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Abstract Detections of slow slip events (SSEs) are now common along most plate boundary13

fault systems globaly. However, no such event has been described in the south Peru - north Chile14

subduction zone so far, except for the early preparatory phase of the 2014 Iquique earthquake.15

We use geodetic template matching on GNSS-derived time series of surface motion in Southern16

Peru - Northern Chile to extract SSEs hidden within geodetic noise. We detect 24 events with dura-17

tions ranging from 17 to 36 days and magnitudes from Mw 5.4 to 6.2. Our events, analyzed from a18

moment-duration scaling perspective, reveal values consistent with observations reported in other19

subduction zones. We compare the distribution of SSEs with the distribution of coupling along the20

megathrust derived using Bayesian inference on GNSS- and InSAR-derived interseismic velocities.21

From this comparison, we obtain that most SSEs occur in regions of intermediate coupling where22

the megathrust transitions from locked to creeping or where geometrical complexities of the in-23

terplate region have been proposed. We finally discuss the potential role of fluids as a triggering24

mechanism for SSEs in the area.25

Resumen Hoy en día, las detecciones de eventos lentos (SSEs, por sus siglas en inglés) son co-26

munes a lo largo de la mayoría de los sistemas de fallas activas a una escala global. Sin embargo,27

hasta ahora, no se han reportado eventos de este tipo en la zona de subducción del sur del Perú y28

norte de Chile (10oS-24oS), exceptuando aquellos ocurridos durante la fase de preparación del ter-29

remoto de Iquique de 2014. En el presente trabajo, nosotros utilizamos una técnica conocida como30

“Template Matching" en series temporales de desplazamiento medido por datos GNSS (Global Nav-31

igation Satellite System, GNSS por sus siglas en inglés) en el sur del Perú y el norte de Chile, para32

extraer la firma de eventos lentos asísmicos ocultos en el ruido geodésico. Nosotros detectamos33
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24 eventos asísmicos con duraciones de 17 a 36 días, y magnitudes de Mw 5.4 a 6.2. El análisis de34

nuestros eventos utilizando leyes de escala momento-duración, revela valores consistentes con35

observaciones realizadas en otras zonas de subducción. El momento sísmico liberado por estos36

eventos es proporcional al cubo de su duración, lo que parece implicar una dinámica comparable37

con la de los terremotos clásicos. Los eventos detectados en este trabajo están principalmente lo-38

calizados en zonas donde el acoplamiento intersísmico presenta valores en transición (0.3 - 0.8 de39

factor de acomplamiento), donde la zona de subducción transiciona de un estado bloqueado a uno40

de deslizamiento continuo. Finalmente, nosotros discutimos el rol potencial que podrían jugar los41

fluidos en el desencadenamiento de estos eventos lentos.42

Résumé Depuis une vingtaine d’année, des événements de glissement asismiques ont été dé-43

tectés le long de quasiment toutes les frontières de plaques au monde. Cependant, aucun n’a été44

décrit pour l’instant le long de la zone de Subduction allant du Perou au nord du Chili, si l’on omet le45

glissement mesuré lors de la période d’activité ayant mené au séisme d’Iquique en 2014. Nous util-46

isons une technique dite de Template matching sur des séries temporelles de déplacement mesuré47

par GNSS dans le nord du Chili pour extraire la signature d’événements de glissement asismiques48

cachés au sein du bruit géodésique. Nous détectons 24 événements asismiques avec des durées49

allant de 17 à 36 jours pour des magnitudes équivalentes allant de Mw 5.4 à 6.2. Nos événements50

ont des valeurs cohérentes avec les observations rapportées dans d’autres zones de subduction.51

Il apparait que ces événements asismiques sont essentiellement localisés dans des zones de cou-52

plage intermédiaires où le megathrust est a mi-chemin entre un état bloqué et un état en glisse-53

ment permanent. Nous discutons finalement de l’influence éventuelle de fluides profonds dans le54

déclenchement de ces événements asismiques.55

Non-technical summary Earthquakes correspond to a sudden release of elastic energy56

stored in the crust as a response to the relative motion of tectonic plates. However, this release57

of energy is not always sudden and accompanied by destructive seismic waves. It sometimes hap-58

pens slowly during aseismic, slow slip events. It has been shown that SSEs can be associated with59

the nucleation, propagation, and termination of big earthquakes. SSEs have been detected along60

many subduction zones in the world but not in northern Chile, yet. Here, we use a template match-61

ing method to scan GNSS observations of ground motion to detect and characterize slow slip events62

along the southern Peru - northern Chile subduction zone. We find 24 aseismic events at depths63

comparable with that of SSEs in other subduction zones, as well as in regions that slip aseismically64

persistently. We discuss how our findings relate to past earthquake ruptures, the geometry of the65

subduction zone, and fluids circulating at depth. Our results show the importance of implementing66

methods to extract small aseismic signals in noisy data, key observations for a better understand-67

ing of fault mechanics.68
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1 Introduction69

Overwhelming evidence suggest that the Elastic Rebound Theory proposed by Reid (1910) after the 1906 California70

earthquake associated with the stick-slip behavior of frictional interface (Brace and Byerlee, 1966) is insufficient to71

explain the slip behavior along active faults. Geodeticmeasurements of surfacemotion have revealed the presence of72

aseismic, slow slip along all types of active faults. After the first descriptions in the mid-20th century from direct ob-73

servations of damage tohuman-made structures crossing the SanAndreas (Louderback, 1942; Steinbrugge et al., 1960)74

and North Anatolian (Ambraseys, 1970) faults, aseismic slip has been directly observed, or inferred, from geodetic75

measurements at different stages of the earthquake cycle. For instance, afterslip corresponds to the diffusion of slow76

slip during the post-seismic period accommodating a co-seismic stress perturbation (e.g.,Heki et al., 1997; Bürgmann77

et al., 2001; Hsu et al., 2002, 2006). Creep, on the other hand, often refers to steady aseismic slip during the interseis-78

mic period (Steinbrugge et al., 1960; Ambraseys, 1970; Jolivet et al., 2015b). In addition, interseismic transients (i.e.,79

slow slip events or SSEs) during this interseismic period were discovered in the 2000s along subduction zones. SSEs80

often locate in the deeper portion of the seismogenic zone (e.g., Hirose et al., 1999; Dragert et al., 2001), but some of81

these SSEs are associated with seismic signals that occur within the seismogenic zone, and may contribute to reduc-82

ing geodetic coupling (Mazzotti et al., 2000; Bürgmann et al., 2005; Loveless and Meade, 2010; Radiguet et al., 2012;83

Béjar-Pizarro et al., 2013; Villegas-Lanza et al., 2016; Métois et al., 2016; Michel et al., 2019a; Jolivet et al., 2020; van84

Rijsingen et al., 2021; Lovery et al., 2024). This along-dip segmentation differs from one subduction zone to the other85

(Nishikawa et al., 2019) and we note more occurrences of SSEs along young, warm subduction zones (i.e., Nankai,86

Mexico, Cascadia), than old and cold ones. Finally, slow slip appears to be an important ingredient of the preparation87

phase of earthquakes (e.g., Ruegg et al., 2001; Ruiz et al., 2014; Radiguet et al., 2016; Socquet et al., 2017; Voss et al.,88

2018). More recently, it has beenproposed that a significant fraction of observed geodetic displacement in seismically89

active regions results from the occurrence of slow slip events (Jolivet and Frank, 2020, and reference therein), sug-90

gesting a burst-like, episodic behavior of aseismic slip at all time scales from seconds to decades in places as varied91

as Mexico (Frank, 2016; Rousset et al., 2017; Frank and Brodsky, 2019), Cascadia (Michel et al., 2019a; Ducellier et al.,92

2022; Itoh et al., 2022), along the San Andreas Fault (Khoshmanesh and Shirzaei, 2018; Rousset et al., 2019; Michel93

et al., 2022), the Haiyuan fault in Tibet (Jolivet et al., 2015a; Li et al., 2021), on the Alto Tiberina and Pollino fault94

systems in Italy (Gualandi et al., 2017; Cheloni et al., 2017; Essing and Poli, 2022), or Japan (Nishimura et al., 2013;95

Takagi et al., 2019; Nishikawa et al., 2019; Uchida et al., 2020). All observations suggest the importance of accounting96

for aseismic slip in our understanding of earthquake cycle dynamics. However, the underlying physics controlling97

aseismic slip is still debated, mainly due to the lack of good, dense observational databases.98

Nowadays, observations of aseismic slip in subduction zones are frequently documented over a wide range of99

slip amplitudes and at different stages of the earthquake cycle (Avouac, 2015; Obara and Kato, 2016; Bürgmann, 2018;100

Kato and Ben-Zion, 2021, and references therein). Regular slow slip events have been documented mainly along101

warm subduction zones such as Cascadia, Nankai (southwest Japan), Mexico, or New Zealand (e.g., Graham et al.,102

2016; Nishikawa et al., 2019; Wallace, 2020; Michel et al., 2022, and references therein). Instead, observations of slow103

slip events in cold subduction zones such as off-shore Japan or Chile are sparse or indirect, through seismic swarms,104

repeaters, or slow earthquakes (Kato et al., 2012; Kato and Nakagawa, 2014; Gardonio et al., 2018; Nishikawa et al.,105
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2019), and rarely with geodetic observations (Hino et al., 2014; Ruiz et al., 2014; Socquet et al., 2017; Boudin et al.,106

2021). Geodetic displacement corresponding to such slow slip events are usually of mm to cm-scale amplitude and107

require the development of novel and systematic methods to extract SSEs from noisy time series of geodetic data108

(Frank, 2016; Rousset et al., 2017; Michel et al., 2019a; Uchida et al., 2020; Itoh et al., 2022).109

We focus on the South Peru- North Chile subduction zone. The region is seismically active, with two historical110

earthquakes in 1868 (southern Peru), and 1877 (northern Chile), both tsunamigenic earthquakes of magnitude ∼8.5111

(Kausel, 1986; Comte and Pardo, 1991; Vigny and Klein, 2022) (Figure 1). Since these two events, the region has expe-112

rienced several large earthquakes (Mw > 7.5) (Ruiz andMadariaga, 2018) accompanied by an important background113

seismic activity (Jara et al., 2017; Sippl et al., 2018, 2023) (Figure 1). In addition, coupling is highly variable along the114

subduction interface. Coupled regions overlap with the inferred rupture extent of the 2001Mw 8.1 Arequipa and 2014115

Mw 8.1 Iquique earthquakes (Schurr et al., 2014; Métois et al., 2016; Villegas-Lanza et al., 2016; Jolivet et al., 2020). A116

large coupled section is inferredwhere the 1877 earthquake is thought to have ruptured (Jolivet et al., 2020; Vigny and117

Klein, 2022). In addition, two low-coupling regions are observed. In southern Peru, low coupling coincides with the118

subduction of the Nazca ridge (∼ 15o) (Villegas-Lanza et al., 2016; Lovery et al., 2024). In northern Chile, a reduction119

in coupling is inferred offshore Iquique and below theMejillones peninsula (∼ 21o) (Béjar-Pizarro et al., 2013; Métois120

et al., 2016; Jolivet et al., 2020).121

In addition to low coupling, aseismic slip has been observed in South Peru and North Chile. Afterslip has been122

reported following large earthquakes, including the 1995 Mw 8.1 Antofagasta (Chlieh et al., 2004; Pritchard and Si-123

mons, 2006), the 2001Mw 8.1 Arequipa (Ruegg et al., 2001; Melbourne, 2002), the 2007Mw 8.0 Pisco (Perfettini et al.,124

2010; Remy et al., 2016), the 2007Mw 7.7 Tocopilla (Béjar-Pizarro et al., 2010) and the 2014Mw 8.1 Iquique earthquakes125

(Hoffmann et al., 2018) (Figure 1). Geodetic transients interpreted as the signature of aseismic slip occurred in the126

days to months preceding theMw 8.4 Arequipa earthquake in 2001, before one of its largest aftershock, and preced-127

ing the Iquique earthquake in 2014 (e.g., Ruegg et al., 2001; Melbourne, 2002; Ruiz et al., 2014; Schurr et al., 2014;128

Socquet et al., 2017). Aseismic slip is considered responsible for a significant fraction of such geodetic transients129

(Twardzik et al., 2022). There is therefore plenty of evidence of occurrences of aseismic slip in this broad region but,130

despite intense efforts to instrument the area, no obvious spontaneous slow slip events have been detected during131

the interseismic period.132

Achange in the interseismic surface velocity fieldwas observed following theMw 7.5 intermediate-depthTarapaca133

earthquake over a decade (Peyrat et al., 2006; Peyrat and Favreau, 2010) (Figure 1), an observation interpreted as the134

signature of a decoupling of the subduction interface (Ruiz et al., 2014; Jara et al., 2017). Comparable changes in135

surface velocity field, observed following the 2010Maule earthquake, have also been observed in the regions affected136

by the 2015 Illapel (Ruiz et al., 2016) and 2016 Chiloé (Ruiz et al., 2017; Melnick et al., 2017) earthquakes. Such shifts in137

surface velocity may be linked to postseismic viscoelastic processes acting over long distances (Bouchon et al., 2018)138

in contrast to the localized behavior observed after the Tarapaca earthquake (Jara et al., 2017). Over the same period,139

we observed a significant increase in background seismicity (Jara et al., 2017), as well as an apparent synchronization140

of intermediate-depth and shallow seismic activities (Bouchon et al., 2016; Jara et al., 2017). Changes in background141

seismicity rates have been associated with the occurrence of aseismic slip events and fluid migration (Marsan et al.,142
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2013; Reverso et al., 2016; Marsan et al., 2017). The synchronization of the seismicity is interpreted as related to143

aseismic slip events occurring along the subduction interface due to a broader slab deformation (Bouchon et al.,144

2016). These indirect observations suggest aseismic transients may occur in South Peru - North Chile during the145

interseismic period.146

We aim to detect small, short-term aseismic slip events in this region and discuss their occurrence and location147

with respect to the interseismic coupling pattern and past seismic crises. We explore GNSS time series, searching for148

small transients, using a geodetic template matching approach (Rousset et al., 2017). We use GNSS and InSAR data to149

infer an updated distribution of interseismic coupling using a Bayesian framework following the approach of Jolivet150

et al. (2020), comparing the detected aseismic events with the coupling model, along with geophysical information151

available in the region (seismicity, Vp/Vs ratio, gravity models). We finally discuss potential mechanisms explaining152

the occurrence of aseismic events in the area.153

2 Data, Methods and Results154

2.1 GNSS processing and time series analysis155

We process data from 119 continuous GNSS (cGNSS) sites in the central Andes region (Figure S1a) and worldwide156

(Figure S1b), using a double difference approach with the GAMIT/GLOBK software (Herring et al., 2015). 67 cGNSS157

sites are in the South Peru - North Chile region (Figure S1a and Figure 2, brown arrows), installed and maintained158

by the Integrate Plate boundary Observatory Chile (IPOC) (Klotz et al., 2017), the Laboratoire International Asso-159

cié “Montessus de Ballore” (LIA-MB) (Klein et al., 2022), the Central Andean Tectonic Observatory (CAnTO, Caltech)160

(Simons et al., 2010), the Instituto Geofísico del Perú (IPG) (Jara et al., 2017; Socquet et al., 2017), the Institut des161

Sciences de la Terre (ISTerre) (Jara et al., 2017; Socquet et al., 2017), and the Centro Sismológico Nacional of Chile162

(CSN) (Báez et al., 2018). The remaining 52 stations are part of the International GNSS Service (IGS) (Teunissen and163

Montenbruck, 2017) global network. We separate these stations into three subnetworks (two locals and one global)164

with 33 overlapping stations, where the local separation depends on the station data span: one local network with165

data from 2000-2014 and the other including data from 2007-2014. Global network processing includes 99 stations166

over the 2000 - 2014 period, with 22 stations in South America (Figure S1b). We use the GAMIT 10.6 software (Herring167

et al., 2015), choosing the ionosphere-free combinations and fixing the ambiguities to integer values. We use precise168

orbits from the IGS, precise earth-orientation parameters (EOPs) from the International Earth Rotation and Refer-169

ence System Service (IERS) bulletin B, IGS tables to describe the phase centers of the antennas, FES2004 ocean-tidal170

loading corrections, and atmospheric loading corrections (tidal and non-tidal). We estimate one tropospheric zenith171

delay every two hours and one pair of horizontal tropospheric gradients per 24h session using the Vienna Mapping172

Function (VMF1) (Boehmet al., 2006). We use the GLOBK software to combine daily solutions and the PYACS software173

(Nocquet, 2018) to derive position time series in the ITRF 2008 reference frame (Altamimi et al., 2011). Finally, time174

series are referenced to fixed South-America considering the Euler pole solution proposed by Nocquet et al. (2014).175

We fit the time series with a parametric function of time for each component (N, E, and U) (Bevis and Brown,176

2014). Each time series x(t), function of time t, is modeled as177
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x(t) = xR + v(t− tR) +

nj∑
j=1

bjH(t− tj) +

nF∑
k=1

[sk sin(ωkt) + ck cos(ωkt)] +

nT∑
i=i

ai log(1 + ti/∆T ), (1)178

where xR is a reference position at a time tR and v is the interseismic velocity for each component. H is a Heaviside179

function applied each time tj an earthquake (or antenna change) offsets the time series. The combination of sin and180

cos functions describes seasonal oscillations (with annual and semi-annual periods), while the logarithmic function181

models the transient, post-seismic signal following large earthquakes (Mw ≥ 7.5) with a relaxation time ∆T . For a182

given station, we consider a Heaviside function for all earthquakes of magnitude larger that 6 with an epicenter to183

station distance lower than d(M) = 10
M
2 −0.8, as proposed by theNevadaGeodetic Laboratory (www.geodesy.unr.edu).184

We only include a post-seismic term for earthquakes of magnitude larger than 7.5. All inferred parameters for each185

component and each cGPS site are in Supplementary Information, Tables S1-S38. Figures S2-S17 compare the data186

andmodel at each station. We then estimate and remove a common-mode error by stacking all the time series (Bock187

andMelgar, 2016; Socquet et al., 2017; Jara et al., 2017). This procedure enables us to get residual time series (Figures188

S18-S19) as well as an interseismic velocity field (Table S1-S2). We use the obtained residual time series to search189

for geodetic transients compatible with slip on the megathrust and use the geodetic velocity field to update the last190

published coupling map (Jolivet et al., 2020).191

2.2 Fault Geometry and Green’s Functions192

Coupling map estimation and geodetic template matching methods need a fault geometry and Green’s functions193

calculation, as described below. In both cases, we define the geometry of themegathrust using Slab 2.0 (Hayes et al.,194

2018) as a reference, but with different meshing strategies. For the coupling case, we use triangles with 10 km-long195

sides along the coast and 25 km-long sides, both at the trench and depth, between latitudes 17oS-25oS. In the northern196

part (10oS-17oS), we adapt the size to the GNSS station density, considering a constant 50 km-long triangle side. In197

contrast, in the geodetic template matching case, we use triangles with 10 km-long sides along the coast and 25 km-198

long sides in the entire region. Then, we consider slip on the fault as the linear interpolation of slip values at the199

mesh nodes. Finally, we compute the Green’s functions assuming a stratified elastic medium derived from Husen200

et al. (1999) using the EDKS software (Zhu and Rivera, 2002).201

2.3 Coupling map for Southern Peru - Northern Chile202

We update the distribution of coupling from Jolivet et al. (2020) in order to compare short- (i.e., days to months) and203

long-term (i.e., years to decades) aseismic deformation in the region. We use the GNSS velocity fields from Métois204

et al. (2016) (data span 1996 - 2013) and Villegas-Lanza et al. (2016) (data span 2008-2013), that we complement with our205

GNSS velocity field (Figure 2a, data span 2000-2016). Additionally, we use the line of sight (LOS) velocity map from206

Jolivet et al. (2020), derived from the processing of Envisat data covering the period 2003 - 2010 (Figure 2b).207

We use the backslip approach to estimate the distribution of coupling (Savage, 1983). A coupling of 1 (resp. 0)208

corresponds to a fully locked megathrust (resp. a megathrust that slips at plate rate). We consider plate motion esti-209

mated by UNAVCO (www.unavco.org) under the ITRF 2014 model (Altamimi et al., 2016) to estimate the convergence210
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rate, angle, and rake on each node of the fault mesh. The backslip rate is evaluated by subtracting the sliver move-211

ment proposed by Métois et al. (2016) in Chile (11 mm/yr) and by (Villegas-Lanza et al., 2016) in Peru (5.5 mm/yr) to212

the convergence rate. In the Arica bend (16oS - 18oS), at the boundary of the Chilean and Peruvian slivers, we build213

a gradient to make a smooth transition between the two slivers. We solve for the distribution of models that satisfy214

the geodetic data.215

The forward problem is written as d = Gm, with d the geodetic data (GNSS and InSAR velocities), m the vector216

of parameters to solve for and G the Green’s functions (Section 2.2). Parameters include coupling at each mesh node217

and geometric transformations akin to those in Jolivet et al. (2020). We adopt a probabilistic approach to estimate218

the parameters in order to evaluate the associated uncertainties. The a posteriori Probability Density Function (PDF)219

of a modelm given a dataset d, p(m|d), writes as220

p(m|d) ∝ p(m)p(d|m), (2)221

where p(m) is the a priori model PDF and p(d|m) is the data likelihood. The a priori PDF describes our knowledge222

of coupling along the megathrust before collecting geodetic data. We define the a priori PDF at each node for the223

coupling factor as follows:224

X ∼


N (µc, σ

2
c ) if − 0.1 ≤ X ≤ 1.1

0 otherwise
(3)225

where µc and σc are the mean and standard deviation of a normal distribution. We select the bounds of [-0.1, 1.1] to226

ensure an accurate sampling for the full range of coupling values between 0 and 1 (Dal Zilio et al., 2020a; Jolivet et al.,227

2020). We know the megathrust is decoupled below 60 km depth from geodetic (Chlieh et al., 2004; Béjar-Pizarro228

et al., 2013; Jolivet et al., 2020) and seismological evidence (Comte et al., 2016). Thus, we apply an a priori condition229

based on the depth of each node. If a node is deeper than 60 km, the a priorimean (µc) is set to 0 and the standard230

deviation (σc) to 0.1. In cases where a node is shallower than 60 km, we assign an a priori mean (µc) of 0.5 and a231

standard deviation (σc) of 0.5.232

We adopt a Gaussian formulation for the data likelihood, p(d|m), which writes as233

p(d|m) =
1√
2Cχ

exp

{[
−1

2
(Gm− d)T C−1

χ (Gm− d)
]}

, (4)234

where Cχ is the misfit covariance matrix (Duputel et al., 2014) defined as Cχ = Cp + Cd, where Cd is the data235

covariancematrix (data uncertainties), whileCp is the prediction error covariancematrix, representing uncertainties236

on the assumed elastic model (P and S wave velocities and density). We assume a 10% error on the elastic parameters237

following Jolivet et al. (2020).238

We explore themodel space using Altar (altar.readthedocs.io) to sample the a posteriori PDF of the coupling factor,239

generating 250000 models. AlTar is based on the Cascading Adaptive Transitional Metropolis in Parallel (CATMIP)240

algorithm (Minson et al., 2013; Duputel et al., 2014; Jolivet et al., 2015b). Thesemodels enable us to perform statistics,241

derive the mean model for the interseismic coupling (Figure 3), and collect information about the model resolution242

7

https://seismica.org/
altar.readthedocs.io


This is a non-peer reviewed manuscript submitted to SEISMICA SSE detection Peru-Chile SZ

(see Supporting Information for model GNSS and InSAR residuals, Figure S20-S23, as well as Standard Deviation,243

Mode, Skewness, and Kurtosis, Figure S24).244

The mean coupling model (Figure 3a), is close to previously published models in the region (e.g., Chlieh et al.,245

2011; Béjar-Pizarro et al., 2013; Métois et al., 2016; Villegas-Lanza et al., 2016; Jolivet et al., 2020; Lovery et al., 2024),246

especially considering the along-strike segmentation. Our model differs from previously published models in the247

coupling intensity at locked patches, as well as the depth of these coupled patches. In Peru, we observe three patches248

with interseismic coupling that varies between 0.5-0.75 (Figure 3a). Previousmodels report similar patches, although249

totally locked (coupling factor∼ 1) (Chlieh et al., 2011; Villegas-Lanza et al., 2016; Lovery et al., 2024). Unfortunately,250

the density of GNSS stations in this region is not anywhere near that in Chile, hence the large standard deviations251

in the Peruvian region (Figure S25). Analyzing the moments of the a posteriori PDF, including standard deviation,252

skewness and kurtosis confirms this (Figure S24). Similarly, these moments show that the resolution at the trench253

over the entire region is low. Additionally, our model varies from those constrained only by GPS data in Chile (e.g.,254

Métois et al., 2016). The InSAR data helps constraining interseismic coupling at depth (Béjar-Pizarro et al., 2013;255

Jolivet et al., 2020) and the strong a priori coupling damps potential large variations at depth, which we consider not256

physical.257

2.4 Detection of aseismic slip events with geodetic template matching258

2.4.1 Methodology259

We use a geodetic template matching approach to detect potential aseismic slip events on the residual GNSS time260

series (Section 2.1). We summarize here the method presented in detail by Rousset et al. (2019). We search for the261

spatio-temporal signature of slip events in surface displacement time series by cross-correlating synthetic templates262

with our GNSS residual time series, in velocity. These templates correspond to the surface displacement caused by263

slip on dislocations located on the subductionmegathrust embedded in a stratified, semi-infinite elasticmedium. We264

calculate such templates (w) by convolving the Green’s functions (Section 2.2) with a time-dependent slip evolution265

s(t) defined as266

s(t) =
1

2

[
1 − cos

(
πt

T

)]
, (5)267

where T is the duration of a synthetic event. Following Rousset et al. (2019), we derive for each template the weighted268

correlation function for each fault node, defined as269

Cf (t) =

2N∑
i=1

| Gi | Ci(t)

2N∑
i=1

| Gi |
, (6)270

where G is the Green’s functions and Ci is the correlation between the time series and the synthetic template at a271

given fault node i given by272
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Ci(t) =

T∑
k=1

ẇi(tk)ḋi(tk + τ)√
T∑

k=1

ẇ2
i (tk)

T∑
k=1

˙d2i (tk + τ)

, (7)273

where ẇ and ḋ are the time derivatives of the template in terms of displacement (i.e., the template’s velocity with274

duration T ), and the time derivatives of the GNSS time series, respectively. τ denotes a moving time variable that275

enables the temporalmatching search between templates and observations. We then search for peaks in Cf (t) corre-276

sponding to candidate slip events. As can be seen in the Supporting Information (see Fig. S31b, red and black lines),277

in the case of synthetic events, the correlation peaks inCf arise from the geodetic noise using asmany GNSS stations278

as possible.279

For each candidate slip event, we stack the time series of displacement weighted by Green’s functions around the280

time of detection (see Supporting Information Figure S31b, for an example of stacks on synthetic time series, purple281

and yellow lines). Such weighting accounts for displacement amplitude and direction, increasing the signal-to-noise282

ratio (Rousset et al., 2017). Stacks are computed over a period of 180 days, centered on each potential occurrence. On283

each stack, we estimate two linear trends, before and after the candidate occurrence, and the time dependent slip284

evolution of Eq. 5 to the weighted stack in order to determine the amplitude, the start and end date of each detected285

transient. We apply a non-linear regression to determine the posterior Probability Density Function of the model286

parameters given a stack of time series following Tarantola (2005). Effectively, we use an MCMC algorithm to derive287

30,000 samples from the posterior PDF and evaluate themean and standard deviation of the duration andmagnitude288

of each candidate slow slip event.289

In order to curate the potential detections from artefacts, we perform a sensitivity and resolution analysis, to290

determine the minimum magnitude of a slip event that can be detected for each fault node. Although the method291

above has been extensively described by Rousset et al. (2019), the novelty of our approach relies on the evaluation of292

uncertainties through a Bayesian exploration of all important parameters.293

2.4.2 GNSS network sensitivity and resolution294

We analyze the sensitivity of our approach by testing its ability to detect, locate, and estimate the source parameters295

(magnitude and duration) of synthetic aseismic slip events. We first evaluate the parameters characterizing the noise296

affecting each GNSS time series of displacement by building synthetic time series of noise on which we perform297

the tests. In order to generate synthetic noise, we model each component of the residual time series (Eq. 1) as a298

combination of white and colored noise (Williams, 2003), such as,299

P(f) = P0 (f−α + f−α
0 ), (8)300

where P is the power spectrum as function of temporal frequency f, P0 and f0 are normalization constants, and301

α is the spectral index. We explore P0, f0, and α using Bayesian inference to estimate their mean and standard302

deviation at each station component (see the Supporting Information for further details and an example of the power303

spectrum and the probability density function (PDF) of parameters at the UAPE station in Figures S26 - S27, as well as304
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Tables S39 - S42 for all the network noise parameters inferred). We use these inferred noise parameters to build 1000305

synthetic time series of displacement at each GNSS station. We use these synthetic time series to estimate thresholds306

of detection for each fault node.307

The number of GNSS stations in the study area has evolved during the observation period. We, therefore, must308

consider three periods independently depending on the number of active stations: 2000 - 2003 (four stations), 2004309

- 2007 (20 stations), and 2008 - 2014 (55 stations). We first determine which stations are able to capture a slow slip310

event on a given node. For each period and fault node, we correlate the 1000 synthetic time series of noise with a311

template of a duration of 40 days and slip equivalent to a magnitudeMw 6.0. We evaluate the standard deviation of312

the resulting weighted correlation functions, σt, as a minimal threshold to be exceeded (i.e., when dealing with time313

series that might include slip events, a peak of correlation higher than 3σt is a positive detection).314

Once this threshold has been defined, we compute the weighted correlation function for 1000 time series of noise315

to whichwe have added the signal of synthetic transients with different duration (10, 20, and 30 days) andmagnitudes316

(5.0 - 7.0Mw, every 0.1 of magnitude). In case of a detection, we stack the displacement time series around the detec-317

tion time. We consider a synthetic event has been correctly detected and located if we can recover four quantities,318

including the slip event location, timing, duration, and magnitude. If the estimated location is within 150 km from319

the true location, if the estimated timing and duration are within five days of the actual ones, and if the estimated320

magnitude is within 0.25 of the actual one, we consider the detection to be valid. This procedure enables us to deter-321

mine the minimummagnitude that can be detected over each of the three observation periods and build resolution322

maps for each period investigated (see Supporting Information, Figures S29-S30). For instance, in the Iquique region323

(∼ 19oS - 71oW), the minimal magnitudeMw ranges from 6.6 to 6.8 from 2000 to 2003, decreases to 6.1-6.3 from 2004324

to 2007 and again down to 5.9 to 6.1 from 2008 to 2014. Thus, as expected, we observe a significant improvement in325

detection sensitivity when the number of stations in a given region increases.326

2.5 Application to GNSS time series327

After exploring the network sensitivity to detect aseismic slip events, we search for transients in the residual time328

series obtained after subtracting the trajectory model described earlier. We fix the duration T of the template to 40329

days and the slip to an event equivalent toMw 6.0 (see Supporting Information, Figures S58-S59 for a test in the dura-330

tion template sensitivity). By doing so, we detect 733 candidate slip events in the stacked correlation functions. Since331

some of these candidates may correspond to the same candidate slip event, we retain maximum occurrences within332

a radius of 150 km (i.e., if twomaxima affect nodes separated by a distance higher than 150 km, they are considered as333

independent occurrences). After this selection step, we are left with 59 candidate slip events in the region. We eval-334

uate their durations and magnitudes and compare these with our resolution maps. We keep candidates for which335

the obtained magnitude is higher than the minimum detectable magnitude for the corresponding node (Figure 4),336

leaving us with 24 validated slip events.337

The duration of the slip events ranges from 17 to 36 days with magnitudes from Mw 5.4 to 6.2 and depths from338

20 to 66 km. Figure 3 shows the location of the detected slip events along with four examples of weighted stacks.339

Figures 5 and 6 show two examples of stacks and correlation functions, along with the time series used to build the340

stacks and the map view of correlation peaks (see Supplementary information Tables S43 for the event parameters341
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estimated with their uncertainties, and Figures S33 - S43 to see the data employed in the modeling, the data stack,342

and the model).343

Following the methodology proposed by Nishimura et al. (2013), validated events are categorized into two types:344

probable and possible. This classification is achieved by comparing the displacement fields derived directly from345

observations with those generated by synthetics events of estimated magnitudes. Note that the magnitudes are es-346

timated on the correlation stack and not directly on the measured displacements. A disagreement between the dis-347

placements corresponding to the detected magnitude on the detected node and the observed displacement would348

suggest our assumptions do not hold. Observed displacements are determined directly on the GNSS time series by349

estimating a linear trend along with a time-dependent slip evolution (Eq. 5). To estimate the displacement field for a350

detected magnitude, the slip corresponding to that magnitude is applied at the inferred location of each event. Fig-351

ures 5 (b) and (c) illustrate examples of these estimates, with the actual displacements shown in magenta, while the352

displacements predicted from the magnitudes of each event are shown in green for Events #10 and #12 (see Supple-353

mentary Information, Figures S33 - S43 for the rest of the events). Upon analysis, we find that the agreement between354

observed and modeled ground motion is acceptable for 10 of our events, leading us to classify these as probable (A355

events, Table S43). Meanwhile, we observe a weaker agreement for 14 events which we hence categorize as possible356

(B events, Table S43).357

Since our template matching approach only considers GNSS observations, we must ensure that the detected slip358

events (A and B) are mostly aseismic. We cross-check the 24 positive detections with the seismic catalog provided359

by the ISC (International Seismological Centre, 2016). We randomly generate 10000 synthetic locations for each slip360

event considering a normally distributed location uncertainty based on our resolution tests and estimate the sum361

of the seismic moment of all earthquakes occurring within at least a 2-σ radius of the detected slip event. We then362

compare this estimate of the seismic moment to the estimated aseismic one. All the detected slip events have an363

equivalent magnitude at least twice larger than the seismic magnitude (aseismic/seismic ratio for each event and364

further details on ratio estimation are in Supplementary Information, Table S43). Figures 5 and 6 (d) present the365

location of the two events detailed in Figures 5 and 6 (a) together with the seismicity that coincides with the occur-366

rence of the slip event. These two events occur during the preparation phase of the 2014 Iquique earthquake (Event367

#12, Figure 1) and during the interseismic phase (Event #10). The combination of synthetic tests and the seismic vs.368

aseismic moment analysis confirms we detected 24 aseismic slip events (A and B) along southern Peru - northern369

Chile subduction zone over the period 2006 - 2014.370

3 Discussion371

3.1 Aseismic slip events and scaling laws372

Aseismic slip events are now frequently observed along most subduction zones in the world, but the underlying373

physics is still debated. Among the points of debate, the comparison between slow slip and earthquakes should allow374

to point out whether comparable physics are involved. Ide et al. (2007) have proposed that, while the seismicmoment375

of earthquakes is proportional to the cube of their duration, themoment of slow earthquakes, from tremors and low-376

frequency earthquakes to slow slip events, is proportional to the duration. Considering that simple considerations377
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about size and stress drop led to the emergence of the observed scaling for earthquakes, the difference in moment-378

duration scaling should involve a fundamental differencebetween themechanics of slow slip and that of earthquakes.379

Peng and Gomberg (2010) argued that the apparent moment duration scaling of slow earthquakes proposed by Ide380

et al. (2007) was only due to a lack of observations, suggesting both rapid and slow slip were driven by the same381

mechanism, namely a slip instabilitywith variable speed and stress drop propagating along aweakened fault surface.382

In addition, Gomberg et al. (2016) proposed that seismic moment scales either with the duration or the cube of the383

duration depending on whether the rupture was elongated and pulse-like or mostly crack-like. Michel et al. (2019b)384

confirmed that the moment of slow slip events in Cascadia scales with the cube of their duration although being385

elongated and pulse-like. These observations agree with recent studies of aseismic slip and tremors in Japan (Takagi386

et al., 2019; Supino et al., 2020) andMexico (Frank and Brodsky, 2019), as well as numerical modeling using dynamic387

simulations of frictional sliding (Dal Zilio et al., 2020b). Such numerical and observational evidence suggests that388

SSEs might exhibit comparable scaling as classical earthquakes, only with lower rupture speeds and stress drops.389

Weevaluate the scaling betweenmoment and duration for the aseismic slip events we have detected. We estimate390

that the moment, M , is such as M ∝ T 4.99±0.48, with T the duration for the 24 detected SSEs (refer to Figures 7,391

S45, and S46 in the Supporting Information for an in-depth explanation of the scaling estimation procedure). This392

scaling relationship remains consistent when analyzing events A (M ∝ T 5.05±0.59, see Figures S47 and S48) and B393

(M ∝ T 4.89±0.52, illustrated in Figures S49 and S50) independently. Our events seem to alignwith amoment-duration394

scaling T 3. However, as extensively discussed by Ide and Beroza (2023), uncertainties associated with the estimation395

of event duration might influence significantly our results. Consequently, it is challenging to definitively conclude396

that our findings adhere to the moment-duration T 3 scaling. That said, our detections are situated within the range397

of moment-duration observed in other subduction zones such as Cascadia, Japan, or Mexico (Ide and Beroza, 2023,398

and references therein). Building on this observation, we adopt the methodology outlined by Gomberg et al. (2016)399

to deduce the source properties of our events. We infer that the rupture velocities of our detections range between400

0.5 and 10 km/day, accompanied by a stress drop of 0.1 MPa (see the Supporting Information for detailed information401

on the parameter estimation process). Although our method does not allow to detect events that would propagate,402

we observe our SSEs are more compatible with crack-like, unbounded ruptures than pulse-like, bounded ones. As403

a conclusion, our findings along southern Peru - northern Chile region align with SSEs observations from other404

subduction zones.405

3.2 Aseismic slip and interseismic coupling distribution406

Our coupling estimate corresponds to an average behavior over a decade, without accounting for potential slow slip407

events hidden within the noise. The slow slip events we detect hence correspond to fluctuations around this aver-408

age. We compare the map of coupling to the location of our 24 aseismic events to explore how such fluctuations409

distribute with respect to locked and creeping asperities along the megathrust (Figure 3). We compare the distribu-410

tion of coupling where our events are located to a distribution coupling at randomly picked locations (Figure 8, see411

the Supporting Information for a detailed explanation of the calculation of the PDF for coupling and detected events).412

The distributions differ but mostly when considering only events in northern Chile, where our estimate of coupling413

is much more robust. Detected slow slip events occur mostly in regions of intermediate coupling. This observation414
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is not as clear for the Peruvian region, probably because of the sparsity of the data used here, although the same ten-415

dency is suggested on Figure 8. This result aligns with Frank (2016) findings in the Mexico subduction zone, where a416

database of slow slip events seems to compensate the lack of slip deficit in transition zones with respect to coupled417

regions of the megathrust. Materna et al. (2019) describe a comparable behavior over longer periods where cou-418

pling variations seem to occur in regions of transitional coupling (Michel et al., 2019a). In addition, events offshore419

Peru tend to cluster spatially around locked asperities, areas that are generally of intermediate coupling (Figure 9).420

In general, slow slip events occur in transitional regions between seismic asperities and freely slipping areas. This421

is consistent with model predictions from rate-and-state friction in which slow slip events are expected to occur at422

the transition between seismic, rate-weakening and creeping, rate-strengthening asperities (e.g., Liu and Rice, 2005,423

2007; Perfettini and Ampuero, 2008).424

The average depth of the detected slow slip events is 33 km (Figure 8, see the Supporting Information for a detailed425

explanation of the PDF calculation). Separating the events, by region, yields an average depth of 37 km for Peru and426

30 km for northern Chile with comparable standard deviations (19 and 10 km respectively, Figure 8). This result427

remains consistent when conducting separate analyses of events A and B (refer to Figures S56-S57 in the Supporting428

Information). Lay (2015) separates the subductionmegathrust along depth into four domains (A, B, C, andD). Domain429

A, located between the trench and a depth of about 15 km, hosts either tsunami earthquakes or aseismic deformation.430

Domain B, between approximately 15 and 30 km depth, hosts large megathrust earthquakes. Domain C, between431

approximately 30 and 50 km depth, hosts intermediate sized earthquakes. At greater depths, Domain D, between432

50 and 70 km, hosts slow slip events, tremors, and very low-frequency earthquakes. Our slow slip events mainly433

occur in Domains C and D. It is understood that small, velocity weakening asperities in Domain C are embedded in434

conditionally stable regions of the megathrust, prone to host slow slip events. Domain D is dominated by aseismic435

sliding and potential slip rate variations could explain deeper detections. Therefore, the depth distribution of our436

events matches regions where slow slip events are expected in a subduction zone context.437

Our resolution tests (Figures S24, S29-S30) suggest that it is impossible to capture aseismic slip near the trench,438

in domain A, with the current GNSS network. However, large, shallow slow slip events have been observed in Japan439

(Nishimura, 2014; Nishikawa et al., 2019) and New Zealand (Wallace, 2020). Seafloor geodesy might help to detect440

the occurrence of such large events and potentially for small, cm-scale ones comparable to our aseismic slip events441

(Araki et al., 2017). Additionally, stress-shadow induces apparent coupling in velocity-weakening regions, especially442

late in the interseismic period (Hetland and Simons, 2010; Lindsey et al., 2021). For this reason, we also cannot rule443

out the potential occurrence of aseismic slip event near the trench.444

In addition to the depth-dependent segmentation, we observe an along-strike segmentation in the distribution445

of SSEs. In particular, we observe a lack of events within the rupture area of the 1877 earthquake, within the Are-446

quipa rupture area and other detections gather around locked asperities, like in the doughnut model for seismicity447

(Kanamori, 1981; Schurr et al., 2020). Such configuration is comparable to that of the Japan trench where the as-448

perity that ruptured during the Tohoku earthquake in 2011 overwhelms the simple depth-dependent distribution of449

behavior from Lay (2015). In particular, Nishikawa et al. (2019) propose that, unlike the Nankai subduction interface450

which exhibits a depth-dependent segmentation due to a young, warm slab, the megathrust beneath Tohoku is not451
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segmented at depth into four distinct domains. In our area of interest, the subducting slab is older than the Nankai452

slab and probably colder (Müller et al., 2008), which would explain why the behavior we unravel is not completely453

consistent with that of Lay (2015) and potentially closer to that of the Japan trench.454

As an additional level of complexity, three events coincide with the subduction of the Nazca ridge (14oS, Figures 3455

and 9a), six events are located beneath the Mejillones Peninsula (23oS, Figures 3 and 9d), and three events are within456

the Arica bend (17oS - 19oS, Figures 3 and 9b and c). These morphological structures are anomalies compared to the457

model proposed by Lay (2015) as they are considered as barriers to the propagation of large earthquakes (Armijo and458

Thiele, 1990; Comte and Pardo, 1991; Béjar-Pizarro et al., 2010; Villegas-Lanza et al., 2016; Poli et al., 2017). In these459

regions, the depth of our detected slow slip events does not match the depth-dependency described by Lay (2015).460

We can speculate that local geometrical complexities may lead to the occurrence of slow slip events (Romanet et al.,461

2018) in the case of the subduction of the Nazca Ridge or that the apparent low coupling is the result of multiple slow462

slip events (Jolivet et al., 2020) in the case of the Arica Bend.463

3.3 Aseismic slip events before and after large earthquakes464

Among all the detected slow slip events, only events #7, and #12 (Figure 3, S36 and 5) do not occur during the steady465

interseismic period. Event #7 locates in the region struck by the Iquique earthquake in 2014 (Figure 9c, and S36)466

during the post-seismic relaxation that followed themainshock (Meng et al., 2015; Hoffmann et al., 2018; Shrivastava467

et al., 2019) (Mw 6.1 and duration of 28 days in June 2014). Such slow slip events embedded within a post-seismic468

sequence have already been observed following the Illapel earthquake (Tissandier et al., 2023) and in a completely469

different setting, following the 2004 Parkfield earthquake, along the San Andreas Fault (Michel et al., 2022).470

Aseismic slip has been recognized as an important element of the earthquake preparation phase (Obara and471

Kato, 2016; McLaskey, 2019; Kato and Ben-Zion, 2021, and references therein). An 8-month-long slow slip event was472

reported before the Iquique earthquake in 2014 (Socquet et al., 2017), and event #12 coincides with one of the regions473

of themegathrust that slipped aseismically during that preparationphase (Figure 9 c). In addition, event #12 occurred474

where and when intermediate-depth and shallow seismicity synchronized before the Iquique earthquake (Bouchon475

et al., 2016; Jara et al., 2017) (Mw 6.0 and duration of 30 days in January 2014). Such synchronization of seismicity476

began in January 2014, lasted for onemonth, and is interpreted as evidence of a slow, slab-wide deformation process477

prior to megathrust earthquakes (Bouchon et al., 2016). Furthermore, event #12 is coincident with the transient478

event reported by Boudin et al. (2021) using a long-base tiltmeter. Our epicentral location differs by ∼50km from479

the one reported by (Boudin et al., 2021), a difference that can be explained by different modeling strategies and/or480

uncertainties. We propose that event #12 is linked to the 8-month aseismic slip transient observed preceding the481

2014 Iquique earthquake. Suchdetection suggests the growing instability preceding the Iquique earthquake exhibits a482

complex spatio-temporal behavior that hideswithin the noise of the data, in agreementwith the hypothesis proposed483

by Jolivet and Frank (2020) and Twardzik et al. (2022).484

3.4 Aseismic slip and fluids485

Fluids may also play a role in the occurrence of aseismic slip events (Avouac, 2015; Harris, 2017; Jolivet and Frank,486

2020, and references therein). Pore pressure affects fault normal stress, hence modify the probability of a slip in-487
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stability as well as the nucleation size (Liu and Rice, 2007; Avouac, 2015; Bayart et al., 2016; Harris, 2017; Bürgmann,488

2018; Jolivet and Frank, 2020; Behr and Bürgmann, 2021). An increase in pore pressure within the fault zone leads489

to a decrease in normal stress, which promotes slip but increases nucleation size, promoting slow slip. We compare490

our detections to the distribution of the Vp/Vs ratio and to gravity-inferred structural models in the region. We use491

the Vp/Vs ratio inferred by Comte et al. (2016) for the events located in Northern Chile. Statistically, the 17 aseismic492

events in northern Chile are not related to a specific Vp/Vs value (Figure 8, see the Supporting Information for a de-493

tailed explanation of the PDF calculation). In particular, no slow slip events are found to collocate with high Vp/Vs494

ratios (Vp/Vs> 1.8) (Comte et al., 2016) (Figure S44).495

We also compare the location of our aseismic events to a 3-D densitymodel in the region (Tassara and Echaurren,496

2012). Figure 10 shows the location of aseismic events along ten different trench-perpendicular cross sections. The497

slow slip events are primarily located along the contact between the slab and the overriding lithospheric mantle498

(Figure 10, see Figure S51 for an analysis of depth uncertainties). This mantle corner is principally hydrated by the499

dehydration of the subducting slab due to water releasing metamorphic reactions (Peacock, 2001; Rüpke et al., 2004;500

Comte et al., 2016;Wang et al., 2019; Contreras-Reyes et al., 2021). The fact that our aseismic slip events tend to cluster501

at depths corresponding to the lithosphericmantle along themegathrust, andnot deeper,might imply that fluidsmay502

be trapped and accumulate below the continental Moho, an hypothesis that would require further investigations.503

4 Conclusions504

We have systematically analyzed GNSS time series in the region, searching for the occurrence of aseismic slip events505

with a template matching approach. We find 24 events in the period 2006 - 2014, with durations of 17 - 36 days,506

magnitudes ofMw 5.4 - 6.2, and located at depths of 20-66 km. These events aremostly aseismic and are observed at all507

stages of the earthquake cycle, including during post-seismic periods (afterslip, one event), earthquake preparation508

phase (one event), and interseismic period (22 events). We compare those slow slip occurrence to a wide range of509

possiblemodels of interseismic coupling based onGNSS and InSAR velocity fields and infer a distribution of coupling510

along the megathrust.511

By conducting a moment-duration scaling analysis, we find that our observations are consistent with values re-512

ported in subduction zones globally. We do not find particular correlationswith published seismic velocity structures513

but find that slow slip events cluster around past ruptures and locked asperities, where the megathrust transitions514

from sliding to locked. Additionally, our events are located in regions of intermediate coupling values and mean515

depths of 33 km, which match regions where slow slip events occur in the context of subduction zones.516

Some of these events occur on the subduction interface deeper than than the continental MOHO, i.e. where the517

slab is in contactwith themantlewedge cornerwhere fluids are supposedly trapped. This points toward the influence518

of fluids as it may explain both their spontaneous triggering and their long duration. However, as some events are519

found at shallower depth, the involvement of fluids might not be the only explanation. Other mechanisms such as520

geometrical complexities might be involved but more evidence are required.521

Themain outcome of this study is that we found numerous aseismic slip events in a place where nonewere found522

during the interseismic period before. As a consequence, aseismic slip eventsmay be found elsewhere in subduction523
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zone contexts where experts did not find any event, pending dedicated noise analysis methods. We provide here one524

piece of evidence supporting the hypothesis proposed by Jolivet and Frank (2020) which states that slow slip happens525

everywhere and at all times.526
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work can be found at: https://doi.org/10.5281/zenodo.7898656. The modeling has been performed using the Classic544

Slip Inversion library (Jolivet et al., 2015b) (CSI, https://github.com/jolivetr/csi) and AlTar (Minson et al., 2013) (https:545

//github.com/AlTarFramework/altar). All plots are made using Matplotlib (Hunter, 2007) and Cartopy (Office, 2010)546

Python packages.547
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Figure 1 Seismotectonic map of the South Peru - North Chile subduction zone. White arrows show the extent of historical
earthquakes (Comte and Pardo, 1991; Vigny and Klein, 2022). Gray contours are the rupture area of instrumental earthquakes
with M>7.5, with corresponding epicenters (gray starts) and focal mechanisms (if available) (Dorbath et al., 1990; Beck and
Ruff, 1989; Hartzell and Langer, 1993; Delouis et al., 1997; Chlieh et al., 2004; Pritchard et al., 2007; Dziewonski et al., 1981; Ek-
ström et al., 2012; Peyrat and Favreau, 2010; Sladen et al., 2010; Béjar-Pizarro et al., 2010; Duputel et al., 2015; Jara et al., 2018).
Yellow lines are the 0.1 m afterslip contours available in the region (Chlieh et al., 2004; Béjar-Pizarro et al., 2010; Remy et al.,
2016; Hoffmann et al., 2018), whereas the green ones are the pre-seismic slip reported for Iquique earthquake by Socquet
et al. (2017). Colored dots are earthquakes with M>4.0 from the International Seismological Centre (International Seismo-
logical Centre, 2016) over the period 1990 - 2016, color-coded by depth and scaled by magnitude. Large white arrow shows
convergence direction and rate from Métois et al. (2016). SOAM: SOuth AMerica plate.

26

https://seismica.org/


This is a non-peer reviewed manuscript submitted to SEISMICA SSE detection Peru-Chile SZ

Figure 2 Geodetic data. (a) Colored dark green and pink arrows are the GNSS interseismic velocities from Métois et al.
(2016) and Villegas-Lanza et al. (2016), respectively, while brown arrows are the continuous GNSS processed in this study.
The inset shows the residual trench perpendicular displacement time series for GNSS station UAPE. (b) Line-of-sight (LOS)
interseismic ground velocity from track 96 (Envisat data) from (Jolivet and Simons, 2018; Jolivet et al., 2020). Black arrows
indicate the flight direction of the satellite and its line of sight (LOS).
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Figure 3 Location of detected aseismic slip events. Markers are color-coded by time of occurrence and scaled by magnitude.
Four examples of weighted stacked correlations are shown with the event id number. Red line is the best fit model used to
evaluate the event magnitude and duration, considering their estimated σ. Background color from white to dark through
yellow and red is the mean coupling distribution. Black red areas (coupling factor ∼1) are locked regions, while transparent
areas (coupling factor ∼0) are regions that slip aseismically at a rate equal to the plate convergence rate. Gray contours show
instrumental ruptures. Yellow contours are afterslip regions, whereas green ones indicate slip inferred during the period
preceding the Iquique earthquake. White arrows are the historical rupture extents.
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Figure 4 Event magnitude as a function of the resolution magnitude of the node where the event is located. Red crosses
are events that passed the resolution test. Dashed blue line is the 1:1 line that separates validated from excluded events.
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Figure 5 Example of detected aseismic slip event #12 in the vicinity of the 2014 Iquique earthquake, its locations, and as-
sociated seismicity. Figure (a) features the weighted stack for the event #12, with the red line representing the preferred
model used to estimate event duration and magnitude, as indicated at the top left. The dark green line denotes the corre-
lation function where event detection is made. Figures (b) and (c) display the displacement time series for the North and
East components, respectively. Displacement data from six stations contributing to the weighted stack are shown. The pink
lines indicate the best-fitting model for each displacement time series, which incorporates a linear trend and a transient, in
accordance with Eq. 5. Meanwhile, the green lines represent the displacements for the estimated magnitude of each event.
Figure (d) illustrates the envet location (marked by white star), with dots indicating seismicity before and after the event
(spanning half of the event’s duration for each period), scaled by magnitude and color-coded by date. Inverted triangles
mark the GNSS station locations. Pink arrows denote the GNSS-derived displacements from observations used to estimate
the weighted stack during the detected slow slip event, whereas black arrows indicate displacements not used in the estima-
tion. The green arrows show displacements resulting from dislocations for the estimated magnitudes at each event location
(white star). Figure (e) displays the map view of the correlation peak within the correlation function (illustrated in dark green
in Figures a) for the event, pinpointing the moment when the detection is made.
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Figure 6 Same caption as Figure 5, but for event #10.
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Figure 7 Seismic moment versus duration for our aseismic slip events following the scaling law proposed by Gomberg
et al. (2016). Slow bounded/unbounded (SBG, SUG) and fast bounded/unbounded (FBG, FUG) regions are shown by light
gray areas. Dashed lines are the theoretical relationship between moment and duration for a few selected stress-drop and
rupture velocity values. The M ∝ T scaling is shown in green. The M ∝ T 3 scaling is shown in red.
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Figure 8 Coupling, depth, and Vp/Vs ratio of the detected aseismic slip events. (a) Probability Density Functions (PDF) of
1000 coupling models for 24 random picks (gray) and PDF of coupling where 24 aseismic slip events are detected (green),
with respective mean (µ) and standard deviations (σ). (b) and (c) are the same as (a) for the Peru region only (gray: random,
blue: SSEs) and northern Chile only(gray: random, magenta: events), respectively. (d) PDF of the depths of 24 random events
(gray) and aseismic slip events detected in the region (green). (e) and (f) Same as (d) but for Peru (gray: random, blue: events)
and Chile (gray, magenta) regions. (e) PDF of the Vp/Vs ratio for the Chilean region (gray, 17 random events), and detected
aseismic events in Chile (magenta).
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Figure 9 Zoom over a selection of regions of interest. Gray contours are instrumental ruptures. Yellow contours show re-
ported afterslip. Our aseismic slip events are color-coded by time and scaled by magnitude. Background color shows our
Bayesian inference of coupling. Inverted pink triangles are the GNSS stations used in this study. (a) Region struck by the Pisco
(2007) and Nazca (1996) earthquakes. Our detections seem to cluster around asperities broken during earthquakes or after-
slip regions. (b) Region struck by the Arequipa (2001) earthquake. (d) Region struck by the Iquique earthquake in 2014. Green
contours show the preseismic slip reported by Socquet et al. (2017). Events occur around locked interseismic patches or
low-coupled regions. (d) Region struck by the Antofagasta (1995) and Tocopilla (2007) earthquakes. Events surround broken
asperities or locked interseismic patches, with a cluster beneath Mejillones Peninsula, potentially associated with earthquake
afterslip. For citations of instrumental ruptures and afterslip, please refer to Figure 1
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Figure 10 Map view of the depth of the continental Moho discontinuity from gravity-derived structural models by Tassara
and Echaurren (2012). Magenta stars are the location of our 24 aseismic events. Black lines indicate the location of the pro-
files shown on the right. Colors indicate the structure at depth (upper and lower crusts, lithospheric mantle, asthenospheric
wedge, and oceanic crust). White box indicates the id of events occurring along each profile.
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