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Key Points:6

• The annual peaks of relative seismic velocity variations (dv/v) have an average7

40 days lead-time to the water discharge in the YNP flooding area.8

• The poroelastic dv/v simulation supports the effective precipitation as the ma-9

jor factor on the ambient seismic noise field.10

• The dv/v variations integrate both hydrologic and temperature variables and tend11

to provide early warning for the YNP floods.12
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Abstract13

We utilize twelve-year ambient seismic noise (ASN) recordings to measure near-14

surface seismic velocity variations (dv/v) within the YNP flooding watersheds. We have15

observed that the annual peaks of dv/v variations have two to three months lead-time16

in comparison to anomalous water discharges. Our analysis indicates that the annual cy-17

cle of dv/v is highly correlated with the effective precipitation, which takes into account18

the snowpack loading and melting water infiltration processes. The annual peaks of dv/v19

are likely caused by abnormal melt water, which exceed the water storage capacity of20

the land. Furthermore, the best-fit poroelastic model provides further evidence that pre-21

cipitation factors primarily influence the variations of the seismic field. Our analysis suc-22

cessfully explains the indicative changes in dv/v prior to the 2014 and 2022 YNP floods.23

This study demonstrates the potential of using seismic observables to monitor and as-24

sess the risk of devastating floods in the YNP.25

Plain Language Summary26

We use a novel seismic technique to investigate the flood mechanism in the Yellow-27

stone National Park and aim to provide early warning information for upcoming floods.28

The current flood monitoring system primarily relies on the widespread usage of water29

gauge stations, which offer real-time monitoring of surface water discharges but do not30

provide early flood indicators beforehand. Some space-based techniques have also been31

employed to monitor land water deficits and provide flood indexes. However, their ap-32

plications may be limited due to their low spatial resolution and sparse monthly sam-33

pling. Our study demonstrates how seismic signals respond to near-surface hydrologic34

processes and explains the 2-3 month lead-time of our seismic measurements compared35

to anomalous water discharges in the summer. We anticipate further studies to develop36

this seismic technique as an efficient flood indicator that can be integrated with the cur-37

rent flood monitoring system.38
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Introduction39

Flood events typically occur when there is an excessive amount of water that can-40

not be absorbed or processed by the land surface (J. T. Reager & Famiglietti, 2009; Girotto41

& Rodell, 2019). According to the Dartmouth Flood Observatory (http://floodobservatory42

.colorado.edu/Archives), there were a total of 5,131 flood events worldwide between43

1985 and 2021. These events can be caused by heavy rainfall, snow/ice melt, tropical storms,44

dam breaks and other factors. Flood events are most likely to happen during the rainy45

season, when the land surface is already saturated and unable to store additional rain-46

fall (J. T. Reager & Famiglietti, 2009). Moreover, the risk and frequency of severe flood47

events may increase due to global warming (Hirabayashi et al., 2013). Therefore, it is48

crucial to develop real-time flood monitoring and early warning systems to mitigate dis-49

asters and reduce damage costs. Currently, most flood monitoring systems rely on net-50

works of gauging stations (Girotto & Rodell, 2019). For instance, the U.S. Geological51

Survey (USGS) operates the National Water Information System, which collects daily52

data on surface water, groundwater and water quality from over 13,500 stations across53

the country (https://waterdata.usgs.gov/nwis). However, this system falls short when54

it comes to forecast flood events days or months in advance, as it only provides real-time55

measurements of surface water discharge and lacks information on subsurface water stor-56

age capacity.57

On the other hand, the Gravity Recovery and Climate Experiment (GRACE) mis-58

sion consists of a pair of satellites that were firstly launched in March 2002. These satel-59

lites were later replaced with GRACE-FO in 2017 (https://www2.csr.utexas.edu/grace).60

This project aims to map spatial and temporal variations of the Earth’s gravity fields,61

which have been utilized to characterize water storage capacity. These studies have sug-62

gested that it could be used as a precursor for detecting and estimating regional flood63

events several months in advance (Crowley et al., 2006; J. T. Reager & Famiglietti, 2009;64

Vishwakarma et al., 2013; Long et al., 2014; J. Reager et al., 2014; Zhou et al., 2017).65
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However, several limitations may prevent the usage of GRACE measurements as a flood66

forecasting tool, such as coarse spatial and temporal resolutions (around 1 arc degree and67

a monthly interval), and delayed product release (around 2 months behind real-time) (J. T. Rea-68

ger et al., 2015; Girotto & Rodell, 2019).69

Over the past few decades, seismologists have been attempting to retrieve empir-70

ical Green’s functions between two seismographic stations by cross-correlating their con-71

tinuous ambient seismic noise (ASN) recordings (Campillo & Paul, 2003; Shapiro & Campillo,72

2004). In addition to mapping the spatial distribution of seismic velocities within the73

Earth’s crust and uppermost mantle using dispersive Rayleigh and Love waves (Lin et74

al., 2008; Bensen et al., 2008), this ASN technique also enables us to estimate time-lapse75

changes of near-surface relative velocity (dv/v). These changes are primarily influenced76

by surface/body wave scattering and can be measured through coda wave interferom-77

etry (Poupinet et al., 1984; Snieder et al., 2002; Lecocq et al., 2014). This ASN-based78

dv/v technique has been successfully applied to monitor Earth’s crustal responses to var-79

ious events, such as volcanic eruptions (Sens-Schönfelder & Wegler, 2006), earthquake80

ruptures (Wegler & Sens-Schönfelder, 2007), ice sheet melting (Mordret et al., 2016; Toyokuni81

et al., 2018; Luo et al., 2023) and terrestrial water storage (Lecocq et al., 2017; Clements82

& Denolle, 2018; Mao et al., 2022; Zhang et al., 2023). The measured seasonal variation83

or long-term trend of dv/v can be used to further investigate changes in subsurface pore/effective84

pressure (Christensen & Wang, 1985; Tsai, 2011), liquid saturation (Bachrach & Nur,85

1998; Nakata et al., 2022), porosity (Bachrach & Nur, 1998; Lumley, 2001) and microstruc-86

tures (Grêt et al., 2006). Using this ASN interferometry for monitoring tectonic and en-87

vironmental changes offers several advantages: (1) The dv/v signals can be measured with88

high temporal resolution due to the continuous recording of Earth’s surface movements89

by seismic sensors; (2) Seismic stations can be deployed in situ and maintained at a rel-90

atively low cost compared to other space-borne sensors; (3) Fast processing procedures91

and almost real-time datasets allow us to calculate dv/v variations within a couple of92

hours after the events, making it highly efficient in responding to environmental hazards.93

–4–



manuscript submitted to Geophysical Research Letters

The 2022 historical flood occurred in the watersheds of three major streams in the Yel-94

lowstone National Park (YNP) inspires us to explore the application of the ASN inter-95

ferometry in investigating flood events. Our objective is to analyze the variations of near-96

surface seismic velocity in response to hydrologic variables, and explore the potential us-97

age of seismic observables to provide early warning information for flood events in the98

YNP.99

Data and Methods100

Measurements of relative seismic velocity variation (dv/v)101

We obtain continuous seismic recordings from six broadband stations that are de-102

ployed alongside the Madison, Firehole and Gibbon rivers in northern YNP (Figure 1).103

The watersheds of these three rivers cover one of the most severely flooded areas on June104

13, 2022. All seismic stations are belong to the Yellowstone National Park Seismograph105

Network, which is operated by the University of Utah (University of Utah, 1983). We106

collect continuous seismic recordings for a period of twelve years, from January 2012 to107

December 2023.108

The MSNoise package (Lecocq et al., 2014) is utilized for performing ASN cross-109

correlation and dv/v measurements. First, we apply the preprocesses of demeaning, de-110

trending, and filtering to all seismic traces within the frequency range of 0.05 to 3 Hz.111

The noise correlation functions (NCFs) are then calculated between the vertical com-112

ponents of each pair of stations. Next, we define the analysis duration as 86,400 s (one113

day) and divide the seismograms from these two stations into 1,800 s slices with a 50%114

overlap. To eliminate outliers (such as local seismic activity), we set the extreme lim-115

its as three times the root mean square of each slice. In addition, we conduct spectral116

whitening for each correlation slice (1,800 s). We save the daily NCFs and create a mov-117

ing stack every 120 days, which serves as a robust approximation for empirical Green’s118

functions. The reference NCF is obtained by stacking all the daily NCFs together. The119
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final step involves measuring traveltime shifts (dt) between the daily and reference NCFs120

using a technique called moving-window cross spectrum (MWCS) (Clarke et al., 2011).121

The MWCS technique capitalizes on the similarity of Fourier phase spectra between the122

daily and reference NCFs, enabling the measurement of time shifts (dt) in unwrapped123

phases by solving a linear regression problem. Assuming that the relative seismic veloc-124

ity change is homogeneous within the study area, we can express the relation as:125

dv/v = −dt/t , (1)

where dt/t represents the daily averaged relative traveltime shift between the current and126

reference NCFs, which can be determined using a weighted linear regression. To obtain127

the regional homogeneous variation of dv/v, we calculate the median value of the mea-128

sured dv/v from all fifteen station pairs, which involve six different stations. More in-129

formation about the MWCS technique and the parameters we used can be found in sup-130

plementary Text S1 and Table S1. In addition, Figure S1 illustrates the MWCS work-131

flow for the station pair YFT-YHL.132

Robustness tests of dv/v measurements133

We first test dv/v measurements by using other two horizontal components (Fig-134

ure S2). Generally, the dv/v variations from all three components show similar trends.135

We also observe that all three components have recording gaps, which can lead to un-136

usual high-frequency perturbations in the measurements. Therefore, for the following anal-137

ysis, we choose the measured dv/v from the vertical components, which have fewer data138

gaps and more reliable measurements.139

The depth sensitivity test suggests that changes in Rayleigh wave phase velocity140

are more sensitive to shallow depths with relatively higher frequency ranges (Figure S3).141

We then conduct dv/v tests with various frequency ranges to determine the primary fre-142

quency contributing to the hydrologic response (Figure S4). In comparison, the tested143
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dv/v with a frequency range from 0.7 to 0.9 Hz shows the most similar results to our cur-144

rent measurements from 0.1 to 0.8 Hz. This test is consistent with the depth sensitiv-145

ity test, which indicates higher frequency ranges are more responsive to near-surface vari-146

ations. However, we also note that all the narrow 0.2 Hz frequency ranges generate more147

short-term noise. To strike a balance between sensitivity to different depths and mea-148

surement quality, we choose the measured dv/v from a relatively wide frequency band149

of 0.1 to 0.8 Hz for the following analysis.150

Furthermore, we perform dv/v tests using different measurement windows, rang-151

ing from direct to late coda arrivals. These measurement windows are determined by em-152

ploying varying inter-distance velocities (3.0, 1.0 and 0.5 km/s, see in Figure S5). The153

results obtained from all measurement windows are consistent with each other (Figure154

S5), which suggest that the measured dv/v is robust across different phase arrivals. More-155

over, we would like to highlight that the short measurement windows (40 s) include a156

greater amount of high-frequency perturbations, which may introduce bias to our ob-157

servations. Therefore, our current selections, which involve a phase velocity of 2.0 km/s158

and a window length of 80 s provide us with the most robust dv/v measurements.159

Results160

The leading annual peaks of dv/v with respect to the YNP floods161

One important feature of the measured regional dv/v variation is its strong annual162

cycle and long-term trend. Here, we attempt to fit the cycle mode of the measured dv/v163

using the following function:164

F (t) = x1cos

(
2π(t− x2)

365d

)
+ x3cos

(
2π(t− x4)

182.5d

)
, (2)

where the first cosine term in the equation is used to fit dv/v with a period of one year165

(365 days), while the second cosine term with a period of 6 months (182.5 days) is uti-166
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lized to further adjust the shape of the function and improve its overall fit with the mea-167

surements. From the fitted cycle mode (shown in the two inset panels in Figure 2), we168

observe a gradual increase in velocity during winters and a rapid drop in velocity dur-169

ing the subsequent summers.170

The second major feature of the measured dv/v is its comparison with the aver-171

age water discharge data recorded by four USGS water gauging stations (Figure S6). In172

most years, the annual peaks of the dv/v in springs occur before the annual water dis-173

charge anomalies in the summers. In Figure 2, we highlight the annual peaks of both dv/v174

and water discharge anomalies with red and green bars, respectively. On average, the175

peaks of dv/v occur around 40 days earlier compared to the water discharge records. Specif-176

ically, we observe that the dv/v values dropped significantly (-0.11% and -0.15%) 92 and177

62 days before the 2014 high discharge anomaly and the 2022 historical flood, respec-178

tively. These sharp drops correspond to the high discharge peaks in these two years. Fur-179

thermore, after removing the fitted annual cycles, we observe a long-term trend of the180

dv/v (red dashed curve in Figure 2), which is consistent with the long-term trend of dis-181

charge peaks. There were two additional reported flood events along the Madison River182

that are shown as high discharge anomalies in May of 2017 and 2018 (Figure 2). How-183

ever, dv/v failed to precede these two events due to the incomplete records within two184

stations at that time (Figure S2). Therefore, our observations suggest that the measured185

dv/v tends to show a close relationship with local hydrologic variability. Next, we will186

investigate the major YNP flood inducer and explore its contribution to the seismic field.187

Corresponding seasonal fluctuations between dv/v and precipitation188

Flood monitoring often relies on the land surface’s ability to absorb and process189

water. This variability is influenced by hydrologic factors such as water in plants, ground-190

water, soil moisture and snow (J. T. Reager & Famiglietti, 2009). A previous study on191

the catastrophic 2011 Missouri River flood was conducted based on a Catchment Land192

Surface model with GRACE-based data assimilation (J. T. Reager et al., 2015). This193
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study found that snow water equivalent was the major variable that reached a record194

high level before this flood. Snow melting water contributes around 15% of the pre-flood,195

basin-wide water storage variability and serves as a significant indicator of high stream-196

flow during the 2011 Missouri River flood (J. Reager et al., 2014). Therefore, to inves-197

tigate the connection between dv/v and floods, we start from confirming the correlation198

between water discharge, snow melting and dv/v in the YNP case. To achieve this, we199

collected the mean snowmelt rate in May and June, which are two months with the most200

intense snow melting (Figure S7). The datasets used are from the ERA5 program, which201

provides the fifth generation of the European Centre for Medium-Range Weather Fore-202

casts (ECMWF) reanalysis datasets (Hersbach et al., 2018). Figure 3A shows a highly203

consistent variability between these three factors, with relatively high levels in four flood-204

ing years (2014, 2017, 2018 and 2022) and relatively low levels in 2015, 2016 and 2021.205

This correlation suggests a close relationship between the YNP floods and snowmelt wa-206

ter equivalent, which may account for the significant drop in dv/v. To fully study the207

annual cycle of dv/v and determine the contributions from different precipitation vari-208

ables, we then collected daily records of snowfall, snowmelt, rainfall and evaporation over209

the twelve-year period. All these datasets were provided by the ERA5 program (Hersbach210

et al., 2018) and then averaged over the station-covered area. Figure 3B shows that snow-211

fall has the longest duration approximately covering from October to the following April.212

On the other hand, the snowmelt, which represents a large amount of water melted from213

accumulated snowpack on the surface, has a shorter duration but a higher rate and amount214

with peak levels in the spring. Rainfall is distributed between the two snow seasons and215

has a similar but weaker effect compared to snowmelt. Evaporation follows a typical an-216

nual cycle with a peak level in the summer, consistent with temperature variations.217

Previous studies have indicated that hydrologic processes can affect near-surface218

velocity variations mainly through surface load/unload (Tsai, 2011; Mordret et al., 2016;219

Luo et al., 2023) and subsurface water saturation (Biot, 1956; Bachrach & Nur, 1998;220

Lumley, 2001; Nakata et al., 2022). These two processes typically result in changes in221
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confining pressure or pore pressure, which in turn influence the effective pressure (peff )222

on the seismic field. Therefore, we consider surface snow accumulation and subsurface223

liquid water saturation as the two major hydrologic contributors. We introduce a new224

variable, namely the effective precipitation (Pe), to explain the variations in dv/v:225

Pe = Sf − (Sm +R− E) , (3)

where Sf , Sm, R and E represent snowfall, snowmelt, rainfall and evaporation, respec-226

tively. Pe reflects the combined effects of precipitation on the seismic field (dv/v). Con-227

tinuous positive Pe values (highly overlapped with snowfall in Figure 3B) are associated228

with surface snow loading before the melting seasons, resulting in a steady increase in229

dv/v. On the other hand, extreme negative Pe values indicate a large amount of water230

(mainly from snow melting) that needs to be processed by the land surface. This can231

lead to increased water saturation of pore spaces and a significant reduction in the wa-232

ter capacity of the land, correlating with a sharp drop in dv/v. In conclusion, we pro-233

pose that the Pe variable allows us to establish a connection between floods and dv/v234

for the case of the YNP.235

Recognizing that Pe is proportional to variations in dv/v, we apply a cross-wavelet236

transform method to measure their local similarity (Torrence & Compo, 1998) (see more237

details in supplementary Text S2). We observe lags between these two signals at differ-238

ent local steps, as indicated by the arrows in Figure 3C. On average, dv/v variations have239

a time lag of 81±25 days with respect to Pe. In Figure 3D, it is easier to observe the con-240

sistency between these two time series if we shift dv/v ahead by the measured 81 days.241

We will demonstrate this time lag of the seismic field in the “Discussion” section. Here,242

we highlight that although the dv/v variations occur after the variations in Pe, their an-243

nual peaks still precede water discharge anomalies, as well as flood occurrences in sum-244

mers (Figure 2B).245
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Discussion246

Possible mechanisms of the annual cycle of dv/v to hydrologic processes247

We attempt to integrate a mutual precipitation-based mechanism that may explain248

the annual cycle of measured dv/v. Based on the response of poroelastic medium to hydrology-249

induced pressure variability (Bachrach & Nur, 1998; Tsai, 2011; Mordret et al., 2016),250

we establish a conceptual hydro-seismic model with two annual stages, as shown in Fig-251

ure 4A. We also show the seismic depth sensitivity kernel that is averaged over the fre-252

quency range used in this study. In comparison with this model, we average annual pre-253

cipitation variables and Pe, and apply the same processing to dv/v in Figure 4B.254

In Figure 4A, the first stage is snowfall accumulation, which mainly occurs from255

October to the following April. According to poroelasticity, surface loading driven by256

snowstatic pressure can cause subsurface pore spaces to close and increase grain contact,257

resulting in an increase in effective pressure (peff ) and near-surface seismic wave speeds258

(dv/v). The first stage is represented by the consistency between the positive Pe and the259

increase in dv/v (blue shades in Figure 4B). The second stage is melting and rainfall wa-260

ter infiltration/saturation (Figure 4A), which begins around April and lasts throughout261

the summer. At the end of the first stage, surface unloading causes subsurface pores to262

reopen. In addition, a large amount of water, led by melting water, begins infiltrating263

into the subsurface, significantly increasing the water saturation of the reopened pore264

spaces. Water-saturated porous media typically lead to an increase in pore pressure and265

a reduction in effective pressure peff , which in turn is controlled by shear modulus and266

density, resulting in a reduction in seismic wave velocity in the media (Lumley, 1996; Bachrach267

& Nur, 1998). The response of seismic wave speeds against a fluid-saturated porous medium268

has been well studied using the Biot-Gassmann theory (Gassmann, 1951; Biot, 1956, 1962),269

and more details can be found in supplementary Text S3. Therefore, the second stage270

is suggested by the consistency between the negative Pe and the decrease in dv/v (red271

shades in Figure 4B). After the second stage, water inputs largely cease, allowing time272
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for the saturated water to diffuse. Correspondingly, dv/v tends to increase again, which273

will be caught up in the next annual cycle (Figure 4A). We suggest that these two an-274

nual stages do not work separately, as the snowfall and snowmelt seasons somewhat over-275

lap. Here, we do not exclude other hydrologic factors, such as groundwater below the276

root zone, which may also contribute to dv/v variation and flood occurrence in the YNP277

case. Since the general water table level is included in our seismic sensitive range, and278

groundwater is suggested as the second potential contributor to the 2011 Missouri River279

flood (J. T. Reager et al., 2015). Unfortunately, its contribution cannot be evaluated due280

to the absence of continuous groundwater monitoring in the YNP flooding area. There-281

fore, our integrated model provides a reliable physical mechanism that the annual lead-282

ing peaks of dv/v are primarily determined by the anomalous balanced precipitation (Pe)283

infiltration, which always occurs before water discharge in the summer.284

Simulation of dv/v based on poroelasticity and thermoelasticity285

To further support our integrated hydro-seismic model, we attempt to simulate the286

dv/v variation by invoking a mathematical framework and adapted parameters. Tsai (2011)287

provided an analytical solution for the near-surface strain field and seismic wave speed288

changes due to poroelastic stresses. We combine this framework and precipitation vari-289

ables to model the periodic change of dv/v, which can be represented as:290

dv/v(t) ∝ peff (t−∆t) ≈ ρ · g · Pe(t−∆t) , (4)

where ρ and g denote water density and gravitational acceleration, respectively. ∆t rep-291

resents the measured time lag of dv/v(t) with respect to the precipitation variables. Here,292

we propose that the seismic wave speeds are proportional to the near-surface strain changes,293

which are driven by the effective pressure peff (t). We approximate peff (t) based on the294

previous balanced effective precipitation Pe(t) (Figure 3B). More details about the deriva-295

tion of dv/v(t) from poroelasticity can be found in supplementary Text S4. We utilize296
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the maximum peak-to-peak value of Pe(t) to simulate the high-end amplitude of the ap-297

plied effective pressure (Figure S8a). The simulated dv/v from the best-fitted poroelas-298

tic model is presented in Figures 2 and S8c, where we observe consistent amplitudes and299

phases with respect to the measured dv/v(t). All parameters and their references can300

be found in Table S2. Although some parameters may have large uncertainties, such as301

the second Murnaghan constant and the thickness of the incompetent layer (Figure S9),302

this end-member model still provides a physical constraint for our analysis with all pa-303

rameters falling within reasonable ranges.304

As mentioned earlier, the dv/v(t) shows an average lag of 81 days (∆t) in relation305

to the precipitation variables (Figure 3C). A similar delay in water infiltration (1-2 months)306

has also been observed in the 2011 Missouri River flood case (J. T. Reager et al., 2015).307

In this poroelastic model, the ∆t is a result of subsurface pressure diffusion and is pri-308

marily influenced by the thickness and diffusivity of an incompetent sedimentary layer309

(Tsai, 2011; Mordret et al., 2016) (refer to supplementary Text S4 for a more detailed310

description of this time lag). In the YNP study region, there are extensive Quaternary311

unconsolidated deposits that cover our major watersheds (Lowry et al., 1993; Nolan &312

Miller, 1995). These deposits likely play a significant role in the delay of dv/v(t) in re-313

sponse to pressure changes. We estimated the thickness of this incompetent layer to be314

3.39 m using a grid search (Figure S9).315

On the other hand, thermoelasticity is another important factor that often causes316

strains in elastic media and leads to changes in seismic speeds due to the medium’s ther-317

mal expansion (Berger, 1975; Tsai, 2011). To assess the impact of the thermoelastic ef-318

fects on the seismic field and compare it to hydrology-induced poroelasticity, we simu-319

late another periodic dv/v variation based on the same framework but substituting the320

temperature driving force (Figure S8b) and the thermal expansion term (Tsai, 2011) (more321

details can be found in supplementary Text S4). When comparing the simulated dv/v322

from these two models, we observe that the amplitude of hydrology-based poroelastic323
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dv/v is greater than that of thermoelasticity (Figures 2 and S8c). Furthermore, we cal-324

culate that these two models have different time lags (∆t equals to 77 and 107 days for325

poroelasticity and thermoelasticity, respectively), which may result in different annual326

cycle modes for dv/v. To further investigate the effects of temperature on the seismic327

field and its contribution to the YNP floods, we performed another measurement of dv/v328

using four stations located in a non-flooding area in the YNP. These stations are rep-329

resented by three gray triangles and station YFT in Figure 1. We have observed that330

the cycle mode obtained from data fitting is significantly different from the one observed331

in the flooding area (Figure S10). Based on our findings, we suggest that in the flood-332

ing areas, the balanced hydrologic factor Pe plays a major role in determining the cy-333

cle mode of dv/v. While, in non-flooding areas, the contribution of thermoelasticity on334

the seismic field may be more prominent, resulting in different annual cycle modes for335

dv/v.336

Moreover, previous studies have also indicated that dv/v is capable of reflecting337

long-term trends in surface loading and temperature variations (Lecocq et al., 2017; Luo338

et al., 2023). In addition to the annual cycle, the measured dv/v in the flooding area also339

shows continuous increasing trends prior to high water discharge anomalies in 2014, 2017340

and 2022. This is particularly evident in the significant change of +3.0×10−2% from341

2021 to 2022 (red dashed curves in Figures 2 and S11). To better understand these trends,342

we compare the long-term trend of dv/v with the accumulated snowpack depth and sur-343

face temperature over the flooding area (Figure S11). It is reasonable to assume that the344

snowpack depth changes proportionally with surface temperature and contributes to the345

long-term trend of dv/v before 2017. However, from 2019 to 2022, the overall decreas-346

ing snowpack depth fails to explain the increasing trend in dv/v (Figure S11). During347

the periods without snowpack covering, we observed that the summer temperature af-348

ter 2019 has a more consistent trend with dv/v, including an anomalous high temper-349

ature in the summer of 2021. Based on these observations, we suggest that successive350

anomalous high temperatures may further increase the grain size and reduce the pore351
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spaces in the surface (Berger, 1975; Tsai, 2011). This, in turn, may reduce the water ca-352

pacity of the surface land during the melting/rainfall season. Therefore, both snowpack353

loading and high temperature can mutually contribute to the increase in long-term trend354

of dv/v, potentially enhancing the risk of flooding.355

Conclusion356

Throughout our analysis of the twelve-year ASN records in the YNP flooding area,357

we suggest that the annual cycle of the measured seismic velocity variation (dv/v) is likely358

a response to local hydrologic variations. The annual peaks of the dv/v are possibly de-359

termined by the infiltration of effective precipitation (Pe), their leading occurrence po-360

tentially provides early warning information for water discharge anomalies in summers.361

The increasing long-term trend of dv/v may also indicate high surface snowpack capac-362

ity and temperature, likely enhancing the risk of upcoming floods. The poroelastic dv/v363

simulation supports our analysis that the effective precipitation may serve as the ma-364

jor driving force on the seismic field. Thus, we propose that further studies is necessary365

to develop this ASN technique as a quantitative flood predictor, and its applications for366

other flood scenarios (e.g., real-time rainfall, seawater inputs, riverbank break) may need367

to be evaluated. However, our study still offers a novel and insightful seismic sensing of368

the YNP flood case by integrating complex hydrologic processes. We anticipate that this369

ASN technique can be widely applied by taking advantage of dense seismic networks in370

other plains and basins.371

Data Availability Statement372

Continuous seismic records are from the Yellowstone National Park Seismograph373

Network, operated by University of Utah (University of Utah, 1983), which can be down-374

loaded using the Obspy package (Beyreuther et al., 2010). Seismic interferometry and375

dv/v measurements are performed using the MSNoise package (Lecocq et al., 2014). Wa-376

ter discharge time series are collected from the U.S. Geological Survey, National Water377
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Information System (https://maps.waterdata.usgs.gov/mapper). The datasets for378

different precipitation variables, surface temperature and snowmelt rate are collected from379

the ERA5 program (Hersbach et al., 2018). The root zone soil moisture datasets are col-380

lected from NASA’s GRACE-FO measurements (https://nasagrace.unl.edu). All fig-381

ures are plotted using the Matplotlib package (Hunter, 2007).382
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Figure 1: Seismo-hydrologic settings in the YNP. The cyan-blue curves represent major
streams in the YNP. Red triangles and green squares denote six seismic and four USGS
water stations, respectively. Gray triangles denote three seismic stations in a non-flooding
area. The background grayscale represents the root zone (0-1 m depth) soil moisture mea-
sured in June 13, 2022 (https://nasagrace.unl.edu), which is reported as the peak level
during the 2022 YNP flood. The junction of Madison, Firehole and Gibbon rivers covers
one of the most severe flooding areas.
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Figure 2: Seismic velocity variation (dv/v) in the flooding area. We com-
pare the measured dv/v (in red) with the averaged water discharge (in green,
https://maps.waterdata.usgs.gov/mapper). The annual peaks of dv/v and water dis-
charge are marked by red solid dots and green squares, and are delineated in red and
green bars, respectively. The cycle modes for two dv/v segments are fitted by using Equa-
tion 2. The long-term trend of dv/v is derived by removing the cycle mode and running
250 days moving average. Gray shades represent the misfits of dv/v measurements. Blue
and orange curves are simulated dv/v based on hydrology-induced poroelasticity and ther-
moelasticity, respectively.
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Figure 3: Correlation between seismic velocity variation (dv/v) with precipitation data.
(A) Relative change rates of regional snowmelt, water discharge and dv/v. Four colors
denote the YNP flooded years: 2014, 2017, 2018 and 2022. (B) The partition of different
precipitation factors (Sf : snowfall; Sm: snowmelt; R: rainfall; E: evaporation) (Hersbach
et al., 2018), and the effective precipitation (Pe) that is defined in Equation 3. The unit
is water equivalent thickness in meters (m.w.e). (C) The cross-wavelet transform between
Pe and dv/v. Arrows denote local phase shifts with the angle as time. The black contour
represents a 99% confidence level against background noise. The averaged time lag of
dv/v is 81 days (with a standard deviation of 25 days) with respect to Pe. (D) Correlation
between Pe and shifted dv/v with 93 days. Both datasets are filtered in 8 to 36 months.
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Figure 4: A physical mechanism for explaining the relation between dv/v and precipita-
tion variables. (A) The conceptual hydro-seismic model includes two annual stages (S1
and S2). The red triangle denotes the seismic sensor. The averaged seismic depth sensitiv-
ity kernel is shown to the left side of S1. (B) Yearly averaged precipitation variables (top)
and dv/v variation (bottom). Blue and red shades represent the positive and negative Pe,
in turn drive the increase and decrease of dv/v, which are associated with Panel A.
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