References
[1] M. Retzepi, N. Donos, Guided
Bone Regeneration: biological principle and therapeutic applications,
Clinical oral implants research, 21 (2010) 567-576.
[2] R. Dimitriou, G.I.
Mataliotakis, G.M. Calori, P.V. Giannoudis, The role of barrier
membranes for guided bone regeneration and restoration of large bone
defects: current experimental and clinical evidence, BMC medicine, 10
(2012) 81.
[3] Z. Lin, A. Fateh, D.M. Salem,
G. Intini, Periosteum: biology and applications in craniofacial bone
regeneration, Journal of dental research, 93 (2014) 109-116.
[4] C. Colnot, X. Zhang, M.L.
Knothe Tate, Current insights on the regenerative potential of the
periosteum: molecular, cellular, and endogenous engineering approaches,
Journal of orthopaedic research : official publication of the
Orthopaedic Research Society, 30 (2012) 1869-1878.
[5] B.G. Matthews, S. Novak, F.V.
Sbrana, J.L. Funnell, Y. Cao, E.J. Buckels, D. Grcevic, I. Kalajzic,
Heterogeneity of murine periosteum progenitors involved in fracture
healing, eLife, 10 (2021).
[6] S.R. Moore, C. Heu, N.Y. Yu,
R.M. Whan, U.R. Knothe, S. Milz, M.L. Knothe Tate, Translating
Periosteum’s Regenerative Power: Insights From Quantitative Analysis of
Tissue Genesis With a Periosteum Substitute Implant, Stem cells
translational medicine, 5 (2016) 1739-1749.
[7] H. Chang, M.L. Knothe Tate,
Concise review: the periosteum: tapping into a reservoir of clinically
useful progenitor cells, Stem cells translational medicine, 1 (2012)
480-491.
[8] N. Li, J. Song, G. Zhu, X. Li,
L. Liu, X. Shi, Y. Wang, Periosteum tissue engineering-a review,
Biomaterials science, 4 (2016) 1554-1561.
[9] Y. Zhu, B. Dai, X. Li, W. Liu,
J. Wang, J. Xu, S. Xu, X. He, S. Zhang, Q. Li, L. Qin, T. Ngai,
Periosteum-Inspired Membranes Integrated with Bioactive Magnesium
Oxychloride Ceramic Nanoneedles for Guided Bone Regeneration, ACS
applied materials & interfaces, 14 (2022) 39830-39842.
[10] Y. Kang, L. Ren, Y. Yang,
Engineering vascularized bone grafts by integrating a biomimetic
periosteum and beta-TCP scaffold, ACS applied materials & interfaces, 6
(2014) 9622-9633.
[11] X. Nie, D.A. Wang,
Decellularized orthopaedic tissue-engineered grafts: biomaterial
scaffolds synthesised by therapeutic cells, Biomaterials science, 6
(2018) 2798-2811.
[12] D.A. Taylor, L.C. Sampaio,
Z. Ferdous, A.S. Gobin, L.J. Taite, Decellularized matrices in
regenerative medicine, Acta biomaterialia, 74 (2018) 74-89.
[13] K.E. Benders, P.R. van
Weeren, S.F. Badylak, D.B. Saris, W.J. Dhert, J. Malda, Extracellular
matrix scaffolds for cartilage and bone regeneration, Trends in
biotechnology, 31 (2013) 169-176.
[14] G.I. Barbulescu, F.M. Bojin,
V.L. Ordodi, I.D. Goje, A.S. Barbulescu, V. Paunescu, Decellularized
Extracellular Matrix Scaffolds for Cardiovascular Tissue Engineering:
Current Techniques and Challenges, International journal of molecular
sciences, 23 (2022).
[15] K. Chen, X. Lin, Q. Zhang,
J. Ni, J. Li, J. Xiao, Y. Wang, Y. Ye, L. Chen, K. Jin, L. Chen,
Decellularized periosteum as a potential biologic scaffold for bone
tissue engineering, Acta biomaterialia, 19 (2015) 46-55.
[16] A.D. McInnes, M.A.J. Moser,
X. Chen, Preparation and Use of Decellularized Extracellular Matrix for
Tissue Engineering, Journal of functional biomaterials, 13 (2022).
[17] K. Okamoto, T. Nakashima, M.
Shinohara, T. Negishi-Koga, N. Komatsu, A. Terashima, S. Sawa, T. Nitta,
H. Takayanagi, Osteoimmunology: The Conceptual Framework Unifying the
Immune and Skeletal Systems, Physiological reviews, 97 (2017) 1295-1349.
[18] H.Y. Dar, Z. Azam, R.
Anupam, R.K. Mondal, R.K. Srivastava, Osteoimmunology: The Nexus between
bone and immune system, Front Biosci (Landmark Ed), 23 (2018) 464-492.
[19] S. Jin, R. Yang, C. Chu, C.
Hu, Q. Zou, Y. Li, Y. Zuo, Y. Man, J. Li, Topological structure of
electrospun membrane regulates immune response, angiogenesis and bone
regeneration, Acta biomaterialia, 129 (2021) 148-158.
[20] K. Wang, W.D. Hou, X. Wang,
C. Han, I. Vuletic, N. Su, W.X. Zhang, Q.S. Ren, L. Chen, Y. Luo,
Overcoming foreign-body reaction through nanotopography:
Biocompatibility and immunoisolation properties of a nanofibrous
membrane, Biomaterials, 102 (2016) 249-258.
[21] Z. Chen, L. Chen, R. Liu, Y.
Lin, S. Chen, S. Lu, Z. Lin, Z. Chen, C. Wu, Y. Xiao, The
osteoimmunomodulatory property of a barrier collagen membrane and its
manipulation via coating nanometer-sized bioactive glass to improve
guided bone regeneration, Biomaterials science, 6 (2018) 1007-1019.
[22] Y. Xuan, L. Li, M. Ma, J.
Cao, Z. Zhang, Hierarchical Intrafibrillarly Mineralized Collagen
Membrane Promotes Guided Bone Regeneration and Regulates M2 Macrophage
Polarization, Frontiers in bioengineering and biotechnology, 9 (2021)
781268.
[23] Z. Zhang, Z. Li, C. Zhang,
J. Liu, Y. Bai, S. Li, C. Zhang, Biomimetic intrafibrillar mineralized
collagen promotes bone regeneration via activation of the Wnt signaling
pathway, International journal of nanomedicine, 13 (2018) 7503-7516.
[24] R. Junka, X. Zhou, W. Wang,
X. Yu, Albumin-Coated Polycaprolactone (PCL)-Decellularized
Extracellular Matrix (dECM) Scaffold for Bone Regeneration, ACS applied
bio materials, (2022).
[25] J. He, Z. Li, T. Yu, W.
Wang, M. Tao, Y. Ma, S. Wang, J. Fan, X. Tian, X. Wang, Y. Lin, Q. Ao,
Preparation and evaluation of acellular sheep periostea for guided bone
regeneration, Journal of biomedical materials research. Part A, 108
(2020) 19-29.
[26] G.K. Chalikias, D.N.
Tziakas, Biomarkers of the extracellular matrix and of collagen
fragments, Clinica chimica acta; international journal of clinical
chemistry, 443 (2015) 39-47.
[27] C. Chu, J. Deng, X. Sun, Y.
Qu, Y. Man, Collagen Membrane and Immune Response in Guided Bone
Regeneration: Recent Progress and Perspectives, Tissue engineering. Part
B, Reviews, 23 (2017) 421-435.
[28] C. Wu, Z. Chen, D. Yi, J.
Chang, Y. Xiao, Multidirectional effects of Sr-, Mg-, and Si-containing
bioceramic coatings with high bonding strength on inflammation,
osteoclastogenesis, and osteogenesis, ACS applied materials &
interfaces, 6 (2014) 4264-4276.
[29] Z. Chen, A. Bachhuka, F.
Wei, X. Wang, G. Liu, K. Vasilev, Y. Xiao, Nanotopography-based strategy
for the precise manipulation of osteoimmunomodulation in bone
regeneration, Nanoscale, 9 (2017) 18129-18152.
[30] X. Dong, P. Wu, L. Yan, K.
Liu, W. Wei, Q. Cheng, X. Liang, Y. Chen, H. Dai, Oriented nanofibrous
P(MMD-co-LA)/Deferoxamine nerve scaffold facilitates peripheral nerve
regeneration by regulating macrophage phenotype and revascularization,
Biomaterials, 280 (2022) 121288.
[31] X. Dong, S. Liu, Y. Yang, S.
Gao, W. Li, J. Cao, Y. Wan, Z. Huang, G. Fan, Q. Chen, H. Wang, M. Zhu,
D. Kong, Aligned microfiber-induced macrophage polarization to guide
schwann-cell-enabled peripheral nerve regeneration, Biomaterials, 272
(2021) 120767.
[32] P. Qiu, M. Li, K. Chen, B.
Fang, P. Chen, Z. Tang, X. Lin, S. Fan, Periosteal matrix-derived
hydrogel promotes bone repair through an early immune regulation coupled
with enhanced angio- and osteogenesis, Biomaterials, 227 (2020) 119552.
[33] L. Yang, J. Zhou, K. Yu, S.
Yang, T. Sun, Y. Ji, Z. Xiong, X. Guo, Surface modified small intestinal
submucosa membrane manipulates sequential immunomodulation coupled with
enhanced angio- and osteogenesis towards ameliorative guided bone
regeneration, Materials science & engineering. C, Materials for
biological applications, 119 (2021) 111641.
[34] R.X. Wu, X.T. He, J.H. Zhu,
Y. Yin, X. Li, X. Liu, F.M. Chen, Modulating macrophage responses to
promote tissue regeneration by changing the formulation of bone
extracellular matrix from filler particles to gel bioscaffolds,
Materials science & engineering. C, Materials for biological
applications, 101 (2019) 330-340.
Table 1. Primer sequences for qRT-PCR