect to q, involving Sobolev critical case especially.

Key words : Fractional Schrödinger equation; Normalized solutions; Variational meth-
ods; Stability.

2010 Mathematics Subject Classification : 35R11, 35Q55, 35Q40, 35B35.

1. Introduction and Main Result

This paper concerns the existence of solutions (u, λ) ∈ Hσ(RN) × R to the following
fractional Schrödinger equation

(−∆)σu = λu+ |u|q−2u+ µ (Iα ∗ |u|p) |u|p−2u in RN (1.1)λ

under the constraint ∫
RN
u2 = a2, (1.2)
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2 MULTIPLE NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER EQUATIONS

where N≥2, σ∈(0, 1), α∈(0, N), q∈(2 + 4σ
N
, 2∗σ], 2∗σ = 2N

N−2σ
, p∈ [2, 1 + 2σ+α

N
), a>0, µ>0

and Iα(x)= |x|α−N . Because of the nonlocality of the Choquard term µ (Iα ∗ |u|p) |u|p−2u,
we call (1.1)λ the fractional nonlinear Schrödinger equation with a focusing nonlocal per-
turbation if µ > 0. Here the fractional Laplacian (−∆)σ is defined as

(−∆)σu(x) = CN,σP.V.

∫
RN

u(x)− u(y)

|x− y|N+2σ
dy,∀u ∈ S(RN),

where S(RN) denotes the Schwartz space of rapidly decreasing smooth functions, P.V.
stands for the principle value of the integral and CN,σ is some positive normalization
constant. The Hilbert space Hσ(RN) is defined as

Hσ(RN) := {u ∈ L2(RN) : (−∆)
σ
2 u ∈ L2(RN)},

with the inner product and norm are given respectively by

(u, v) :=

∫
RN

(−∆)
σ
2 u(−∆)

σ
2 v +

∫
RN
uv, ‖u‖ :=

(∥∥(−∆)
σ
2 u
∥∥2

2
+ ‖u‖2

2

) 1
2
,

where
∥∥(−∆)

σ
2 u
∥∥2

2
:=

CN,σ
2

∫
RN
∫
RN
|u(x)−u(y)|2
|x−y|N+2σ .

Problem (1.1)λ-(1.2) arises from seeking standing waves for the following nonlinear frac-
tional Schrödinger equation

i∂tψ + (−∆)σψ = |ψ|q−2ψ + µ (Iα ∗ |ψ|p) |ψ|p−2ψ in R× RN . (1.3)

A standing wave of (1.3) is a solution having the form ψ(t, x) = e−iλtu(x) for some λ ∈ R
and u satisfying (1.1)λ. So (1.1)λ is the stationary equation of the time-dependent equation
(1.3). From Propositions 2.3-2.4 in [21], we know that the Cauchy problem for (1.3) is
locally well-posed.

We say that a function u ∈ Hσ(RN) is a weak solution to (1.1)λ if∫
RN

[(−∆)
σ
2 u(−∆)

σ
2ϕ−λuϕ]−

∫
RN
|u|q−2 uϕ−µ

∫
RN

(Iα ∗ |u|p) |u|p−2uϕ= 0, ∀ϕ ∈ Hσ(RN).

For fixed a > 0, we aim at finding a real number λ ∈ R and a function u ∈ Hσ(RN)
weakly solving (1.1)λ with ||u||2 = a. Physicists call a solution u of (1.1)λ with ||u||2 = a
a normalized solution. Normalized solutions to (1.1)λ can be obtained by searching
critical points of the energy functional

Eµ(u) =
1

2
||(−∆)

σ
2 u||22 −

µ

2p

∫
RN

(Iα ∗ |u|p) |u|p −
1

q
||u||qq, µ ≥ 0 (1.4)

on the constraint

Sa :=
{
u ∈ Hσ(RN) : ||u||22 = a2

}
with Lagrange multipliers λ. By the L2-norm preserving dilations ut(x) = t

N
2 u(tx) with

t>0, it is easy to know that

q̄ := 2 +
4σ

N
, p̄ := 1 +

2σ + α

N
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is the L2-critical exponent with respect to q, p respectively. Indeed, for any µ > 0, we have

inf
u∈Sa

Eµ(u)=−∞, if q̄ < q ≤ 2∗σ or p̄ < p ≤ (N + α)/(N − 2σ)

and

inf
u∈Sa

Eµ(u)>−∞, if 2 < q < q̄ and 1 + α/N ≤ p < p̄.

Equation (1.3) is a special case of the following equation

i∂tψ + (−∆)σψ = f(|ψ|)ψ in R× RN , (1.5)

which is a fundamental equation of the space-fractional quantum mechanics, see [28]. For
σ = 1/2, (1.5) have been also used as models to describe Boson-stars, see [34]. In [31],
S. Longhi proposed an optical realization of the fractional Schrödinger equation. One can
refer to [37, 38] for more information about physical backgrounds on (1.5).

Y. Cho et al. in [9] proved existence and uniqueness of local and global solutions of
(1.5) with the Hartree-type nonlinearity f(|ψ|)ψ = (|x|−α ∗ |ψ|2)ψ for α ∈ (0, N). They
also showed the existence of blow-up solutions in [8]. Some stable results of (1.5) with
f(|ψ|)ψ = (|x|−α ∗ |ψ|2)ψ for α ∈ (0, 2σ) are obtained by D. Wu in [48]. For the local
nonlinearity f(|ψ|)ψ = |ψ|q−2ψ with q ∈ (2, 2∗σ], the well-posedness and ill-posedness in
Hσ(RN) have been investigated in [11, 23]. By using a sharp Gagliardo-Nirenberg-type
inequality and profile decomposition in Hσ(RN), C. M. Peng et al. in [40] proved that
the standing waves of (1.5) with f(|ψ|)ψ = |ψ|q−2ψ are orbitally stable when 2 < q < q̄
and the ground state solitary waves are strongly unstable to blowup when q = q̄. In [47],
B. Thomas et al. obtained a general criterion for blow-up of radial solution of (1.5) with
f(|ψ|)ψ = |ψ|q−2ψ, q ≥ q̄ while N ≥ 2, see also V. D. Dinh in [12, 13]. For (1.5) with
combined power-type nonlinearities, i.e. f(ψ) = γ|ψ|q−2ψ + µ|ψ|p−2ψ, one can refer to
[16, 50].

In [1], S. Bhattarai considered (1.1)λ with µ ≥ 0, q∈ (2, q̄) and p∈ [2, p̄). Soon after, B.
H. Feng et al. in [21] also considered (1.1)λ in three cases: (1) µ < 0, q = q̄, p̄ < p < N+α

N−2σ
;

(2) µ > 0, q = q̄, 1 + α
N
< p < p̄; (3) µ > 0, 2 < q < q̄, p = p̄. Both the authors in [1, 21]

studied (1.1)λ by considering a minimization problem

inf
u∈Sa

Eµ(u) > −∞, where Sa :=
{
u ∈ Hσ(RN) : ||u||22 = a2

}
. (1.6)

They established the relative compactness of energy minimizing sequences (and hence,
existence and stability of minimizers) via concentration compactness principle (see Lemma
I.1 of [29]). Furthermore, a more general convolution potential was considered in [1]. S.
Bhattarai also generalized the existence result and the stability of associated standing
waves to a coupled system with Hartree type nonlinearities.

Recently, much attention are paid to the existence of normalized solutions to the classical
Schrödinger equations (i.e. σ = 1) when the energy functional is unbounded from below on
the L2-constraint, see [25, 4, 44, 10]. In this case, the constrained minimization method used
in [1, 21] does not work any more and it is also very difficult to prove the boundedness of the
related Palais-Smale sequences. To overcome this difficulty, L. Jeanjean in [24] constructed
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a special Palais-Smale sequences which concentrates around the related Pohozaev manifold;
this localization not only leads to the boundedness of the Palais-Smale sequences but also
provide the information which is vital in compactness analysis. This method was also
adopted in [25, 4, 44, 10].

We first point out that [25] studied normalized solutions to quasi-linear Schrödinger
equations and [4, 44] studied normalized solutions to Schrödinger equations with combined
nonlinearities(i.e., taking f(ψ) = − (|x|−1 ∗ |ψ|2)ψ+ |ψ|p−2ψ or |ψ|p−2ψ+ |ψ|q−2ψ). In [10],
S. Cingolani et al. considered the following equation

−∆u = λu+ γ|u|q−2u+ µ
(
IN ∗ |u|2

)
u in RN , (1.7)

where q ∈ (2, 2∗σ), γ ∈ R, µ ∈ R, IN(x) = 1
N(N−2)ωN

|x|2−N in case N ≥ 3 and IN(x) =
1

2π
log |x| in case N = 2. Here ωN denotes the volume of the unit ball in RN . In the case of

N ≥ 3, one can refer to [4, 26, 30, 32] for the existence and multiplicity of solutions with
prescribed L2-norm. S. Cingolani et al. in [10] mainly solve the case N = 2, i.e.

−∆u = λu+ γ|u|q−2u+ µ
(
log | · | ∗ |u|2

)
u in R2. (1.8)

It is easy to see that the associated energy functional is not well-defined on H1(R2) due to
the logarithmic convolution term. By choosing a suitable workspace

X :=

{
u ∈ H1(R2) |

∫
R2

log(1 + |x|)|u(x)|2dx <∞
}
,

they obtained several existence and multiplicity results under different assumptions on
q > 2, γ ∈ R and µ ∈ R.

To our best knowledge, (1.1)λ with σ = 1 is quite well understood in [10] and the
references therein, and the existing results on normalized solutions to (1.1)λ with σ ∈
(0, 1) and infu∈Sa Eµ(u)>−∞ can be summarized in [1, 21]. However, the existence
of normalized solutions to (1.1)λ with σ ∈ (0, 1) and infu∈Sa Eµ(u) = −∞ is still
unknown.

In this paper, we consider the existence and asymptotic properties of normalized solu-
tions to (1.1)λ with

σ ∈ (0, 1), µ > 0, q∈(q̄, 2∗σ] and p∈ [2, p̄).

That is, we are in the setting σ ∈ (0, 1) and infu∈Sa Eµ(u)=−∞.
To state our main results, we introduce two definitions and some frequently used con-

stants. We say that ũ is a ground state of Eµ|Sa if

d Eµ|Sa (ũ) = 0 and Eµ(ũ) = inf
{
Eµ(u) : d Eµ|Sa (u) = 0, and u ∈ Sa

}
.

The set of the ground states to Eµ|Sa will be denoted by Za,µ. We say that Za,µ is
stable if for every ε > 0 there exists δ > 0 such that, for any ψ0 ∈ Hσ(RN) with
infv∈Za,µ ‖ψ0 − v‖Hσ(RN ) < δ, we have

sup
t∈(Tmin,Tmax)

inf
v∈Za,µ

‖ψ(t, ·)− v‖Hσ(RN ) < ε,
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where ψ(t, ·) ∈ C
(
(Tmin, Tmax), H

σ(RN)
)

denotes the unique solution to (1.3) with ψ(0, x) =
ψ0(x) and (Tmin, Tmax) denotes the maximal time interval on which the existence and u-
niqueness of the solution to the Cauchy problem is guaranteed. For 2 < q ≤ 2∗σ and
1 + α

N
< p < N+α

N−2σ
, we introduce two frequently used constants:

γq =
N(q − 2)

2qσ
, δp =

N(p− 1)− α
2pσ

. (1.9)

Notice that 0<γq≤ 1, 0<δp< 1. If q̄ < q≤ 2∗σ and 2≤ p< p̄, we check that 2pδp< 2<qγq
and

C̄(p, q) := 2p(1− δp)(qγq − 2) + 2q(1− γq)(1− pδp) > 0.

Let us assume that µ, a satisfy the following conditions:

(A∗1) µqγq−2aC̄(p,q) < C̃(p, q) :=
[

q(1−pδp)

(qγq−2pδp)Aqq

]2(1−pδp)[
p(qγq−2)

(qγq−2pδp)C2pp

](qγq−2)

.

(A∗2) µa2p(1−δp) < 2σ
N
· 2∗σ
δp(2∗σ−2pδp)C2pp

·
[
pδpS

N
2σ

1−pδp

]1−pδp
.

Here Aq = S−
γq
2 , Cp = S−1

p while S and Sp denoting some embedding constants given by

S = inf
u∈Ḣσ(RN )\{0}

∥∥(−∆)
σ
2 u
∥∥2

2

||u||22∗σ
, Sp = inf

u∈Hσ(RN )\{0}

∥∥(−∆)
σ
2 u
∥∥δp

2
‖u‖(1−δp)

2( ∫
RN (Iα ∗ |u|p) |u|p

) 1
2p

.

For more information about S and Sp, we refer to [36, 17] (See also Section 2 for details).
Let u0 be the ground state of E0|Sa (See Lemma 5.5). Our main results are as follows.

Theorem 1.1. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (2 + 4σ
N
, 2∗σ), p ∈ [2, 1 + 2σ+α

N
)

and a, µ > 0 satisfy condition (A∗1). Then
(1) Eµ|Sa has a critical point ũa,µ at some energy level m(a, µ) < 0, which is an interior
local minimizer of Eµ on the set

AR0 :=
{
u ∈ Sa : ||(−∆)

σ
2 u||2 < R0

}
for a suitable R0 = R0(a, µ) > 0. Moreover, ũa,µ is a ground state of Eµ|Sa, and any ground
state of Eµ|Sa is a local minimizer of Eµ on AR0.
(2) Eµ|Sa has a second critical point of mountain pass type ûa,µ at some energy level
σ(a, µ) > 0.

(3) There exist λ̃a,µ, λ̂a,µ< 0 such that ũa,µ solves (1.1)λ̃a,µ and ûa,µ solves (1.1)λ̂a,µ. Both

ũa,µ and ûa,µ are positive and radially symmetric. Moreover, ũa,µ is radially deceasing.
(4) m(a, µ)→0−, and any ground state ũa,µ∈Sa for Eµ|Sa satisfies ||(−∆)

σ
2 ũa,µ||2 → 0 as

µ→ 0+.
(5) σ(a, µ)→ m(a, 0) and ûa,µ → u0 in Hσ(RN) as µ→ 0+, where m(a, 0) = E0(u0) and
u0 is the ground state of E0|Sa.

Theorem 1.2. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q = 2∗σ, p ∈ [2, 1 + 2σ+α
N

), a, µ > 0
satisfying conditions (A∗1)− (A∗2). Then



6 MULTIPLE NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER EQUATIONS

(1) Eµ|Sa has a critical point ũa,µ at some energy level m(a, µ) < 0, which is an interior
local minimizer of Eµ on the set

AR0 :=
{
u ∈ Sa : ||(−∆)

σ
2 u||2 < R0

}
for a suitable R0 = R0(a, µ) > 0. Moreover, ũa,µ is a ground state of Eµ|Sa, and any ground
state of Eµ|Sa is a local minimizer of Eµ on AR0.

(2) There exists λ̃a,µ < 0 such that ũa,µ solves (1.1)λ̃a,µ. Moreover, ũa,µ is positive and
radially deceasing.
(3) m(a, µ)→ 0−, and any ground state ũa,µ ∈ Sa for Eµ|Sa satisfies ||(−∆)

σ
2 ũa,µ||2 → 0

as µ→0+.

From Theorem 1.1, we know that the set of ground states of Eµ|Sa is not empty, i.e.
Za,µ 6= ∅. For the subcritical case, we have the following stability result.

Theorem 1.3. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (2 + 4σ
N
, 2∗σ), p ∈ [2, 1 + 2σ+α

N
)

and a > 0. There exists µ̃ > 0 sufficiently small such that, if 0 < µ < µ̃, then the set of
ground states Za,µ is stable.

Remark 1.4. For the Sobolev critical case q = 2∗σ, the stability of the set of ground states
is still open even for the classical case where σ = 1 (See [45]).

Remark 1.5. Theorem 1.1 indicates that there exist at least two normalized solutions to
(1.1)λ when q ∈ (q̄, 2∗σ), one ground state and one excited state, i.e. the solution’s energy
is strictly larger than that of the ground state. Moreover, the ground state to (1.1)λ
vanishes and the excited state converges to a ground state of the related limiting equation
(−∆)σu = λ̂u + |u|q−2u as µ→ 0+. Theorem 1.2 is new on the existence of normalized
solutions to the fractional Schrödinger equation with Sobolev critical exponents. For q = 2∗σ
and µ = 0, the related Pohozaev identity implies that (1.1)λ does not have any nontrivial
solutions. When it comes to µ > 0, we obtain at least one ground state to (1.1)λ, which
vanishes gradually as µ → 0+. Since Eµ|Sa is unbounded from below if q = 2∗σ, it could
be natural to expect that there exists a second critical point on Sa, which is an excited
state as in the case of q ∈ (q̄, 2∗σ). Actually, we can prove the existence of a Palais-
Smale sequence for Eµ|Sa at a mountain pass level σ(a, µ) > m(a, µ), but it seems difficult
to prove the convergence of such sequence. These results show that the nonlocal term
µ (Iα ∗ |u|p) |u|p−2u has crucial effect on the structure of the energy functional Eµ and
makes the solution set to (1.1)λ much richer.

Theorems 1.1-1.2 mainly extend the results in [1, 21], which deal with (1.1)λ, from
infu∈Sa Eµ(u) > −∞ to the case when infu∈Sa Eµ(u) = −∞, and also partially extend the
results in [10], which deal with (1.1)λ, from classical Schrödinger equation to fractional
Schrödinger equation. Theorem 1.3 implies that the introduction of a L2-subcritical focus-
ing nonlocal term µ (Iα ∗ |u|p) |u|p−2u can stable the original unstable model (1.1)λ with
µ = 0 and q ∈ (q̄, 2∗σ). If µ = 0 and q ∈ (q̄, 2∗σ), we learn from the forthcoming Lemma
5.5 that (1.1)λ possesses a positive radial ground state at energy level m(a, 0) > 0 for
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any a > 0. Moreover, the associated standing wave is strongly unstable since we are in
a L2-supercritical (with respect to q) regime (see [47, 13]). From the variational point of
view, the stabilization is reflected by the discontinuity of the ground state energy level
m(a, µ): we have m(a, µ) < 0 for every µ > 0 small, while m(a, 0) > 0. Similar behaviors
were already observed in [3, 44]. In [3], this discontinuity was created by the introduction
of a trapping potential; in [44], this discontinuity was created by the introduction of a
L2-subcritical focusing (µ > 0) local power dispersion term.

Remark 1.6. The condition α ∈ (N − 2σ,N) in the above theorems is used for getting
L∞ estimates and better regularity of solutions to (1.1)λ, which are useful in obtaining the
related Pohozaev identity (See Lemma 2.8 below). The condition (A∗1) in Theorems 1.1-1.2
makes sure that Eµ presents a so-called convex-concave geometry. Therefore, it is reason-
able to expect the existence of a local minimizer and a mountain pass critical point for
Eµ|Sa (See Remark 1.5 for details). The condition (A∗2) in Theorem 1.2 is used for obtain-
ing some energy estimates, which guarantee the compactness of the Palais-Smale sequences.

The main idea of the proof of Theorems 1.1-1.3 comes from [24, 44, 45, 10] which dealt
with the classical Schrödinger equations where σ = 1. We now underline some of the
difficulties that arise in the proof of our main results.

It is standard as in [24, 44, 45, 10] that the Pohozaev constraint approach can tackle the
case of infu∈Sa Eµ(u) = −∞. But the first difficulty is that, we need C2 regularity of
solutions to (1.1)λ to obtain the Pohozaev identity. For the case σ = 1, (1.1)λ becomes

−∆u = a(x)u := λu+ |u|q−2u+ µ (Iα ∗ |u|p) |u|p−2u in RN (1.10)

where N ≥ 2, α ∈ (0, N), q ∈ (2, 2N
N−2

], p ∈ [1 + α
N
, N+α
N−2

], µ > 0 and Iα(x) = |x|α−N . It

is easy to check that a(x) ∈ LN/2loc (RN) if max{0, N − 4} < α < N , and the Brezis-Kato

theorem in [2] implies that u ∈ Lrloc(RN) for all 1 ≤ r < +∞ and hence u ∈ W 2,r
loc (RN)

for all 1 ≤ r < +∞. Then, the Sobolev embedding theory implies u ∈ C0,β
loc (RN) for any

β ∈ (0, 1) and Schauder theory implies u ∈ C2(RN) (See Lemma 1.30 in [49]). But we are
in the setting σ ∈ (0, 1), the nonlocal term µ (Iα ∗ |u|p) |u|p−2u makes it difficult to obtain
a prior L∞ estimate and Schauder theory doesn’t imply C2 regularity of solutions to (1.1)λ
(See Theorem 2.11 in [27]).

In this paper, we try to modify the methods in [15, 42] to prove the C2 regularity of
solutions to (1.1)λ. In [15], P. D’avenia et al. considered the problem

(−∆)σu = λu+ (Iα ∗ |u|p) |u|p−2u in RN (1.11)

where σ ∈ (0, 1), N ≥ 3, λ < 0, α ∈ (0, N) and 1 + α
N
≤ p ≤ N+α

N−2σ
. They proved the C2

regularity of the positive solutions to (1.11) provided σ ∈ (1
2
, 1) and p ≥ 2 (See Remark

3.1 in [15]). In [42], Z. F. Shen et al. studied

(−∆)σu+ u = (Iα ∗ F (u)) f(u) in RN (1.12)

where σ ∈ (0, 1), N ≥ 3, α ∈ (0, N) and F (u) =
∫ u

0
f(τ)dτ ∈ C1(RN ,R). With the help

of the Dirichlet-Neumann map, the authors transformed (1.12) into a local problem on
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RN+1
+ and then they obtained a prior L∞ estimate by using the standard Moser iteration

procedure. Our proof was based on a careful analysis of the related parameters and an
iteration technique. Compared with [42], we get a prior L∞ estimate in a direct but simple
way. Furthermore, we recover the loss of σ ∈ (0, 1

2
] and allow σ ∈ (0, 1) by using an

iteration technique, which relax the restriction in [15] that σ ∈ (1
2
, 1). This part is new

and important since it makes the Pohozaev constraint approach meaningful,
see Lemma 2.8 for details.

Now we give the outline of the proof for the existence results in Theorem 1.1. To be

precise, for any u ∈ Sa and s ∈ R, set (s ? u)(x) := e
N
2
su (esx), it results that s ? u ∈ Sa,

and we introduce the fiber map

Ψµ
u(s) := Eµ(s ? u) =

e2σs

2
||(−∆)

σ
2 u||22 −

eqγqσs

q
||u||qq −

µe2pδpσs

2p
B(u, u),

where B(u, u) was defined in (2.1). Under suitable assumptions on a and µ, we can prove
that the function Ψµ

u(s) has exactly two critical points, one is a local mimimum and another
one is a global maximum (See Lemma 2.15 below). Since (Ψµ

u)′ (s) = σ
[
e2σs||(−∆)

σ
2 u||22 −

γqe
qγqσs||u||qq − µδpe

2pδpσsB(u, u)
]

= σPµ(s ? u), we shall see that critical point of Ψµ
u(s)

allows to project a function on the Pohozaev set

Pa,µ =
{
u ∈ Sa : 0 = Pµ(u) =: ||(−∆)

σ
2 u||22 − γq||u||

q
q − µδpB(u, u)

}
.

Here Pµ(u) = 0 denotes the Pohozaev identity. Naturally, we expect that Eµ|Sa has two
critical points, one is a local mimimizer and another one is of mountain pass type, which
belong to the set Pa,µ. To begin with, we try to find the first critical point of Eµ|Sa . Define
m(a, µ) := infu∈AR0

Eµ(u) with AR0 :=
{
u ∈ Sa : ||(−∆)

σ
2 u||2 < R0

}
for some R0 > 0, then

Lemma 2.17 implies that
m(a, µ) = inf

Pa,µ
Eµ < 0.

The Ekeland’s variational principle guarantees the existence of a Palais-Smale sequence
{un} ⊂ Sa for Eµ|Sa at level m(a, µ) < 0 with the additional properties

Pµ (un)→ 0 as n→∞.
The fact Pµ(un)→ 0 gives the boundedness of {un} in Hσ(RN). By proving a compactness
result (See Proposition 3.1 below), we have un → u in Hσ(RN) and so we get the desired
results. Next, we try to find the second critical point of Eµ|Sa . This relies heavily on a
refined version of the min-max principle by N. Ghoussoub [22] (See Lemma 4.2 below).
A min-max procedure guarantees the existence of a Palais-Smale sequence {un} ⊂ Sa for
Eµ|Sa at the mountain pass level σ(a, µ) > 0 with Pµ (un) → 0. Then, Proposition 3.1
implies that un → u in Hσ(RN) and so we get the second critical point of Eµ|Sa . It only
remains to prove the compactness result, i.e. Proposition 3.1, and this is standard as in
[44] since q̄ < q < 2∗σ. For the Sobolev critical case q = 2∗σ (See Theorem 1.2), we can
only obtain a local minimizer as stated in Remark 1.5. In fact, we can similarly prove
the existence of a Palais-Smale sequence {un} ⊂ Sa for Eµ|Sa at level m(a, µ) < 0 with

Pµ (un) → 0. As is well known that the energy estimate m(a, µ) < σ
N
S N

2σ is necessary in



MULTIPLE NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER EQUATIONS 9

compactness analysis when tackling Sobolev critical problems. We see immediately that

m(a, µ) < σ
N
S N

2σ since m(a, µ) < 0. But the second difficulty is that, m(a, µ) < σ
N
S N

2σ

is not sufficient in obtaining compactness of {un} in Hσ(RN) since two alternatives may
occur in Proposition 3.2. As can be seen from Section 3, the proof of Proposition 3.2 is
more delicate than that of Proposition 3.1 since q = 2∗σ. To rule out the non-compact case,

we need not only the condition m(a, µ) < σ
N
S N

2σ but also some additional energy estimates
(See Section 4 for details).

Thirdly, we need to prove the relative compactness of every minimizing sequence of
m(a, µ) = infAR1

Eµ where AR1 =
{
u ∈ Sa : ||(−∆)

σ
2 u||2 < R1

}
for some R1 > 0 in proving

Theorem 1.3. The difficulty lies in ruling out the dichotomy of every minimizing sequence
of m(a, µ). However, the concentration compactness principle developed in Hσ(RN) (see
Lemma 2.4 in [20]) seems not applicable to equation (1.1)λ for the appearance of the focus-
ing nonlocal term µ (Iα ∗ |u|p) |u|p−2u. Consequently, we try to modify the concentration
analysis in [1] to overcome this difficulty. The proof of our result is more delicate than
that of [1]. Indeed, since m(a, µ) is a local minimizer value rather than a global one, we
shall always keep the dichotomy of every minimizing sequence of m(a, µ) staying in the
admissible set AR1(See Lemma 6.2 for details).

This paper is organized as follows, in Section 2, we give some preliminary results. In
Section 3, we give the compactness analysis of Palais-Smale sequences. In Section 4, we
prove the existence results, i.e. Theorem 1.1-(1)(2)(3) and Theorem 1.2-(1)(2). In Section
5, we prove the asymptotic results, i.e. Theorem 1.1-(4)(5) and Theorem 1.2-(3). In Sec-
tion 6, we deal with the stability results, i.e. Theorem 1.3.

Notations: The homogeneous fractional Sobolev space of order σ ∈ (0, 1) is defined
as Ḣσ(RN) := {u ∈ L2∗σ(RN) : |ξ|σû(ξ) ∈ L2(RN)}, which is in fact the completion of
C∞0 (RN) under the norm ||u||2

Ḣσ(RN )
=
∫
RN |ξ|

2σ|û(ξ)|2dξ =
∫
RN |(−∆)σ/2u|2dx. The dual

space of Ḣσ(RN) is denoted by Ḣσ(RN)
′
. See [36] and references therein for the basics on

the fractional Laplacian. For β ∈ (0, 1), C0,β(RN) denotes the standard Hölder space on
RN . Lp = Lp(RN) (1 < p ≤ ∞) is the Lebesgue space with the standard norm ||u||p =( ∫

RN |u(x)|pdx
) 1
p
. We use “ → ” and “ ⇀ ” to denote the strong and weak convergence

in the related function spaces respectively. C and Ci will denote positive constants. 〈·, ·〉
denote the dual pair for any Banach space and its dual space. N = {1, 2, · · · } is the set of
natural numbers. R and C denote the sets of real and complex numbers respectively. Ω
denotes the closure of Ω. Ωc denotes the complement set of Ω. X ↪→ Y means X embeds
into Y . on(1) and On(1) mean that |on(1)| → 0 as n→ +∞ and |On(1)| ≤ C as n→ +∞,
respectively. Γ(·) is the Gamma function.
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2. Preliminaries

In this section, we give some preliminary results. To simplify notations, we denote

B(u, u) :=

∫
RN

(Iα ∗ |u|p) |u|p =

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|N−α
dxdy. (2.1)

The following lemma is the fractional Sobolev embedding.

Lemma 2.1. ([36], Theorem 6.5) Let 0 < σ < 1 be such that N > 2σ. Then there exists
a constant S = S(N, σ) > 0 such that

S = inf
u∈Ḣσ(RN )\{0}

∥∥(−∆)
σ
2 u
∥∥2

2

||u||22∗σ
(2.2)

where 2∗σ = 2N
N−2σ

. Moreover, Hσ(RN) is continuously embedded into Lr(RN) for any

2 ≤ r ≤ 2∗σ and compactly embedded into Lrloc(RN) for every 2 ≤ r < 2∗σ.

We also require the fractional Gagliardo-Nirenberg inequality.

Lemma 2.2. Let 0 < σ < 1, N > 2σ and r ∈ (2, 2∗σ). Then there exists a constant
C(N, σ, r) = S− γr2 > 0 such that

||u||r ≤ C(N, σ, r)
∥∥(−∆)

σ
2 u
∥∥γr

2
‖u‖(1−γr)

2 , ∀u ∈ Hσ(RN), (2.3)

where 2∗σ = 2N
N−2σ

and γr = N(r−2)
2rσ

.

Proof. By Hölder’s inequality, we have ||u||r ≤ ||u||(1−γr)2 ||u||γr2∗σ
. Using (2.2), we have

||u||r ≤ ||u||(1−γr)2

(
S−

1
2 ||(−∆)

σ
2 u||2

)γr
= S−

γr
2

∥∥(−∆)
σ
2 u
∥∥γr

2
‖u‖(1−γr)

2 .

�

Lemma 2.3. (Hardy-Littlewood-Sobolev inequality, Theorem 4.3 in [33]) Let t, r > 1 and
α ∈ (0, N) with 1

t
+ 1

r
= 1+ α

N
, f ∈ Lt(RN) and h ∈ Lr(RN). There exists a sharp constant

C(N,α, t, r), independent of f , h such that∣∣∣∫
RN

∫
RN

f(x)h(y)

|x− y|N−α
dxdy

∣∣∣ ≤ C(N,α, t, r)||f ||t||h||r. (2.4)

If t = r = 2N
N+α

, then

C(N,α) := C(N,α, t, r) = π
N−α

2
Γ(α

2
)

Γ(N+α
2

)

{Γ(N
2

)

Γ(N)

}− α
N
. (2.5)

Lemma 2.4. (Weak Young inequality, Section 4.3 in [33]) Let N ∈ N, α ∈ (0, N), p̂, r̂ > 1
and 1

p̂
= α

N
+ 1

r̂
. If v ∈ Lp̂(RN), then Iα ∗ v ∈ Lr̂(RN) and(∫

RN
|Iα ∗ v|r̂

) 1
r̂ ≤ C(N,α, p̂)

(∫
RN
|v|p̂
) 1
p̂

(2.6)
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where Iα(x) = |x|α−N . In particularly, we can set p̂ = N
α

and r̂ = +∞.

For any u∈Hσ(RN), take t=r= 2N
N+α

, f=h= |u|p in Lemma 2.3, by using (2.3), we have

B(u, u) ≤ C(N,α)||u||2p2Np
N+α

≤ C2p
p

∥∥(−∆)
σ
2 u
∥∥2pδp

2
‖u‖2p(1−δp)

2 , (2.7)

where Cp =
[
C(N,α)

Spδp

] 1
2p

=
[
π
N−α

2

Spδp
Γ(α

2
)

Γ(N+α
2

)

{
Γ(N

2
)

Γ(N)

}− α
N
] 1

2p
> 0 and δp = N(p−1)−α

2pσ
. Therefore,

B(u, u) is well-defined for any u ∈ Hσ(RN) if 1 + α/N ≤ p ≤ (N + α)/(N − 2σ). Let

Sp = C−1
p , we rewrite (2.7) as Sp = infu∈Hσ(RN )\{0}

∥∥∥(−∆)
σ
2 u
∥∥∥δp
2
‖u‖(1−δp)2( ∫

RN (Iα∗|u|p)|u|p
) 1

2p
. B. H. Feng et al. in

[17] proved that Sp is achieved.

Denote Aq = S−
γq
2 . For any u ∈ Sa, (2.3) and (2.7) implies that

Eµ(u)≥ 1

2
||(−∆)

σ
2 u||22−

µC2p
p

2p
||(−∆)

σ
2 u||2pδp2 a2p(1−δp)−

Aqq
q
||(−∆)

σ
2 u||qγq2 aq(1−γq), (2.8)

which indicates that infu∈Sa Eµ(u) > −∞ for 2 < q < q̄ and 2 ≤ p < p̄, see [1]. How-

ever, by the L2-norm preserving dilations ut(x) = t
N
2 u(tx) with t > 0, we deduce that

infu∈Sa Eµ(u) = −∞ for for q̄ < q ≤ 2∗σ or p̄ < p ≤ (N + α)/(N − 2σ). The constrained
minimization method used in [1, 21] does not work any more. Naturally, we would hope
to overcome this difficulty by using the Pohozaev constraint used in [44, 10]. To this end,
we need the following lemmas which is related to the Pohozaev identity.

Lemma 2.5. ([14], Proposition 5.1.1) Let u ∈ Ḣσ(RN) be a weak solution to the problem
(−∆)σu = f(x, u) in RN and assume that |f(x, u)| ≤ C(1 + |u|p), for some 1 ≤ p ≤ 2∗σ − 1
and C > 0. Then u ∈ L∞(RN).

Lemma 2.6. ([41], Proposition 2.8) Let σ > 0 and (−∆)σu = w. Assume that w ∈
C0,β(RN) and u ∈ L∞(RN) for β ∈ (0, 1].
(i) If β + 2σ ≤ 1, then u ∈ C0,β+2σ(RN). Moreover, we have

||u||C0,β+2σ ≤ C
(
||u||L∞ + ||w||C0,β

)
for a constant C = C(N, σ, β) > 0.

(ii) If β + 2σ > 1, then u ∈ C1,β+2σ−1(RN). Moreover, we have

||u||C1,β+2σ−1 ≤ C
(
||u||L∞ + ||w||C0,β

)
for a constant C = C(N, σ, β) > 0.

Lemma 2.7. ([41], Proposition 2.9) Let σ > 0 and (−∆)σu = h(x). Assume that u ∈
L∞(RN) and h ∈ L∞(RN).
(i) If 2σ ≤ 1, then u ∈ C0,β(RN) for any 0 < β < 2σ. Moreover, we have

||u||C0,β ≤ C
(
||u||L∞ + ||h||L∞

)
for a constant C = C(N, σ, β) > 0.

(ii) If 2σ > 1, then u ∈ C1,β(RN) for any 0 < β < 2σ − 1. Moreover, we have

||u||C1,β ≤ C
(
||u||L∞ + ||h||L∞

)
for a constant C = C(N, σ, β) > 0.



12 MULTIPLE NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER EQUATIONS

Lemma 2.8. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ [2, 2N
N−2σ

], p ∈ [2, 2α
N−2σ

], µ ∈ R
and λ ∈ R. If u ∈ Hσ(RN) is a nonnegative weak solution of

(−∆)σu = λu+ |u|q−2u+ µ (Iα ∗ |u|p) |u|p−2u, (2.9)

then the Pohozaev identity holds true

0 = Pµ(u) := ||(−∆)
σ
2 u||22 − γq||u||

q
q − µδpB(u, u),

where γq = N(q−2)
2qσ

and δp = N(p−1)−α
2pσ

.

Proof. Rewrite (2.9) as (−∆)σu = g(x, u) := λu + uq−1 + µ (Iα ∗ up)up−1. Sine u ∈
Hσ(RN) ↪→ Lr(RN) for any 2 ≤ r ≤ 2∗σ, then up ∈ L

r
p (RN) for any 2 ≤ r ≤ 2∗σ. From

p ∈ [2, 2α
N−2σ

], we have

2 <
N

α
· p ≤ 2∗σ and

2

p
<
N

α
≤ 2∗σ

p
.

Therefore, up ∈ L
N
α (RN) and Lemma 2.4 implies that Iα ∗ up ∈ L∞(RN)(see also [42]).

Considering |u| ≤ 1 and |u| > 1, we deduce that there exists a constant C > 0 such that
|g(x, u)| ≤ C(1 + |u|2∗σ−1). So we have u ∈ L∞(RN) from Lemma 2.5.

If σ ∈ (1
2
, 1), we know that u ∈ C1,β(RN) for any 0 < β < 2σ − 1 from Lemma 2.7-(ii).

By the usual properties of convolution (see page-1456 of [15]), Iα ∗up is C1 with derivatives

∂xi
(
Iα ∗ up

)
= Iα ∗ ∂xi(up) = Iα ∗ (pup−1∂xiu).

Therefore, ∂xiu satisfies

(−∆)σ∂xiu = ∂xig(x, u) = ∂xi

(
λu+ uq−1 + µ (Iα ∗ up)up−1

)
∈ C0,β(RN).

By Lemma 2.4, we can check that |∂xig(x, u)| ≤ C(1 + |∂xiu|2
∗
σ−1) for some C > 0. Then

Lemma 2.5 implies that ∂xiu ∈ L∞(RN). It follows from Lemma 2.6-(ii) that ∂xiu ∈
C1,β+2σ−1(RN) and then u ∈ C2(RN).

When it comes to σ ∈ (0, 1
2
], we can imitate the proof of Proposition 3.7 in [42] and

obtain u ∈ C2(RN). Indeed, for σ ∈ (0, 1
2
], Lemma 2.7-(i) implies that u ∈ C0,β(RN) for

any 0 < β < 2σ; if β + 2σ ≤ 1, Lemma 2.6-(i) implies that u ∈ C0,β+2σ(RN) for any
0 < β < 2σ, repeat this step k times (k ∈ N) such that

β + k · 2σ ≤ 1, β + (k + 1) · 2σ > 1, u ∈ C0,β+k·2σ(RN).

It results to u ∈ C1,β+(k+1)·2σ−1(RN) by Lemma 2.6-(ii). Therefore, we have ∂xiu ∈
C0,β+(k+1)·2σ−1(RN). If (β + (k + 1) · 2σ − 1) + 2σ > 1, it follows from Lemma 2.6-(ii) that
∂xiu ∈ C1,β+(k+2)·2σ−2(RN) and we finish the proof. Otherwise, if (β+(k+1)·2σ−1)+2σ ≤
1, repeat the same step of u for j times (j ∈ N) such that

(β + (k + 1) · 2σ − 1) + j · 2σ ≤ 1, (β + (k + 1) · 2σ − 1) + (j + 1) · 2σ > 1

and ∂xiu ∈ C0,β+(k+1)·2σ−1+j·2σ(RN). It results to ∂xiu ∈ C1,β+(k+1)·2σ−2+(j+1)·2σ(RN) by
Lemma 2.6-(ii).
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Finally, it is reasonable to multiply (2.9) by x · ∇u. We can proceed as in the proof of
Proposition 2.10 in [46] and get Pµ(u) = 0.

�

Remark 2.9. Notice that max{2, p̄} < 2α
N−2σ

< N+α
N−2σ

since α ∈ (N − 2σ,N).

To overcome the difficulty that infu∈Sa Eµ(u) = −∞, we introduce the Pohozaev set:

Pa,µ = {u ∈ Sa : Pµ(u) = 0} , (2.10)

where

Pµ(u) =: ||(−∆)
σ
2 u||22 − γq||u||

q
q − µδpB(u, u) (2.11)

for γq = N(q−2)
2qσ

and δp = N(p−1)−α
2pσ

. As a consequence of Lemma 2.8, we known that any

nonnegative critical point of Eµ|Sa stays in Pa,µ. The properties of Pa,µ are related to
the minimax structure of Eµ|Sa , and in particular to the behavior of Eµ with respect to
dilations preserving the L2-norm. To be more precise, for u ∈ Sa and s ∈ R, let

(s ? u)(x) := e
N
2
su (esx) , for a.e. x ∈ RN . (2.12)

It results that s ? u ∈ Sa, and hence it is natural to study the fiber map

Ψµ
u(s) := Eµ(s ? u) =

e2σs

2
||(−∆)

σ
2 u||22 −

eqγqσs

q
||u||qq −

µe2pδpσs

2p
B(u, u). (2.13)

We shall see that critical point of Ψµ
u(s) allow to project a function on Pa,µ. Thus, mono-

tonicity and convexity properties of Ψµ
u(s) strongly affects the structure of Pa,µ (and in

turn the geometry of Eµ|Sa ), and also have a strong impact on properties of equation
(1.1)λ. In this direction, let us consider the decomposition of Pa,µ into the disjoint union
Pa,µ = Pa,µ+ ∪ Pa,µ0 ∪ Pa,µ− , where

Pa,µ+ :=
{
u ∈ Pa,µ : 2||(−∆)

σ
2 u||22 > qγ2

q ||u||
q
q + 2µpδ2

pB(u, u)
}

=
{
u ∈ Pa,µ : (Ψµ

u)′′ (0) > 0
}

Pa,µ0 :=
{
u ∈ Pa,µ : 2||(−∆)

σ
2 u||22 = qγ2

q ||u||
q
q + 2µpδ2

pB(u, u)
}

=
{
u ∈ Pa,µ : (Ψµ

u)′′ (0) = 0
}

Pa,µ− :=
{
u ∈ Pa,µ : 2||(−∆)

σ
2 u||22 < qγ2

q ||u||
q
q + 2µpδ2

pB(u, u)
}

=
{
u ∈ Pa,µ : (Ψµ

u)′′ (0) < 0
}

For u ∈ Sa, s ∈ R and the fiber Ψµ
u introduced in (2.13), we have

(Ψµ
u)′ (s) = σ

[
e2σs||(−∆)

σ
2 u||22 − γqeqγqσs||u||

q
q − µδpe

2pδpσsB(u, u)
]

= σPµ(s ? u) (2.14)

where Pµ is defined by (2.11). From (2.14), we can see immediately that:

Corollary 2.10. Let u ∈ Sa. Then s ∈ R is a critical point for Ψµ
u if and only if s?u ∈ Pa,µ.

In particular, u ∈ Pa,µ if and only if 0 is a critical point of Ψµ
u. For future convenience,

we also recall that the map (s, u) ∈ R × Hσ(RN) 7→ s ? u ∈ Hσ(RN) is continuous (The
proof is similar to the one of Lemma 3.5 in [6]).

We also need the following result, where TuSa denotes the tangent space to Sa in u.
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Lemma 2.11. For u ∈ Sa and s ∈ R the map

TuSa → Ts?uSa, ϕ 7→ s ? ϕ

is a linear isomorphism with inverse ψ 7→ (−s) ? ψ.

Proof. It is similar to the proof of Lemma 3.6 in [6].
�

We now study the structure of the Pohozaev manifold Pa,µ and Eµ. Since q ∈ (2+ 4σ
N
, 2∗σ]

and p ∈ [2, 1 + 2σ+α
N

), we have 2pδp < 2 < qγq. Recalling the decomposition of Pa,µ =
Pa,µ+ ∪ Pa,µ0 ∪ Pa,µ− , we have:

Lemma 2.12. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (2 + 4σ
N
, 2∗σ], p ∈ [2, 1 + 2σ+α

N
),

a, µ > 0 satisfying condition (A∗1). Then Pa,µ0 = ∅, and Pa,µ is a smooth manifold of
codimension 2 in Hσ(RN).

Proof. We only prove the case q ∈ (2 + 4σ
N
, 2∗σ). For the case q = 2∗σ, the proof is much

easier since γ2∗σ = 1. Firstly, we claim that Pa,µ0 = ∅. Otherwise, there exists u ∈ Pa,µ0 .
From Pµ(u) = 0 and (Ψµ

u)′′(0) = 0, we have

||(−∆)
σ
2 u||22 = γq||u||qq + µδpB(u, u), 2||(−∆)

σ
2 u||22 = qγ2

q ||u||
q
q + 2µpδ2

pB(u, u),

which imply that ||(−∆)
σ
2 u||22 = γq(qγq−2pδp)

2(1−pδp)
||u||qq and ||(−∆)

σ
2 u||22 = µδp(qγq−2pδp)

qγq−2
B(u, u).

By using (2.3) and (2.7), the lower and upper bounds of ||(−∆)
σ
2 u||2 are given by[ 2(1− pδp)

γq(qγq − 2pδp)Aqqaq(1−γq)
] 1
qγq−2

≤ ||(−∆)
σ
2 u||2 ≤

[µδp(qγq − 2pδp)C2p
p a

2p(1−δp)

qγq − 2

] 1
2(1−pδp)

.

This leads to µqγq−2aC̄(p,q) > C̃(p, q), which contradicts with (A∗1). Here we used the fact

that ( qγq
2

)2−2pδp(2pδp
2

)qγq−2 < 1 and this can be proved by using the monotonicity of lnx
x−1

.

Next we check that Pa,µ is a smooth manifold of codimension 2 in Hσ(RN). We note that

Pa,µ = {u ∈ Hσ(RN) : Pµ(u) = 0, G(u) = 0} for G(u) = ||u||22 − a2, with Pµ and G of class
C1 in Hσ(RN). Thus, we have to show that the differential (dG(u), dPµ(u)) : Hσ(RN)→ R2

is surjective, for every u ∈ Pa,µ. We claim that: ∀ u ∈ Pa,µ, ∃ ϕ ∈ TuSa such that
dPµ(u)[ϕ] 6= 0. Otherwise, ∃ u ∈ Pa,µ such that dPµ(u)[ϕ] = 0 for any ϕ ∈ TuSa. Then
u is a constrained critical point for Pµ on Sa, and hence by the Lagrange multipliers rule
there exists ν ∈ R such that

2(−∆)σu− νu− qγq|u|q−2u− 2µpδp (Iα ∗ |u|p) |u|p−2u = 0 in RN . (2.15)

By Lemma 2.8, we have the following Pohozaev identity

(2σ −N)||(−∆)
σ
2 u||22 +

νN

2
||u||22 +Nγq||u||qq + µ(N + α)δpB(u, u) = 0.

Combined with (2.15), we derive that (Ψµ
u)′′(0) = 0, that is u ∈ Pa,µ0 , a contradiction.

Then the claim is true. Once that the existence of ϕ is established, the system{
dG(u)[αϕ+ βu] = x
dPµ(u)[αϕ+ βu] = y

⇔
{

2βa2 = x
αdPµ(u)[ϕ] + βdPµ(u)[u] = y
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is solvable with respect to α, β, for any (x, y) ∈ R2. Thus the surjectivity is proved. �

The manifold Pa,µ is then divided into its two components Pa,µ+ and Pa,µ− , having disjoint
closure. We can prove that Pa,µ is a natural constraint, in the following sense:

Lemma 2.13. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (2 + 4σ
N
, 2∗σ], p ∈ [2, 1 + 2σ+α

N
),

a, µ > 0 satisfying condition (A∗1). If u ∈ Pa,µ is a critical point for Eµ|Pa,µ, then u is a
critical point for Eµ|Sa.

Proof. We only prove the case q ∈ (2+ 4σ
N
, 2∗σ). For the case q = 2∗σ, the proof is much easier

since γ2∗σ = 1. We recall that by Lemma 2.12, Pa,µ is a smooth manifold of codimension 2
in Hσ, and its subset Pa,µ0 is empty. If u ∈ Pa,µ is a critical point for Eµ|Pa,µ , then by the
Lagrange multipliers rule there exists λ, ν ∈ R such that

dEµ(u)[ϕ]− λ
∫
RN
uϕ− νdPµ(u)[ϕ] = 0, ∀ϕ ∈ Hσ.

That is (1−2ν)(−∆)σu−λu+(νqγq−1)|u|q−2u+µ(2νpδp−1) (Iα ∗ |u|p) |u|p−2u = 0. But,
by the Pohozaev identity, this implies that

(1− 2ν)||(−∆)
σ
2 u||22 + (νqγ2

q − γq)||u||
q
q + µ(2νpδ2

p − δp)B(u, u) = 0.

Since u ∈ Pa,µ, this implies that ν
(

2||(−∆)
σ
2 u||22 − qγ2

q ||u||
q
q − 2µpδ2

pB(u, u)
)

= 0. But the

term inside the bracket cannot be 0, since u /∈ Pa,µ0 , and then necessarily ν = 0.
�

Next, we study the fiber map Ψµ
u(s) and determine the location and types of critical

points for Eµ|Sa . Recall that q ∈ (q̄, 2∗σ], p ∈ [2, p̄) and 2pδp < 2 < qγq. Consider the
constrained functional Eµ|Sa , by (2.8), we have

Eµ(u)≥ 1

2
||(−∆)

σ
2 u||22−

µC2p
p

2p
||(−∆)

σ
2 u||2pδp2 a2p(1−δp)−

Aqq
q
||(−∆)

σ
2 u||qγq2 aq(1−γq), ∀u ∈ Sa.

Therefore, to understand the geometry of the functional Eµ|Sa it is useful to consider the
function h : R+ → R:

h(t) =
1

2
t2 −

µC2p
p

2p
a2p(1−δp)t2pδp−

Aqq
q
aq(1−γq)tqγq .

Since a, µ>0 and 2pδp<2<qγq, we have that h(0+) = 0− and h(+∞) = −∞. If q = 2∗σ,

we have γ2∗σ = 1, A2∗σ = S− 1
2 and hence h(t) = 1

2
t2 − µC2pp

2p
a2p(1−δp)t2pδp− S

− 2∗σ
2

2∗σ
t2
∗
σ .

Lemma 2.14. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (2 + 4σ
N
, 2∗σ], p ∈ [2, 1 + 2σ+α

N
),

a, µ > 0 satisfying condition (A∗1). Then the function h has a local strict minimum at
negative level and a global strict maximum at positive level. Moreover, there exist 0 <
R0 < R1, both depending on a and µ, such that h(R0) = 0 = h(R1) and h(t) > 0 if and
only if t ∈ (R0, R1).
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Proof. We only prove the case q ∈ (2 + 4σ
N
, 2∗σ). For the case q = 2∗σ, the proof is much

easier since γ2∗σ = 1. For t > 0, it is easy to check that h(t) > 0 if and only if

ϕ(t) >
µC2p

p

2p
a2p(1−δp), with ϕ(t) =

1

2
t2−2pδp −

Aqq
q
aq(1−γq)tqγq−2pδp .

Also ϕ has a unique critical point on (0,+∞), which is a global maximum point at positive

level, in t̄ =
[

q(1−pδp)

(qγq−2pδp)Aqqaq(1−γq)

] 1
qγq−2

and the maximum level is ϕ(t) = qγq−2

2(qγq−2pδp)
t
(2−2pδp)

.

From condition (A∗1), we see that µqγq−2aC̄(p,q) < C̃(p, q)⇐⇒ ϕ(t) >
µC2pp

2p
a2p(1−δp). There-

fore, h is positive on an open interval (R0, R1) if and only if µqγq−2aC̄(p,q) < C̃(p, q). It
follows immediately that h has a global maximum at positive level in (R0, R1). Moreover,
since h(0+) = 0−, there exists a local minimum point at negative level in (0, R0). The fact
that h has no other critical points can be verified observing that h′(t) = 0 if and only if

ψ(t) = µδpC2p
p a

2p(1−δp), with ψ(t) = t2−2pδp − γqAqqaq(1−γq)tqγq−2pδp .

Clearly ψ has only one critical point at t̃ =
[

2(1−pδp)

γq(qγq−2pδp)Aqqaq(1−γq)

] 1
qγq−2

which is a strict

maximum and ψ(t̃) = qγq−2

qγq−2pδp
t̃2−2pδp . Using ( qγq

2
)2−2pδp(2pδp

2
)qγq−2 < 1 and condition (A∗1),

we check that ψ(t̃)>µδpC2p
p a

2p(1−δp). �

Lemma 2.15. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (2 + 4σ
N
, 2∗σ], p ∈ [2, 1 + 2σ+α

N
),

a, µ > 0 satisfying condition (A∗1). For every u ∈ Sa, the function Ψµ
u has exactly two

critical points su < tu ∈ R and two zeros cu < du ∈ R, with su < cu < tu < du. Moreover:
(1) su ? u ∈ Pa,µ+ and tu ? u ∈ Pa,µ− , and if s ? u ∈ Pa,µ, then either s = su or s = tu;
(2) ||(−∆)

σ
2 (s ? u)||2 ≤ R0 for every s ≤ cu, and

Eµ (su ? u) = min
{
Eµ(s ? u) : s ∈ R and ||(−∆)

σ
2 (s ? u)||2 < R0

}
< 0.

(3) We have
Eµ (tu ? u) = max{Eµ(s ? u) : s ∈ R} > 0,

and Ψµ
u is strictly decreasing and concave on (tu,+∞).

(4) The maps u ∈ Sa 7→ su ∈ R and u ∈ Sa 7→ tu ∈ R are of class C1.

Proof. We only prove the case q ∈ (2 + 4σ
N
, 2∗σ). For the case q = 2∗σ, the proof is much

easier since γ2∗σ = 1. Let u ∈ Sa, as observed in Corollary 2.10, s ? u ∈ Pa,µ if and only if
(Ψµ

u)′(s) = 0. Thus, we first show that Ψµ
u has at least two critical points. To this end, we

recall that by (2.8)

Ψµ
u(s) = Eµ(s ? u) ≥ h

(
||(−∆)

σ
2 (s ? u)||2

)
= h

(
eσs||(−∆)

σ
2 u||2

)
.

Thus, the C2 function Ψµ
u is positive on

(
1
σ

log R0

||(−∆)
σ
2 u||2

, 1
σ

log R1

||(−∆)
σ
2 u||2

)
, and clearly

Ψµ
u(−∞) = 0−, Ψµ

u(+∞) = −∞. It follows that Ψµ
u has at least two critical points su < tu,

with su local minimum point on (−∞, 1
σ

log R0

||(−∆)
σ
2 u||2

) at negative level, and tu > su global
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maximum point at positive level. It is not difficult to check that there are no other critical
points. Indeed (Ψµ

u)′(s) = 0 reads

ϕ(s) = µδpB(u, u), with ϕ(s) = eσ(2−2pδp)s||(−∆)
σ
2 u||22 − γqeσ(qγq−2pδp)s||u||qq.

But ϕ has a unique maximum point at s̄ with eσ(qγq−2)s̄ =
(2−2pδp)||(−∆)

σ
2 u||22

γq(qγq−2pδp)||u||qq
. By the

Gagliardo-Nirenberg inequality (2.3) and µqγq−2aC̄(p,q) < C̃(p, q), we deduce that

ϕ(s̄) =
qγq − 2

qγq − 2pδp
e2σ(1−pδp)s̄||(−∆)

σ
2 u||22 > µδpC2p

p a
2p(1−δp)||(−∆)

σ
2 u||2pδp2 ≥ µδpB(u, u).

That is ϕ(s̄) > µδpB(u, u), so Ψµ
u has exactly two critical points. By Corollary 2.10, we

have su ? u, tu ? u ∈ Pa,µ, s ? u ∈ Pa,µ implies s ∈ {su, tu}. By minimality (Ψµ
su?u)

′′(0) =
(Ψµ

u)′′ (su) ≥ 0, and in fact strict inequality must hold, since Pa,µ0 = ∅; namely su?u ∈ Pa,µ+ .
In the same way tu ? u ∈ Pa,µ− .

By monotonicity and recalling the behavior at infinity, Ψµ
u has moreover exactly two

zeros cu < du, with su < cu < tu < du; and, being a C2 function, Ψµ
u has at least two

inflection points. Arguing as before, we can easily check that actually Ψµ
u has exactly two

inflection points. In particular, Ψµ
u is concave on [tu,+∞).

It remains to show that u 7→ su and u 7→ tu are of class C1; to this end, we apply the
implicit function theorem on the C1 function Φ(s, u) := (Ψµ

u)′(s). We use that Φ (su, u) = 0,
that ∂sΦ (su, u) = (Ψµ

u)′′ (su) > 0, and the fact that it is not possible to pass with continuity
from Pa,µ+ to Pa,µ− (since Pa,µ0 = ∅). The same argument proves that u 7→ tu is C1.

�

For k > 0, let us set

Ak :=
{
u ∈ Sa : ||(−∆)

σ
2 u||2 < k

}
, and m(a, µ) := inf

u∈AR0

Eµ(u).

Corollary 2.16. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (q̄, 2∗σ], p ∈ [2, p̄), a, µ > 0
satisfying condition (A∗1). Then the set Pa,µ+ is contained in AR0 =

{
u ∈ Sa : ||(−∆)

σ
2 u||2 < R0

}
,

and supPa,µ+
Eµ ≤ 0 ≤ infPa,µ− Eµ.

Proof. It is a direct conclusion of Lemma 2.15. Indeed, ∀u ∈ Pa,µ+ , Lemma 2.15 implies
that su = 0, Eµ(u) ≤ 0 and ||(−∆)

σ
2 u||2 < R0. Similarly, u ∈ Pa,µ− implies that tu = 0 and

Eµ(u) ≥ 0. �

Lemma 2.17. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (2 + 4σ
N
, 2∗σ], p ∈ [2, 1 + 2σ+α

N
),

a, µ > 0 satisfying condition (A∗1). It results that m(a, µ) ∈ (−∞, 0) and

m(a, µ) = inf
Pa,µ

Eµ = inf
Pa,µ+

Eµ.

Moreover, there exists a constant ρ > 0 (independent of a and µ) small enough such that

m(a, µ) < inf
AR0
\AR0−ρ

Eµ.
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Proof. For u ∈ AR0 , we have Eµ(u) ≥ h
(
||(−∆)

σ
2 u||2

)
≥ mint∈[0,R0] h(t) > −∞, and hence

m(a, µ) > −∞. Moreover, for any u ∈ Sa we have ||(−∆)
σ
2 (s?u)||2 < R0 and Eµ(s?u) < 0

for s� −1, and hence m(a, µ) < 0.
By Corollary 2.16, we have m(a, µ) ≤ infPa,µ+

Eµ since Pa,µ+ ⊂ AR0 . On the other hand,

if u ∈ AR0 then su ? u ∈ Pa,µ+ ⊂ AR0 , and

Eµ (su ? u) = min
{
Eµ(s ? u) : s ∈ R and ||(−∆)

σ
2 (s ? u)||2 < R0

}
≤ Eµ(u).

which implies that infPa,µ+
Eµ ≤ m(a, µ). To prove that infPa,µ+

Eµ = infPa,µ Eµ, it is suffi-

cient to recall that Eµ ≥ 0 on Pa,µ− , see Corollary 2.16.
Finally, by continuity of h there exists ρ > 0 (independent of a and µ) such that h(t) ≥

m(a,µ)
2

if t ∈ [R0 − ρ,R0]. Therefore Eµ(u) ≥ h
(
||(−∆)

σ
2 u||2

)
≥ m(a,µ)

2
> m(a, µ) for every

u ∈ Sa with ||(−∆)
σ
2 u||2 ∈ [R0 − ρ,R0]. �

Lemma 2.18. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (2 + 4σ
N
, 2∗σ], p ∈ [2, 1 + 2σ+α

N
),

a, µ > 0 satisfying condition (A∗1). Suppose that Eµ(u) < m(a, µ). Then the value tu
defined by Lemma 2.15 is negative.

Proof. We consider again the function Ψµ
u, and we consider su < cu < tu < du as in Lemma

2.15. If du ≤ 0, then tu < 0, and hence we can assume by contradiction that du > 0. If
0 ∈ (cu, du), then Eµ(u) = Ψµ

u(0) > 0, which is not possible since Eµ(u) < m(a, µ) < 0.
Therefore cu > 0, and by Lemma 2.15-(2)

m(a, µ) > Eµ(u) = Ψµ
u(0) ≥ inf

s∈(−∞,cu]
Ψµ
u(s)

≥ inf
{
Eµ(s ? u) : s ∈ R and ||(−∆)

σ
2 (s ? u)||2 < R0

}
= Eµ (su ? u) ≥ m(a, µ)

which is again a contradiction. �

Lemma 2.19. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (2 + 4σ
N
, 2∗σ], p ∈ [2, 1 + 2σ+α

N
),

a, µ > 0 satisfying condition (A∗1). It results that

σ̃(a, µ) := inf
u∈Pa,µ−

Eµ(u) > 0.

Proof. Let tmax denote the strict maximum of the function h at positive level, see Lemma
2.14. For every u ∈ Pa,µ− , there exists τu ∈ R such that ||(−∆)

σ
2 (τu ? u) ||2 = tmax.

Moreover, since u ∈ Pa,µ− we also have by Lemma 2.15 that the value 0 is the unique strict
maximum of the function Ψµ

u. Therefore

Eµ(u) = Ψµ
u(0) ≥ Ψµ

u (τu) = Eµ (τu ? u) ≥ h
(
||(−∆)

σ
2 (τu ? u) ||2

)
= h (tmax) > 0.

Since u ∈ Pa,µ− was arbitrarily chosen, we deduce that infPa,µ− Eµ ≥ maxR h > 0. �

3. Compactness of Palais-Smale sequences

In this section, we give the compactness analysis of Palais-Smale sequences. Denote

Sa,r := Hσ
rad ∩ Sa =

{
u ∈ Hσ

rad(RN) : ||u||22 = a2
}
. (3.1)

Next, we will prove the following two Propositions.
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Proposition 3.1. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N−2σ,N), q ∈ (2+ 4σ
N
, 2∗σ), p ∈ [2, 1+ 2σ+α

N
)

with a, µ > 0 satisfying condition (A∗1). Let {un} ⊂ Sa,r be a Palais-Smale sequence for
Eµ|Sa at level c 6= 0 with Pµ (un) → 0 as n → ∞. Then up to a subsequence un → u
strongly in Hσ, and u ∈ Sa is a real-valued radial solution to (1.1)λ for some λ < 0.

Proof. The proof is divided into four main steps.
(1) Boundedness of {un} in Hσ.

Since Pµ(un) = o(1), we have Eµ (un) =
(

1
2
− 1

qγq

)
||(−∆)

σ
2 un||22−µδp

(
1

2pδp
− 1

qγq

)
B(un, un)+

o(1). It results to(
1

2
− 1

qγq

)
||(−∆)

σ
2 un||22 ≤ (c+ 1) + µδp

(
1

2pδp
− 1

qγq

)
B(un, un)

≤ (c+ 1) + µδp

(
1

2pδp
− 1

qγq

)
C2p
p a

2p(1−δp)
∥∥(−∆)

σ
2 un
∥∥2pδp

2
.

As 2pδp < 2 < qγq, we have ||(−∆)
σ
2 un||2 ≤ C. So {un} is bounded in Hσ since ||un||2 = a.

(2) ∃ Lagrange multipliers λn → λ ∈ R. Since N ≥ 2, the embedding Hσ
rad

(
RN
)
↪→

Lr
(
RN
)

is compact for r ∈ (2, 2∗σ), and we deduce that there exists u ∈ Hσ
rad such that,

up to a subsequence, un ⇀ u weakly in Hσ, un → u strongly in Lr
(
RN
)

for r ∈ (2, 2∗σ),

and a.e. in RN . Now, since {un} is a Palais-Smale sequence of Eµ|Sa , by the Lagrange
multipliers rule there exists λn ∈ R such that∫
RN

[(−∆)
σ
2 un·(−∆)

σ
2ϕ−λnunϕ]−

∫
RN
|un|q−2 unϕ−µ

∫
RN

(Iα ∗ |un|p) |un|p−2unϕ=o(1)(||ϕ||Hσ)

(3.2)
for every ϕ ∈ Hσ, where o(1)→ 0 as n→∞. In particular, take ϕ = un, then

λna
2 = ||(−∆)

σ
2 un||22 − ||un||

q
q − µB(un, un) + o(1),

and the boundedness of {un} in Hσ ∩ Lq ∩ L
2Np
N+α implies that {λn} is bounded as well;

thus, up to a subsequence λn → λ ∈ R.
(3) We claim that λ < 0 and u 6≡ 0. Recalling that Pµ (un)→ 0, we have

λna
2 = (γq − 1)||un||qq + µ(δp − 1)B(un, un) + o(1).

Let n→ +∞, then λa2 = (γq − 1)||u||qq +µ(δp− 1)B(u, u). Since µ > 0 and 0 < γq, δp < 1,
we deduce that λ ≤ 0, with equality if and only if u ≡ 0. If λn → 0, we have lim

n→∞
||un||qq =

0 = lim
n→∞

B(un, un). Using again Pµ (un)→ 0, we have Eµ (un)→ 0. A contradiction with

Eµ (un)→ c 6= 0 and thus λn → λ < 0 and u 6≡ 0.
(4) We claim un → u in Hσ. Since un ⇀ u in Hσ, then (3.2) implies that

dEµ(u)ϕ− λ
∫
RN
uϕ = 0, ∀ϕ ∈ Hσ. (3.3)

That is u is a weak radial (and real) solution to

(−∆)σu = λu+ |u|q−2u+ µ (Iα ∗ |u|p) |u|p−2u in RN .
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Choosing ϕ = un − u in (3.2) and (3.3), and subtracting, we obtain

(dEµ (un)− dEµ(u)) [un − u]− λ
∫
RN
|un − u|2 = o(1).

Using the strong L
2Np
N+α convergence of {un}, we infer that∫

RN
(Iα ∗ |un|p) |un|p−2un(un − u) ≤ ||un||2p−1

2Np
N+α

||un − u|| 2Np
N+α
→ 0.

Similarly, we have
∫
RN (Iα ∗ |u|p) |u|p−2u(un−u)→ 0. Therefore, we obtain that ||(−∆)

σ
2 (un−

u)||22 − λ||un − u||22 = o(1). �

Proposition 3.2. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q = 2∗σ, p ∈ [2, 1 + 2σ+α
N

) with
a, µ > 0 satisfying condition (A∗1). Let {un} ⊂ Sa,r = Sa∩Hσ

rad be a Palais-Smale sequence
for Eµ|Sa at level c 6= 0, with

c <
σ

N
S

N
2σ and Pµ (un)→ 0 as n→∞,

where S denotes the best constant in the Sobolev inequality (2.2). Then one of the following
alternatives holds:
(i) either up to a subsequence un ⇀ u weakly in Hσ(RN) but not strongly, where u 6≡ 0 is
a solution to (1.1)λ for some λ < 0, and

Eµ(u) ≤ c− σ

N
S

N
2σ ;

(ii) or up to a subsequence un → u strongly in Hσ(RN), Eµ(u) = c, and u solves (1.1)λ-
(1.2) for some λ < 0.

Proof. The proof is divided into four main steps. Similar to the proof of Proposition 3.1,
we can easily get steps (1) and (2), that is,
(1) {un} is bounded in Hσ.
(2) ∃ Lagrange multipliers λn → λ ∈ R. Moreover, we have∫
RN

[(−∆)
σ
2 un(−∆)

σ
2ϕ−λnunϕ]−

∫
RN
|un|2

∗
σ−2 unϕ−µ

∫
RN

(Iα ∗ |un|p) |un|p−2unϕ=o(1)(||ϕ||Hσ)

(3.4)
for every ϕ ∈ Hσ, where o(1)→ 0 as n→∞. In particular, take ϕ = un, then

λna
2 = ||(−∆)

σ
2 un||22 − ||un||

2∗σ
2∗σ
− µB(un, un) + o(1).

(3) We claim that λ < 0 and u 6≡ 0. Recalling that Pµ (un)→ 0, we have

λna
2 = µ(δp − 1)B(un, un) + o(1).

Let n → +∞, then λa2 = µ(δp − 1)B(u, u). Since µ > 0 and 0 < δp < 1, we deduce
that λ ≤ 0, with equality if and only if u ≡ 0. If λn → 0, we have lim

n→∞
B(un, un) = 0.
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Using again Pµ (un)→ 0, we have lim
n→∞

||(−∆)
σ
2 un||22 = lim

n→∞
||un||2

∗
σ

2∗σ
= `. Therefore, by the

Sobolev inequality ` ≥ S`
2
2∗σ . We have ` = 0 or ` ≥ S N

2σ . Since

0 6= c = lim
n→+∞

Eµ (un) = lim
n→+∞

[1

2
||(−∆)

σ
2 un||

2

2 −
µ

2p
B(un, un)− 1

2∗σ
||un||2

∗
σ

2∗σ

]
=

σ

N
`,

we have ` 6= 0 and ` ≥ S N
2σ . This leads to c = lim

n→∞
Eµ (un) = σ

N
` ≥ σ

N
S N

2σ , and this

contradicts our assumptions c < σ
N
S N

2σ . Therefore, we have λ < 0 and u 6≡ 0.
(4) Conclusion. Since un ⇀ u 6≡ 0 weakly in Hσ, then (3.4) implies that

dEµ(u)ϕ− λ
∫
RN
uϕ = 0, ∀ϕ ∈ Hσ. (3.5)

That is u is a weak radial (and real) solution to

(−∆)σu = λu+ |u|2∗σ−2u+ µ (Iα ∗ |u|p) |u|p−2u in RN .

Therefore, we have Pµ(u) = ||(−∆)
σ
2 u||22 − ||u||

2∗σ
2∗σ
− µδpB(u, u) = 0.

Denote vn = un − u, then vn ⇀ 0 in Hσ
(
RN
)

and therefore

||(−∆)
σ
2 un||22 = ||(−∆)

σ
2 u||22 + ||(−∆)

σ
2 vn||22 + o(1).

By the Brézis-Lieb type lemmas in [5, 35], we have

||un||2
∗
σ

2∗σ
= ||u||2

∗
σ

2∗σ
+ ||vn||2

∗
σ

2∗σ
+ o(1), B(un, un) = B(vn, vn) +B(u, u) + o(1).

Since vn → 0 strongly in L
2Np
N+α , we have B(un, un) = B(u, u) + o(1). Consequently, from

Pµ (un) = o(1) and Pµ(u) = 0, we deduce that lim
n→∞

||(−∆)
σ
2 vn||22 = lim

n→∞
||vn||2

∗
σ

2∗σ
= `.

Therefore, by the Sobolev inequality ` ≥ S`
2
2∗σ . We have ` = 0 or ` ≥ S N

2σ .

If ` ≥ S N
2σ , then we have

c = lim
n→+∞

Eµ (un) = Eµ (u) + lim
n→+∞

Eµ (vn) = Eµ (u) +
σ

N
` ≥ Eµ (u) +

σ

N
S

N
2σ ,

whence alternative (i) in the thesis of the proposition follows.
If instead ` = 0, then un → u in Ḣσ(RN) and L2∗σ(RN). In order to prove that un → u

in L2
(
RN
)
, we test (3.4) with ϕ = un − u, test (3.5) with un − u, and subtract, obtaining

||(−∆)
σ
2 (un − u)||22 −

∫
RN

(λnun − λu) (un − u)

− µ
∫
RN

[
(Iα ∗ |un|p) |un|p−2un − (Iα ∗ |u|p) |u|p−2u

]
(un − u)

=

∫
RN

(
|un|2

∗
σ−2 un − |u|2

∗
σ−2u

)
(un − u) + o(1).

Using the strong L2∗σ ∩ L
2Np
N+α convergence of {un}, we infer that

0 = lim
n→∞

∫
RN

(λnun − λu) (un − u) = lim
n→∞

λ

∫
RN

(un − u)2 ,
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and we deduce that un → u strongly in Hσ(RN). Therefore, alternative (ii) in the thesis
of the proposition holds.

�

4. The existence results

In this Section, we prove the existence results, i.e. Theorem 1.1-(1)(2)(3) and Theorem
1.2-(1)(2). The proof of Theorem 1.1 is divided into two parts. Firstly, we prove the
existence of a local minimizer for Eµ|Sa . Secondly, we construct a mountain pass type
critical point for Eµ|Sa . The later relies heavily on a refined version of the min-max
principle by N. Ghoussoub [22], the forth coming Lemma 4.2, and was already applied in
[44] and [45].

Definition 4.1. Let B be a closed subset of X. We shall say that a class F of compact
subsets of X is a homotopy-stable family with extended boundary B if for any set A in F
and any η ∈ C([0, 1]×X;X) satisfying η(t, x) = x for all (t, x) ∈ ({0} ×X) ∪ ([0, 1]× B)
we have that η({1} × A) ∈ F .

Lemma 4.2. ([22], Theorem 5.2) Let ϕ be a C1-functional on a complete connected C1-
Finsler manifold X and consider a homotopy-stable family F with an extended closed
boundary B. Set c = c(ϕ,F) and let F be a closed subset of X satisfying

(1) (A ∩ F )\B 6= ∅ for every A ∈ F ,
(2) supϕ(B) ≤ c ≤ inf ϕ(F ).

Then, for any sequence of sets (An)n in F such that limn supAn ϕ = c, there exists a
sequence (xn)n in X such that

lim
n→+∞

ϕ(xn) = c, lim
n→+∞

‖dϕ(xn)‖ = 0, lim
n→+∞

dist(xn, F ) = 0, lim
n→+∞

dist(xn, An) = 0.

Proof of Theorem 1.1-(1),(2),(3):
(i) Existence of a local minimizer.

Let us consider a minimizing sequence {vn} for Eµ|AR0
. From the fractional Polya-Szegö

inequality in [39] or formula (A.11) in [43], we have∫
RN
|(−∆)

σ
2 |vn|∗|2dx ≤

∫
RN
|(−∆)

σ
2 |vn||2dx ≤

∫
RN
|(−∆)

σ
2 vn|2dx, (4.1)

where |vn|∗ is the symmetric decreasing rearrangement of |vn|. Furthermore, it is clear(Theorem
3.4 in [33]) that

||vn||2 = |||vn|∗||2, ||vn||q = |||vn|∗||q, B(|vn|, |vn|) ≤ B(|vn|∗, |vn|∗). (4.2)

Therefore, we have Eµ (|vn|∗) ≤ Eµ (vn). We can assume that vn ∈ Sa is nonnegative and
radially decreasing for every n. Furthermore, for every n we can take svn ? vn ∈ P

a,µ
+ ,

observing that then by Lemma 2.15 and Corollary 2.16 ||(−∆)
σ
2 (svn ? vn) ||2 < R0 and

Eµ (svn ? vn) = min
{
Eµ(s ? vn) : s ∈ R and ||(−∆)

σ
2 (s ? vn)||2 < R0

}
≤ Eµ (vn) ;
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in this way we obtain a new minimizing sequence {wn = svn ? vn}, with

wn ∈ Sa,r ∩ Pa,µ+ and Pµ(wn) = 0

for every n. By Lemma 2.17, ||(−∆)
σ
2wn||2 < R0 − ρ for every n, and hence the Ekelands

variational principle yields in a standard way the existence of a new minimizing sequence
{un} ⊂ AR0 for m(a, µ) < 0, with the property that ||un−wn||Hσ → 0 as n→ +∞, which
is also a Palais-Smale sequence for Eµ on Sa,r. The condition ||un − wn||Hσ → 0 implies

||(−∆)
σ
2 un||2 ≤ R0 − ρ and Pµ(un)→ 0 as n→∞

and hence {un} satisfies all the assumptions of Proposition 3.1. Consequently, up to a
subsequence un → ũµ strongly in Hσ, ũµ is an interior local minimizer for Eµ|AR0

, and

solves (1.1)λ̃ for some λ̃ < 0. It is easy to know that ũµ is nonnegative and radially
deceasing. We have ũµ > 0, otherwise, there exists x0 ∈ RN such that ũµ(x0) = 0. Then

it follows from equation (1.1)λ̃ that 0 = (−∆)σũµ(x0) = CN,σP.V.
∫
RN

−ũµ(y)

|x−y|N+2σ dy, which

implies that ũµ ≡ 0 in RN . This is impossible since ũµ ∈ Sa.
Since any critical point of Eµ|Sa lies in Pa,µ and m(a, µ) = infPa,µ Eµ (see Lemma 2.17),

we see that ũµ is a ground state for Eµ|Sa .
It only remains to prove that any ground state of Eµ|Sa is a local minimizer of Eµ

in AR0 . Let then u be a critical point of Eµ|Sa with Eµ(u) = m(a, µ) = infPa,µ Eµ. Since
Eµ(u) < 0 < infPa,µ− Eµ, necessarily u ∈ Pa,µ+ . Then Corollary 2.16 implies that Pa,µ+ ⊂ AR0 .

It results that ||(−∆)
σ
2 u||2 < R0, and as a consequence u is a local minimizer for Eµ|AR0

.
(ii) Existence of a Mountain pass type solution.

We focus now on the existence of a second critical point for Eµ|Sa . Denote Ec
µ = {u ∈

Sa : Eµ(u) ≤ c}. Motivated by [24], we define the augmented functional Ẽµ : R×Hσ → R

Ẽµ(s, u) := Eµ(s ? u) =
e2σs

2
||(−∆)

σ
2 u||22 −

eqγqσs

q
||u||qq −

µe2pδpσs

2p
B(u, u)

and consider the restriction Ẽµ|R×Sa . Notice that Sa,r = Hσ
rad ∩ Sa and Ẽµ is of class C1.

Moreover, since Ẽµ is invariant under rotations applied to u, a Palais-Smale sequence for

Ẽµ|R×Sa,r is a Palais-Smale sequence for Ẽµ|R×Sa .
We introduce the minimax class

Γ :=
{
γ(τ) =

(
ζ(τ), β(τ)

)
∈ C ([0, 1],R× Sa,r) ; γ(0) ∈ (0,Pa,µ+ ), γ(1) ∈ (0, E2m(a,µ)

µ )
}
.

The family Γ is not empty. Indeed, for every u ∈ Sa,r, by Lemma 2.15 we know that there
exists s1 � 1 such that

γu : τ ∈ [0, 1] 7→
(
0, ((1− τ)su + τs1) ? u

)
∈ R× Sa,r (4.3)

is a path in Γ (recall that s ∈ R 7→ s ?u ∈ Sa,r is continuous, su ?u ∈ Pa,µ+ and Eµ(s ?u)→
−∞ as s→ +∞). Thus, the minimax value

σ(a, µ) := inf
γ∈Γ

max
(s,u)∈γ([0,1])

Ẽµ(s, u)



24 MULTIPLE NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER EQUATIONS

is a real number. We claim that

∀γ ∈ Γ there exists τγ ∈ (0, 1) such that ζ(τγ) ? β(τγ) ∈ Pa,µ− . (4.4)

Indeed, since γ(0) =
(
ζ(0), β(0)

)
∈ (0,Pa,µ+ ), by Corollary 2.10 and Lemma 2.15, we have

tζ(0)?β(0) = tβ(0)>sβ(0) =0; since Eµ(β(1))= Ẽµ(γ(1))≤2m(a, µ), by Lemma 2.18, we have

tζ(1)?β(1) = tβ(1) < 0,

and moreover the map tζ(τ)?β(τ) is continuous in τ(we refer again to Lemma 2.15 and recall
that s ∈ R 7→ s ? u ∈ Sa,r is continuous). It follows that for every γ ∈ Γ there exists
τγ ∈ (0, 1) such that tζ(τγ)?β(τγ) = 0, and so ζ(τγ) ? β(τγ) ∈ Pa,µ− . Thus (4.4) holds.

For every γ ∈ Γ, by (4.4) we have

max
γ([0,1])

Ẽµ ≥ Ẽµ (γ (τγ)) = Eµ(ζ(τγ) ? β(τγ)) ≥ inf
Pa,µ−∩Sa,r

Eµ, (4.5)

which gives σ(a, µ) ≥ infPa,µ− ∩Sa,r Eµ. On the other hand, if u ∈ Pa,µ− ∩Sa,r, then γu defined

in (4.3) is a path in Γ with

Eµ(u) = Ẽµ(0, u) = max
γu([0,1])

Ẽµ ≥ σ(a, µ),

which gives infPa,µ− ∩Sa,r Eµ ≥ σ(a, µ). This, Corollary 2.16 and Lemma 2.19 imply that

σ(a, µ) = inf
Pa,µ− ∩Sa,r

Eµ > 0 ≥ sup(
Pa,µ+ ∪E2m(a,µ)

µ

)
∩Sa,r

Eµ = sup(
(0,Pa,µ+ )∪(0,E

2m(a,µ)
µ )

)
∩(R×Sa,r)

Ẽµ. (4.6)

Let γn(τ) =
(
ζn(τ), βn(τ)

)
be any minimizing sequence for σ(a, µ) with the property that

ζn(τ) ≡ 0 and βn(τ) ≥ 0 a.e. in RN for every τ ∈ [0, 1] (Notice that, if {γn =
(
ζn, βn

)
} is

a minimizing sequence, then also {(0, ζn ? |βn|)} has the same property). Take

X = R× Sa,r, F = {γ([0, 1]) : γ ∈ Γ}, B = (0,Pa,µ+ ) ∪ (0, E2m(a,µ)
µ ),

F = {(s, u) ∈ R× Sa,r | Ẽµ(s, u) ≥ σ(a, µ)}, A = γ([0, 1]), An = γn([0, 1])

in Lemma 4.2. We need to checked that F is a homotopy stable family of compact subsets
of X with extended closed boundary B, and that F is a dual set for F , in the sense that
assumptions (1) and (2) in Lemma 4.2 are satisfied.

Indeed, since σ(a, µ) = infPa,µ− ∩Sa,r Eµ, (4.5) ⇒ γ (τγ) = (ζ(τγ), β(τγ)) ∈ A ∩ F , (4.6)

⇒ F ∩B = ∅ and (2) in Lemma 4.2, then A∩F 6= ∅ and F ∩B = ∅ give (1) in Lemma 4.2.

For every γ ∈ Γ, since γ(0) ∈ (0,Pa,µ+ ) and γ(1) ∈ (0, E
2m(a,µ)
µ ), we have γ(0), γ(1) ∈ B.

Then for any set A in F and any η ∈ C([0, 1] × X;X) satisfying η(t, x) = x for all
(t, x) ∈ ({0} ×X) ∪ ([0, 1]× B), it holds that η(1, γ(0)) = γ(0), η(1, γ(1)) = γ(1). So we
have η({1} × A) ∈ F .

Consequently, by Lemma 4.2, there exists a Palais-Smale sequence {(sn, wn)} ⊂ R×Sa,r
for Ẽµ|R×Sa,r at level σ(a, µ) > 0 such that

∂sẼµ (sn, wn)→ 0 and
∥∥∥∂uẼµ (sn, wn)

∥∥∥
(TwnSa,r)

∗
→ 0 as n→∞, (4.7)
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with the additional property that

|sn|+ distHσ (wn, βn([0, 1]))→ 0 as n→∞. (4.8)

The first condition in (4.7) reads Pµ (sn ? wn)→ 0, and the second condition in (4.7) gives

e2σsn

∫
RN

(−∆)
σ
2wn · (−∆)

σ
2ϕ− eqγqσsn

∫
RN
|wn|q−2wnϕ

−µe2pδpσsn

∫
RN

(Iα ∗ |wn|p) |wn|p−2wnϕ=o(1)(||ϕ||Hσ), ∀ϕ ∈ TwnSa,r.
(4.9)

Since sn is bounded from above and from below, due to (4.8), we have

dEµ (sn ? wn) [sn ? ϕ] = o(1)‖ϕ‖Hσ = o(1) ‖sn ? ϕ‖Hσ as n→∞,∀ϕ ∈ TwnSa,r. (4.10)

By Lemma 2.11, (4.10) implies that {un := sn ? wn} ⊂ Sa,r is a Palais-Smale sequence for
Eµ|Sa,r (thus a Palais-Smale sequence for Eµ|Sa , since the problem is invariant under rota-
tions) at level σ(a, µ) > 0, with Pµ(un)→ 0. Therefore, all the assumptions of Proposition
3.1 are satisfied, and we deduce that up to a subsequence un → ûµ strongly in Hσ, with

ûµ ∈ Sa,r real-valued nonnegative radial solution to (1.1)λ̂ for some λ̂ < 0. We can check
that ûµ > 0 as in the first part.

�
Proof of Theorem 1.2-(1),(2):
Imitate the proof of Theorem 1.1-(1), we get a Palais-Smale sequence {un} for Eµ|Sa with

||(−∆)
σ
2 un||2 ≤ R0 − ρ and Pµ(un)→ 0 as n→∞

and hence {un} satisfies all the assumptions of Proposition 3.2. Hence one of the alter-
natives in Proposition 3.2 holds. We wish to show that necessarily the second alternative
occurs. Assume then by contradiction that up to a subsequence un ⇀ ũµ weakly in Hσ(RN)

but not strongly, where ũµ 6≡ 0 is a solution to (1.1)λ̃ for some λ̃ < 0, and

Eµ(ũµ) ≤ m(a, µ)− σ

N
S

N
2σ .

Since ũµ solves (1.1)λ̃, the Pohozaev identity Pµ(ũµ) = 0 holds. We see that ||ũµ||2 ≤ a
and

m(a, µ) ≥ σ

N
S

N
2σ + Eµ(ũµ) =

σ

N
S

N
2σ +

σ

N
||(−∆)

σ
2 ũµ||22 − µδp

(
1

2pδp
− 1

2∗σ

)
B(ũµ, ũµ)

≥ σ

N
S

N
2σ +

σ

N
||(−∆)

σ
2 ũµ||22 − µδp

(
1

2pδp
− 1

2∗σ

)
C2p
p a

2p(1−δp)
∥∥(−∆)

σ
2 ũµ
∥∥2pδp

2
.

(4.11)

Denote g(t) = σ
N
t2 − µδp

(
1

2pδp
− 1

2∗σ

)
C2p
p a

2p(1−δp)t2pδp , ∀t ≥ 0. Direct calculation gives

mint≥0 g(t) = −1−pδp
pδp

(
N
σ

) pδp
1−pδp

[(
1

2pδp
− 1

2∗σ

)
µpδ2

pC2p
p a

2p(1−δp)
] 1

1−pδp
> − σ

N
S N

2σ . In the last

strict inequality, we used the condition (A∗2). Therefore, from (4.11), we deduce that

0 > m(a, µ) ≥ σ

N
S

N
2σ + g(||(−∆)

σ
2 ũµ||2) ≥ σ

N
S

N
2σ + min

t≥0
g(t) > 0.
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Consequently, up to a subsequence un → ũµ strongly inHσ, ũµ is an interior local minimizer

for Eµ|AR0
, and solves (1.1)λ̃ for some λ̃ < 0. We can also check that ũµ is positive and

radially decreasing. Since any critical point of Eµ|Sa lies in Pa,µ and m(a, µ) = infPa,µ Eµ
(see Lemma 2.17), we see that ũµ is a ground state for Eµ|Sa .

It only remains to prove that any ground state of Eµ|Sa is a local minimizer of Eµ
in AR0 . Let then u be a critical point of Eµ|Sa with Eµ(u) = m(a, µ) = infPa,µ Eµ. Since
Eµ(u) < 0 < infPa,µ− Eµ, necessarily u ∈ Pa,µ+ . Then Corollary 2.16 implies that Pa,µ+ ⊂ AR0 .

It results that ||(−∆)
σ
2 u||2 < R0, and as a consequence u is a local minimizer for Eµ|AR0

. �

5. The asymptotic results

In this Section, we prove the asymptotic results, i.e. Theorem 1.1-(4)(5) and Theorem
1.2-(3). To obtain the asymptotic property of m(a, µ) and σ(a, µ) as µ → 0+, we need to
study equation (1.1)λ with µ = 0. Modify the arguments in Section 2, especially Lemma
2.12 and Lemma 2.15, we can derive the following Lemmas 5.1-5.2.

Lemma 5.1. Let N ≥ 2, σ ∈ (0, 1), q̄ < q < 2∗σ, a > 0 and µ = 0. Then Pa,µ0 = ∅, and
Pa,µ is a smooth manifold of codimension 2 in Hσ(RN).

Lemma 5.2. Let N ≥ 2, σ ∈ (0, 1), q̄ < q < 2∗σ, a > 0 and µ = 0. For every u ∈ Sa, there
exists a unique tu ∈ R such that tu ?u ∈ Pa,µ. tu is the unique critical point of the function
Ψµ
u, and is a strict maximum point at positive level. Moreover:

(1) Pa,µ = Pa,µ− .
(2) Ψµ

u is strictly decreasing and concave on (tu,+∞).
(3) The maps u ∈ Sa 7→ tu ∈ R are of class C1.
(4) If Pµ(u) < 0, then tu < 0.

Lemma 5.3. Let N ≥ 2, σ ∈ (0, 1), q̄ < q < 2∗σ, a > 0 and µ = 0. It results that

m(a, 0) := inf
u∈Pa,0

E0(u) > 0.

Proof. Since u ∈ Pa,0, we have P0(u) = 0. By the embedding inequality (2.3)

||(−∆)
σ
2 u||22 = γq||u||qq ≤ γqS−

qγq
2

∥∥(−∆)
σ
2 u
∥∥qγq

2
aq(1−γq).

Recall that qγq > 2, so this implies that infu∈Pa,0 ||(−∆)
σ
2 u||2 ≥ C > 0. As P0(u) = 0, we

can also deduce that

inf
u∈Pa,µ

γq||u||qq ≥ C > 0, inf
u∈Pa,0

E0 (u) = inf
u∈Pa,0

{qγq − 2

2q
||u||qq

}
≥ C > 0.

�

Lemma 5.4. Let N ≥ 2, σ ∈ (0, 1), q̄ < q < 2∗σ, a > 0 and µ = 0. There exists k > 0
sufficiently small such that

0 < sup
Ak

E0 < m(a, 0) and u ∈ Ak =⇒ E0(u) > 0, P0(u) > 0,
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where Ak :=
{
u ∈ Sa : ||(−∆)

σ
2 u||2 < k

}
.

Proof. By the embedding inequalities (2.3), we have

E0(u)≥ 1

2
||(−∆)

σ
2 u||22−

Aqq
q
||(−∆)

σ
2 u||qγq2 aq(1−γq),

P0(u) ≥ ||(−∆)
σ
2 u||22 − γqS−

qγq
2

∥∥(−∆)
σ
2 u
∥∥qγq

2
aq(1−γq).

Therefore, for any u ∈ Ak with k small enough, we have

0 < sup
Ak

E0 and u ∈ Ak =⇒ E0(u) > 0, P0(u) > 0.

If necessary replacing k with a smaller quantity, we also have

E0(u)≤ 1

2
||(−∆)

σ
2 u||22 < m(a, 0), ∀u ∈ Ak

since m(a, 0) > 0 by Lemma 5.3. �

Lemma 5.5. Let N ≥ 2, σ ∈ (0, 1), q̄ < q < 2∗σ, a > 0 and µ = 0. Then, there exists a
real valued positive radial critical point u0 for E0|Sa at a positive level

m(a, 0) := inf
Pa,0

E0 = E0(u0)

and as a result u0 is a ground state of E0|Sa.

Proof. Utilising Lemmas 5.1-5.4 and by using the same arguments in Section 7 in [44],
we can drive that there exists a real valued positive radial critical point u0 for E0|Sa at a
mountain pass level σ(a, 0) > 0 with σ(a, 0) = infPa,0∩Sa,r E0 = E0(u0). By the symmetric
decreasing rearrangement technique, we have infPa,0 E0 = infPa,0∩Sa,r E0, and hence u0 is a
ground state of E0|Sa .

�

In the following discussion, the value a > 0 will always be fixed.

Lemma 5.6. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (q̄, 2∗σ), p ∈ [2, p̄) and a > 0.
For any µ > 0 such that µ and a satisfying condition (A∗1), we have

σ(a, µ) = inf
u∈Sa,r

max
s∈R

Eµ(s ? u), and m(a, 0) = inf
u∈Sa,r

max
s∈R

E0(s ? u).

Proof. From (4.6), we have σ(a, µ) = infPa,µ− ∩Sa,r Eµ = Eµ (ûµ). Then, by Lemma 2.15,

σ(a, µ) = Eµ (ûµ) = max
s∈R

Eµ (s ? ûµ) ≥ inf
u∈Sa,r

max
s∈R

Eµ(s ? u).

On the other hand, for any u ∈ Sa,r we have tu,µ ? u ∈ Pa,µ− , and hence

max
s∈R

Eµ(s ? u) = Eµ (tu,µ ? u) ≥ σ(a, µ).

By using Lemma 5.2 and Lemma 5.5, we can similarly prove

m(a, 0)= inf
u∈Sa,r

max
s∈R

E0(s ? u).

�
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Lemma 5.7. Let N ≥ 2, σ ∈ (0, 1), α ∈ (N − 2σ,N), q ∈ (q̄, 2∗σ), p ∈ [2, p̄) and a > 0.
For any 0 ≤ µ1 < µ2 such that µ2 and a satisfying condition (A∗1), it results that

σ (a, µ2) ≤ σ (a, µ1) ≤ m(a, 0).

Proof. By Lemma 5.6

σ (a, µ2) ≤ max
s∈R

Eµ2 (s ? ûµ1) ≤ max
s∈R

Eµ1 (s ? ûµ1) = Eµ1 (ûµ1) = σ (a, µ1)

and

σ (a, µ1) ≤ max
s∈R

Eµ1 (s ? u0) ≤ max
s∈R

E0 (s ? u0) = E0 (u0) = m(a, 0).

�

Proof of Theorem 1.1-(4): convergence of ũµ.
Let a > 0 fixed. From Lemma 2.14, we know that R0(a, µ) → 0 as µ → 0+, and hence
||(−∆)

σ
2 ũµ||2 < R0(a, µ)→ 0 as well. Moreover

0 > m(a, µ) = Eµ (ũµ)

≥ 1

2
||(−∆)

σ
2 ũµ||

2

2−
µC2p

p

2p
||(−∆)

σ
2 ũµ||

2pδp

2 a2p(1−δp)−
Aqq
q
||(−∆)

σ
2 ũµ||

qγq

2 aq(1−γq) → 0,

which implies that m(a, µ)→ 0. �

We consider now the behavior of ûµ.
Proof of Theorem 1.1-(5): convergence of ûµ.
Let us consider {ûµ : 0 < µ < µ}, with µ small enough. Since ûµ ∈ Pa,µ, from Lemma 5.7,
we have

m(a, 0) ≥ σ (a, µ) = Eµ (ûµ) =

(
1

2
− 1

qγq

)
||(−∆)

σ
2 ûµ||22 − µδp

(
1

2pδp
− 1

qγq

)
B(ûµ, ûµ)

≥
(

1

2
− 1

qγq

)
||(−∆)

σ
2 ûµ||22 − µδp

(
1

2pδp
− 1

qγq

)
C2p
p a

2p(1−δp)
∥∥(−∆)

σ
2 ûµ
∥∥2pδp

2
.

This implies that {ûµ} is bounded in Hσ. Since each ûµ is a real-valued function in Sa,r,
we deduce that up to a subsequence ûµ ⇀ û weakly in Hσ, strongly in Lr for 2 < r < 2∗σ
and a.e. in RN , as µ→ 0+. Using the fact that ûµ solves

(−∆)σûµ = λ̂µûµ + |ûµ|q−2ûµ + µ (Iα ∗ |ûµ|p) |ûµ|p−2ûµ in RN (5.1)

for λ̂µ < 0 and Pµ (ûµ) = 0, we infer that λ̂µa
2 = (γq− 1)||ûµ||qq +µ(δp− 1)B(ûµ, ûµ). Since

µ > 0 and 0 < γq, δp < 1, we deduce that λ̂µ converges (up to a subsequence) to some

λ̂ ≤ 0, with λ̂ = 0 if and only if the weak limit û ≡ 0. We claim that λ̂ < 0. In fact,
ûµ ⇀ û weakly in Hσ implies that û is a weak radial (and real) solution to

(−∆)σû = λ̂û+ |û|q−2û in RN , (5.2)
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and in particular by the Pohozaev identity ||(−∆)
σ
2 û||22 = γq||û||qq. But then, using the

boundedness of {ûµ} and Lemma 5.7, we deduce that

E0(û) =
qγq − 2

2q
||û||qq = lim

µ→0+

[
qγq − 2

2q
||ûµ||qq −

µ(1− pδp)
2p

B(ûµ, ûµ)

]
= lim

µ→0+
Eµ (ûµ) = lim

µ→0+
σ(a, µ) ≥ σ(a, µ) > 0,

which implies that û 6≡ 0, and in turn yields λ̂ < 0. Test (5.1) and (5.2) with ûµ − û, and
subtract, we have

||(−∆)
σ
2 (ûµ − û) ||22 − µ

∫
RN

(Iα ∗ |ûµ|p) |ûµ|p−2ûµ (ûµ − û)−
∫
RN

(
λ̂µûµ − λ̂û

)
(ûµ − û)

=

∫
RN

(
|ûµ|q−2 ûµ − |û|q−2û

)
(ûµ − û) = o(1),

i.e. ||(−∆)
σ
2 (ûµ − û) ||22 − λ̂|| (ûµ − û) ||22 = o(1), which implies that ûµ → û in Hσ. More-

over, we have
m(a, 0)≤E0(û) = lim

µ→0+
σ(a, µ)≤m(a, 0).

Consequently, E0(û)= lim
µ→0+

σ(a, µ)=m(a, 0) and û is a ground state to (5.2). From [18, 19],

we know that the ground state u0 for (5.2) is unique. Thus û = u0. �

Proof of Theorem 1.2-(3):
Let a > 0 fixed. From Lemma 2.14, we know that R0(a, µ) → 0 for µ → 0+, and hence
||(−∆)

σ
2 ũµ||2 < R0(a, µ)→ 0 as well. Moreover

0 > m(a, µ) = Eµ (ũµ)

≥ 1

2
||(−∆)

σ
2 ũµ||

2

2−
µC2p

p

2p
||(−∆)

σ
2 ũµ||

2pδp

2 a2p(1−δp)−S
− 2∗σ

2

2∗σ
||(−∆)

σ
2 ũµ||

2∗σ
2 → 0,

which implies that m(a, µ)→ 0. �

6. The stability results

In this Section, we prove the stability of the set of ground states Za,µ, i.e. Theorem
1.3. Let a > 0 be fixed, and let µ > 0 satisfy the assumptions of Theorem 1.1, then
Za,µ 6= ∅. The relative compactness (up to translations) of all the minimizing sequences
for m(a, µ) = infAR0

Eµ is vital in proving the stability of Za,µ.
Notice that m(a, µ) = infAR0

Eµ can be relaxed to

m(a, µ) = inf
AR1

Eµ = inf
{
Eµ(u) : u ∈ Sa, ||(−∆)

σ
2 u||2 < R1

}
. (6.1)

Indeed, if ||(−∆)
σ
2 u||2 ∈ [R0, R1], then Eµ(u) ≥ h(||(−∆)

σ
2 u||2) ≥ 0 > infAR0

Eµ, see (2.8)
and Lemma 2.14. We see that R0 and R1 depend on a and µ by means of Lemma 2.14. In
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the following discussion, we stress this dependence writing R0(a, µ) and R1(a, µ). Similarly,
the definition of AR0 depends on a and µ, and hence we explicitly write Aa,R0(a,µ).

Lemma 6.1. Let ã, δ>0. There exists µ̃= µ̃(ã+δ)>0 such that, if 0<a≤ ã and 0<µ<µ̃,
then:
(1) 2R2

0(ã+ δ, µ) < R2
1(ã, µ).

(2) The functions (a, µ) 7→ R0(a, µ) and (a, µ) 7→ R1(a, µ) are of class C1 in (0, ã + δ) ×
(0, µ̃), R0(a, µ) is monotone increasing in a, while R1(a, µ) is monotone decreasing in a.
(3) For any a1, a2 > 0 with a2

1 + a2
2 = a2, we have m(a, µ) < m (a1, µ) +m (a2, µ).

Proof. The proof is motivated by [44]. We give out the details for reader’s convenience.
From Lemma 2.14, we see that 0 < R0 = R0(a, µ) < R1 = R1(a, µ) are the roots of

0 = g(t, a, µ) := ϕ(t, a)−
µC2p

p

2p
a2p(1−δp)

where ϕ(t, a) := 1
2
t2−2pδp − Aqq

q
aq(1−γq)tqγq−2pδp . The condition µqγq−2aC̄(p,q) < C̃(p, q) guar-

antees the existence of R0 and R1. Let then ã, δ > 0, and consider the range of µ > 0

such that µqγq−2(ã+ δ)C̄(p,q) < C̃(p, q). This range contains a right neighborhood of 0. By
continuity we have that

R0(ã+ δ, µ)→ 0 and R1(ã+ δ, µ)→ Cã+δ =

[
q

2(ã+ δ)q(1−γq)Aqq

] 1
qγq−2

as µ→ 0+

where Cã+δ the only positive root of ϕ(t, ã+ δ) = 0. In particular, for every ã, δ > 0 fixed
and any θ > 1, we have

R0(a, µ)→ 0, R1(θa, µ)→ Cθa =

[
q

2(θa)q(1−γq)Aqq

] 1
qγq−2

as µ→ 0+

where Cθa the only positive root of ϕ(t, θa) = 0. Consequently, there exists µ̃= µ̃(ã+δ)>0
(independent of θ) sufficiently small such that

2R2
0(ã+ δ, µ) < R2

1(ã, µ) and θR0(a, µ) < R1(θa, µ) (6.2)

if 0<a≤ ã and 0<µ<µ̃.
Let now 0 < a ≤ ã+ δ and 0<µ<µ̃. Under assumption µqγq−2aC̄(p,q) < C̃(p, q) , we have

∂tg(t, a, µ) = ∂tϕ(t, a).

We checked that ϕ(·, a) has a unique critical point on (0,+∞), which is a strict maximum
point, in t = t(a), with 0 < R0 < t < R1, and hence in particular

∂tg (R0(a, µ), a, µ) > 0, and ∂tg (R1(a, µ), a, µ) < 0.

Thus, the implicit function theorem implies that R0(a, µ) is a locally unique C1 function

of (a, µ), with ∂R0(a,µ)
∂a

= −∂ag(R0(a,µ),a,µ)
∂tg(R0(a,µ),a,µ)

> 0. In a similar way, one can show that R1(a, µ)

is a locally unique C1 function of (a, µ) with ∂R1(a,µ)
∂a

< 0. In particular, R0 is monotone

increasing and R1 is monotone decreasing in a. Then we finish the proof of (1) and (2).
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Next, we prove (3). Let 0 < c < ã and 0<µ<µ̃, let θ > 1 be such that θc < ã and let
{un} ⊂ Sc be a minimizing sequence for m(c, µ), i.e.

m(c, µ) = lim
n→+∞

Eµ(un), un ∈ Sc, ||(−∆)
σ
2 un||2 < R0(c, µ). (6.3)

From (6.2) and (6.3), we have ||(−∆)
σ
2 (θun)||2 < θR0(c, µ) < R1(θc, µ). Therefore, θun ∈

Sθc and ||(−∆)
σ
2 (θun)||2 < R1(θc, µ). By using (6.1), it follows immediately thatm(θc, µ) ≤

Eµ (θun). Moreover, since q ∈ (2 + 4σ
N
, 2∗σ), p ∈ [2, 2α

N−2σ
] and θ > 1, we obtain

m(θc, µ) ≤ Eµ (θun) =
θ2

2
||(−∆)

σ
2 un||

2

2 −
µθ2p

2p
B(un, un)− θq

q
||un||qq < θ2Eµ (un) .

Letting n → +∞, it results that m(θc, µ) ≤ θ2m(c, µ), with equality if and only if
lim
n→∞

B(un, un) = 0 = lim
n→∞

||un||qq. But this is not possible, since otherwise we would find

0 > m(c, µ) = lim
n→∞

Eµ (un) = 1
2

lim
n→∞

||(−∆)
σ
2 un||

2

2 ≥ 0. Thus m(θc, µ) < θ2m(c, µ). With-

out loss of generality, let 0 < a1 < a2 < a, take θ = a
a2

and then θ = a2
a1

, we have

m(a, µ) = m(a2
a

a2

, µ) <
a2

a2
2

m(a2, µ) = m(a2, µ) +
a2

1

a2
2

m(a2, µ)

= m(a2, µ) +
a2

1

a2
2

m(a1
a2

a1

, µ) < m(a2, µ) +m(a1, µ).

�

Lemma 6.2. Let ã, δ>0. There exists µ̃= µ̃(ã+δ)>0 such that, if 0<a≤ ã and 0<µ<µ̃,
then any sequences {zn} ⊂ Hσ(RN) such that

Eµ(zn)→ m(a, µ), ||zn||2 → a, ||(−∆)
σ
2 zn||2 < R0(a+ δ, µ)

is relatively compact in Hσ(RN) up to translations.

Proof. Let un = azn
||zn||2

, we can check that Eµ(un)→ m(a, µ), ||un||2 = a and ||(−∆)
σ
2 un||2 =

a
||zn||2
||(−∆)

σ
2 zn||2 ≤ R0(a + δ, µ) for n sufficiently large. Therefore, {un} is bounded in

Hσ(RN) and un ⇀ u in Hσ(RN) for some u ∈ Hσ(RN). Now, let R > 0. If it were

lim
n→∞

sup
y∈RN

∫
BR(y)

|un|2 = 0, ∀R > 0,

then, by the vanishing Lemma (see [15] Lemma 2.3), we have un → 0 in Lr(RN) for
2 < r < 2∗σ. It results that B(un, un) → 0 by (2.7). But this is not possible, since

otherwise we would find 0 > m(a, µ) = lim
n→∞

Eµ (un) = 1
2

lim
n→∞

||(−∆)
σ
2 un||

2

2 ≥ 0. Then

there exists an ε0 > 0 such that

a2
1 := lim

R→∞

(
lim
n→∞

sup
y∈RN

∫
BR(y)

|un|2
)
≥ ε0.
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Given any ε > 0, by definition of a1, there exists R̄ > 0 such that if R > R̄ > 0, then

a2
1 − ε < lim

n→∞
sup
y∈RN

∫
BR(y)

|un|2 ≤ a2
1.

Then we can say that there exists n0 ∈ N such that for all n ≥ n0,

a2
1 − ε < sup

y∈RN

∫
BR(y)

|un|2 ≤ sup
y∈RN

∫
B2R(y)

|un|2 < a2
1 + ε.

It then follows that for every n ≥ n0, there exists yn ∈ RN such that

a2
1 − ε <

∫
BR(yn)

|un|2 ≤
∫
B2R(yn)

|un|2 < a2
1 + ε. (6.4)

Now introduce smooth cut-off functions φ and ψ, defined on RN , such that

φ(x) =

{
1, for |x| ≤ 1

0, for |x| ≥ 2,
ψ(x) =

{
0, for |x| ≤ 1

1, for |x| ≥ 2,
φ2 + ψ2 ≡ 1 on RN .

Denote φR(x) = φ(x−yn
R

) and ψR(x) = ψ(x−yn
R

), respectively. Define vn(x) = φR(x)un(x)

and wn(x) = ψR(x)un(x). If it were a2 =
√
a2 − a2

1 > 0, then it is standard as the proof of
Lemma 2.14 in [1] that

||(−∆)
σ
2 vn||22 =

∫
RN
|(−∆)

σ
2 (φRun)|2 ≤

∫
RN

(φR)2|(−∆)
σ
2 un|2 + Cε, (6.5)

||(−∆)
σ
2wn||22 =

∫
RN
|(−∆)

σ
2 (ψRun)|2 ≤

∫
RN

(ψR)2|(−∆)
σ
2 un|2 + Cε, (6.6)

and 

∫
RN
|vn(x)|2 dx ∈ (a2

1 − ε, a2
1 + ε)∫

RN
|wn(x)|2 dx ∈ (a2

2 − ε, a2
2 + ε)

Eµ (un) ≥ Eµ (vn) + Eµ (wn)− ε.

(6.7)

for sufficiently large R and some constant C > 0. By (6.5) and (6.6), we have

||(−∆)
σ
2 vn||22 + ||(−∆)

σ
2wn||22 ≤ ||(−∆)

σ
2 un||22 + 2Cε ≤ R2

0(a+ δ, µ) + 2Cε.

Similar to (6.2), we deduce that

||(−∆)
σ
2 vn||2 < R1(a1, µ) and ||(−∆)

σ
2wn||2 < R1(a2, µ)

if we take µ̃ sufficiently small. Let ε→ 0 and then n→ +∞ in (6.7), we have

m(a, µ) ≥ m (a1, µ) +m (a2, µ) ,



MULTIPLE NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER EQUATIONS 33

which contradicts with Lemma 6.1-(3). As a result, we deduce that a2 = a2
1. From (6.4),

we have

a2 − ε <
∫
BR(0)

|un(·+ yn)|2 =

∫
BR(yn)

|un|2 < a2 + ε. (6.8)

Consequently, ũn = un(· + yn) converges strongly (up to a subsequence) in L2(RN) and
weakly in Hσ(RN) to some ũ ∈ Sa. If 2 < r < 2∗σ, by Hölder and Sobolev inequality (2.2)

||ũn − ũ||r ≤ ||ũn − ũ||(1−γr)2 ||ũn − ũ||γr2∗σ
≤ C||ũn − ũ||γr2 → 0

for some constant C > 0 and γr = N(r−2)
2rσ

. Therefore, we have

||(−∆)
σ
2 ũ||2 ≤ lim

n→∞
||(−∆)

σ
2 ũn||2, lim

n→∞
||ũn||q = ||ũ||q, lim

n→∞
B(ũn, ũn) = B(ũ, ũ).

These facts leads to

m(a, µ) ≤ Eµ(ũ) ≤ lim
n→∞

Eµ(ũn) = lim
n→∞

Eµ(un) = m(a, µ).

Finally, we deduce that the previous inequalities are equalities and ||ũn||Hσ → ||ũ||Hσ .
�

Proof of Theorem 1.3
Recall that we fixed a > 0, and for any small δ we considered µ̃ = µ(a+δ) and 0 < µ < µ̃.

Suppose that there exists ε > 0, a sequence of initial data {ψn,0} ⊂ Hσ and a sequence
{tn} ⊂ (0,+∞) such that the maximal solution ψn(t, x) with ψn(0, x) = ψn,0(x) satisfies

lim
n→∞

inf
v∈Za,µ

||ψn,0 − v||Hσ = 0, and inf
v∈Za,µ

||ψn(tn, ·)− v||Hσ ≥ ε. (6.9)

(we refer to Propositions 2.3-2.4 in [21] for the local well-posedness for (1.1)λ. Similar to the
proof of Lemma 3.3 in [44], we can check that m(a, µ) is continuous in a. Clearly ||ψn,0||2 =:
an → a and Eµ(ψn,0) → m(a, µ), by continuity. Furthermore, always by continuity and
using point (1) of Lemma 6.1, we deduce that ||(−∆)

σ
2ψn,0||2 < R0(a + δ, µ) < R1(an, µ)

for every n sufficiently large. Since ||(−∆)
σ
2ψn,0||2 ∈ [R0(an, µ), R1(an, µ)] implies that

Eµ(ψn,0) ≥ 0, we deduce that in fact ||(−∆)
σ
2ψn,0||2 < R0(an, µ) < R0(a+ δ, µ).

Let us consider now the solution ψn(t, ·). Since ψn,0 ∈ Aan,R0(an,µ), if ψn(t, ·) exits from

Aan,R0(an,µ) there exists t ∈ (0, Tmax) such that ||(−∆)
σ
2ψn(t, ·)||2 = R0(an, µ); but then

Eµ(ψn(t, ·)) ≥ h(R0) = 0, against the conservation of energy. This shows that solu-
tions starting in Aan,R0(an,µ) are globally defined in time and satisfy ||(−∆)

σ
2ψn(t, ·)||2 <

R0(an, µ) < R0(a + δ, µ) for every t ∈ (0,+∞). Moreover, by conservation of mass and
of energy ||ψn(tn, ·)||2 → a, and Eµ(ψn(tn, ·)) → m(a, µ) as n → +∞. It follows that
{ψn(tn, ·)} is relatively compact up to translations in Hσ, and hence it converges, up to a
translation, to a ground state in Za,µ, in contradiction with (6.9). �
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[2] H. Brézis, T. Kato. Remarks on the Schrödinger operator with singular complex potentials. J.
Math. Pures Appl. 58 (9) (1979), 137-151

[3] J. Bellazzini, L. Jeanjean. On dipolar quantum gases in the unstable regime. SIAM J. Math. Anal.
48 (3) (2016), 2028-2058

[4] J. Bellazzini, L. Jeanjean, T. Luo. Existence and instability of standing waves with prescribed
norm for a class of Schrödinger-Poisson equations. Proc. Lond. Math. Soc. 107 (2013), 303-339
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