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Abstract 19 

Marine heatwaves and cold spells are extreme surface temperature events that have been 20 
associated with adverse societal and ecosystem impacts in several regions around the globe. 21 
Predicting these events presents a challenge because of their generally short-lived nature and 22 
dependence on air-sea interactions, both locally and remotely. Here we analyze oceanic 23 
propagating features that promote the occurrence of marine heatwaves and cold spells in the 24 
western subtropical South Atlantic. The main interannual feature detected from satellite sea level 25 
data since 1993 shows a westward propagating zonal pattern with a periodicity of 3-5 years. The 26 
pattern has a significant in-phase correlation with sea surface temperature (SST) anomalies in the 27 
western South Atlantic, explaining 77% of the daily extreme warm (90%) and cold (10%) SST 28 
anomalies and consequently modulating interannual variations in the intensity and duration of 29 
marine heatwave and cold spell events. It is found that meridional oceanic advection plays an 30 
important role in the regional heat budget associated with the westward-propagating mode, 31 
modulating the meridional exchange of tropical (warm) and extratropical (cold) waters in the 32 
western subtropical South Atlantic region and thereby setting a baseline for temperature 33 
extremes on interannual timescales. This propagating mode is well correlated (r > 0.6) with the 34 
strength of the meridional overturning circulation at 25°S and 30°S with a lag of approximately 5 35 
to 9 months. The lagged response provides a potential for predictability of extreme events in the 36 
western South Atlantic. 37 

Plain Language Summary 38 

Here we show that ocean dynamics can affect Marine Heat Waves (MHWs) and Cold Spells 39 
(CSs) in the western subtropical South Atlantic. We focused our analysis on the sea level 40 
anomaly features that propagate westward, crossing the basin in 3-5 years near 30S. As they 41 
propagate, the sea level anomalies drive clockwise (for negative anomalies) or anticlockwise (for 42 
positive anomalies) ocean circulation around them. The circulation transports either tropical or 43 
subpolar waters into the subtropical region, warming and cooling the subtropical region, 44 
respectively, and influencing MHWs and CSs. Since the anomalies influence meridional ocean 45 
transport, we analyzed their link to the basin integrated meridional heat transport associated with 46 
the Atlantic Meridional Overturning Circulation. We show that there is a good correlation 47 
between the phase of the sea level and circulation anomaly propagation (either centered in the 48 
eastern, western or interior of the basin) and the meridional heat transport. Therefore, the AMOC 49 
index can serve as an early warning for a multi-year prediction of MHWs and CSs in the 50 
subtropical western South Atlantic. 51 

1 Introduction 52 

Marine heatwaves (MHW) and cold spells (CS) are sustained extreme warm and cold sea 53 
surface temperature (SST) anomalies, respectively. In particular, MHWs have received 54 
considerable attention in recent years because their persistence and intensity can have drastic 55 
impacts on marine ecosystems, such as coral bleaching (Couch et al., 2017; Dalton et al., 2020; 56 
Le Nohaïc et al., 2017), reduced primary productivity (Sen Gupta et al., 2020), pelagic species 57 
mortality (Smale et al., 2019), and closing of commercial and recreational fisheries (Cavole et 58 
al., 2016; Stuart-Smith et al., 2018). The compound effect of MHWs with other stressors such as 59 
ocean acidification, tropical cyclones, algae blooms, and marine pollution, can have long-term 60 
impacts on the marine ecosystems. In addition to these stressors, global warming affects the 61 
baseline of transient anomalies (Hobday et al., 2018) and, therefore, may increase the duration, 62 
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frequency and intensity of MHWs in most regions of the globe (Frölicher & Laufkötter, 2018; 63 
Oliver et al., 2018; Costa and Rodrigues, 2021).  64 

One of the most resilient MHW events was registered in the Northeast Pacific region 65 
during 2013-2016. This event, commonly known as the “Blob”, has been linked to large scale 66 
atmospheric and oceanic patterns such as a reduction in wind-driven upper-ocean mixing and a 67 
shallow mixed layer depth (Amaya et al. 2020; Di Lorenzo and Mantua 2016; Joh and Di 68 
Lorenzo 2017). Other recent studies have shown the importance of the ocean state for similar 69 
types of extreme temperature anomalies in different basins. For instance, the occurrence, location 70 
and intensity of MHWs in the Tasman Sea have been linked to upper 2000 m warm ocean heat 71 
content anomalies on interannual to decadal timescales (Behrens et al. 2019), and the likelihood 72 
of MHWs near the East Australian Current has been shown to be modulated by westward 73 
propagation of Rossby waves (Li et al., 2022).  74 

In the western South Atlantic, Rodrigues et al. (2019) linked the occurrence of MHWs to 75 
blocking atmospheric events associated with atmospheric Rossby wave trains propagating from 76 
the South Pacific Ocean. These blocking events are characterized by increased atmospheric sea 77 
level pressure, suppressed formation of clouds and increased solar radiation into the ocean. For 78 
some MHW events, this mechanism can be the trigger. However, the large-scale ocean 79 
circulation may precondition or interact with these events and, thus, modulate their occurrence 80 
on interannual timescales. For example, Goes et al. (2019) showed that the South Atlantic MHW 81 
during the austral summer of 2009/2010 propagated zonally from the center of the basin to the 82 
east coast of South America near 22°S. Upon reaching the western boundary, this MHW 83 
propagated southwards along the Brazil Current and dissipated two months later near 30°S. The 84 
mechanisms by which large-scale ocean processes may influence MHW events in the South 85 
Atlantic are mostly unknown. In other locations, such as the North Atlantic, the tripole pattern, 86 
which is the first mode of interannual variability of SST and sea level anomaly (SLA), has been 87 
linked to convergences and divergences of the integrated meridional heat transport, which 88 
impacts the large scale upper ocean heat content and coastal sea level in neighboring areas (e.g., 89 
Roberts et al., 2016; Volkov et al., 2019a,b). 90 

In the South Atlantic, evidence has been found that the large scale SST pattern can serve 91 
as a fingerprint for South Atlantic Meridional Overturning Circulation (AMOC) variability 92 
(Dima and Lohman, 2010; Lopez et al., 2016), which may change the baseline for the occurrence 93 
of MHW and CS events in the region. This paper analyzes the effect of basin-scale propagating 94 
ocean anomalies on the occurrence of MHW and CS in the western South Atlantic. Known 95 
methodologies (Section 2.2) are used to detect the propagating modes and the extreme 96 
temperature events. A mixed layer heat budget analysis is presented to investigate the role of 97 
ocean advection and heat fluxes in the western South Atlantic. Finally, a reconstruction of the 98 
AMOC in the South Atlantic will be used to infer the role of large-scale volume and heat 99 
transport in triggering these anomalies. The potential to predict these events is also discussed. 100 

2 Data and Methods 101 

2.1 Data 102 

Five main data sets are used in this work, consisting of SST and sea level height from remote 103 
sensing, reanalyses for the ocean (ORAS5) and air-sea interface (ERA5), and an AMOC 104 
reconstruction from satellite altimetry and in-situ temperature.  105 
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The analysis of SST data is performed using the NOAA Optimum Interpolation Sea Surface 106 
Temperature data set (OISSTv.2; Reynolds et al. 2007), a blended global gridded product 107 
available daily at a 1/4° horizontal resolution since January 1982. Daily resolution is used to 108 
identify metrics of MHW and CS, and monthly resolution is used in basin-scale correlation 109 
maps. For the purpose of this work, the SST data are spatially regridded using a bilinear 110 
interpolation to a 1° x1° horizontal resolution from 1993 to 2020.  111 
The sea level analysis is performed using the monthly maps of sea level anomaly (SLA) from 112 
1993 to 2020 processed and distributed by the Copernicus Marine Environment Monitoring 113 
Service (CMEMS). The SLA maps are produced on a 1/4° grid (Taburet et al., 2019) by merging 114 
data from all altimetry satellites available at a given time (Pujol et al. 2016). The SLA data at 115 
each grid point is computed with respect to a twenty-year (1993-2012) mean. The seasonal cycle 116 
is removed by subtracting the climatological monthly means computed for the whole analyzed 117 
period. 118 
Surface atmospheric variables used in this study come from the European Centre for Medium-119 
Range Weather Forecasts’ (ECMWF) ERA5 Reanalysis (Hersbach et al., 2020). We use monthly 120 
fields of zonal and meridional wind, sea level pressure (SLP), and surface heat fluxes 121 
(shortwave, longwave, latent and sensible) from 1993 to 2020.  122 
The monthly AMOC strength timeseries at four different latitudes in the South Atlantic (35°S, 123 
30°S, 25°S, and 20°S) for the period 1993-2021 were produced using synthetic temperature 124 
profiles based on statistical relationships between SLA and the depths of isotherms (Dong et al., 125 
2015, 2021), salinity profiles from historical T/S relationships (Goes et al., 2018), and monthly 126 
surface wind stress data from ERA5. The methodology has been validated against the AMOC 127 
and meridional heat transport estimates based on cross-basin expendable bathythermograph 128 
(XBT) high-density transect data near 35°S (Dong et al., 2015). 129 
We examine vertical temperature anomalies and calculate the heat budget in the western South 130 
Atlantic using the ORAS5 reanalysis (Zuo et al., 2018), which is based on an ensemble of global 131 
eddy-permitting (0.25°) ocean model runs, forced with air-sea fluxes from ERA5 since 1979.  132 
The monthly output of ORAS5 is interpolated to a 1x1° horizontal grid and 75 vertical levels. 133 
For this work, we use the following ORAS5 fields: temperature (T), horizontal velocity (v), 134 
mixed layer depth (h), wind stress (τ) and net surface heat flux (Qnet) from 1993 to 2021.  135 
 136 

2.2 Methods 137 

2.2.1 Complex EOF  138 

To define the interannual propagating patterns of SLA in the South Atlantic, first the monthly de-139 
seasoned SLA fields are filtered using a bandpass wavelet filter of 0.8 to 16 years. Then we 140 
perform a Complex Empirical Orthogonal function (CEOF) analysis (e.g., Navarra and  141 
Simoncini, 2010; O'Kane et al., 2014) to extract the main propagating patterns of variability 142 
between 15°S and 40°S. The CEOF uses a principal component analysis on a Hilbert transform 143 
of a field. Therefore, it produces real and imaginary parts of loadings (maps), here defined as 144 
CEOFj(x,y) for a particular mode j, and their associated expansion coefficients or principal 145 
components (PCj(t)). The CEOFs and PCs are used to compute spatial and temporal amplitudes 146 
and phases, which are necessary to describe a propagating wave pattern (Majumder et al., 2019). 147 
The SLA, associated with a particular mode of the variability j (SLAj), can be reconstructed as 148 
the product of its loadings and its associated expansion coefficients: 149 
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 150 𝑆𝐿𝐴𝑗(𝑥, 𝑦, 𝑡) = 𝑃𝐶௝(𝑡) × 𝐶𝐸𝑂𝐹௝(𝑥, 𝑦).                                            (1) 151 
 152 
The time evolution of the mode j can be examined by rotating in phase the CEOF and the PC by 153 
an angle θ using a rotation matrix R2x2(θ), which produces the same reconstruction:  154 
 155 𝑆𝐿𝐴𝑗(𝑥, 𝑦, 𝑡) = 𝑅(𝜃). 𝑃𝐶௝(𝑡) × 𝑅(𝜃). 𝐶𝐸𝑂𝐹௝(𝑥, 𝑦)                                  (2) 156 
 157 
Cross-correlations and composites of SST, SLP and 10-m wind anomalies are obtained for the 158 
rotated phases of the CEOF modes. To remove sub-annual timescales, the monthly anomalies are 159 
detrended and low-pass filtered using either a 13-month or 19-month Gaussian filter as specified. 160 
 161 

2.2.2 Marine Heatwaves and Cold Spells 162 

Extreme SST anomaly (SSTA) events are defined as SSTA above the 90th percentile for MHW 163 
and below the 10th percentile for CS. The MHW and CS characterization follows the method 164 
described in Hobday et al. (2016), using detrended daily values of SSTA at a 1° x 1° degree 165 
horizontal resolution. The K-means cluster analysis (Arthur and Vassilvitskii, 2007), which is a 166 
method that minimizes the Euclidean distance between groups of observations, is used to 167 
determine the large-scale patterns associated with the SSTA during the MHW or CS event, 168 
therefore categorizing the extreme SSTA in spatial and temporal domains. In the analysis, we 169 
defined 5 clusters using the duration, maximum intensity, mean intensity and location as input 170 
parameters of MHW/CS. 171 
 172 

2.2.3 Mixed Layer Heat budget 173 

To examine the roles of atmospheric and oceanic contributions to the mixed layer temperature 174 
changes, we use a simplified temperature tendency equation: 175 
 176 డ்డ௧ ด(௔) =  ൫ொ೙೐೟ିொ೛೐೙൯ఘబ஼೛௛ᇣᇧᇧᇤᇧᇧᇥ(௕) − 𝒗 ⋅ 𝛻ு𝑇ᇣᇧᇤᇧᇥ(௖) − 𝑤 ∆௛்ถ(ௗ) + 𝑅⏟(௘)                            (3), 177 

 178 
which states that the mixed layer temperature tendency (a) is driven by contributions from the 179 
net surface heat flux (b), horizontal advection (c), and vertical entrainment (d). The residual R (e) 180 
represents unresolved processes such as horizontal and vertical mixing, eddy covariances, and 181 
the accumulation of errors from the terms (a)-(d) (Vialard et al. 2001). The mixed layer depth (h) 182 
is calculated using the criterion of an increase in potential density of 0.03 kg.m-3 from the 183 
surface. Mixed layer depth typically varies from 15 m to 180 m in the western South Atlantic. 184 
Temperature (T) and horizontal velocity (v) are averaged over the mixed layer. In (b), Qnet is 185 
reduced by the amount of shortwave radiation that penetrates through the base of the mixed layer 186 
(Qpen), estimated from an exponential function of surface ocean color (Morel and Antonine 1994; 187 
Sweeney et al., 2005). Shortwave radiation from ERA5 is used in the Qpen calculation, since 188 
ORAS5 does not provide shortwave radiation as a standard output. In addition, ocean color is 189 
derived from the SeaWiFS satellite climatological Chlorophyll-a concentration data, interpolated 190 
from its original 9 km resolution to the ORAS5 output grid. In the entrainment term (d), ΔT is the 191 
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difference between the mixed layer temperature and the temperature 5 m below the mixed layer 192 
and w is the entrainment velocity at the base of the mixed layer (upward only, given by the 193 
Heaviside function: H(w>0) = 1; H(w<0) = 0), estimated as: 194 
 195 𝑤 = 𝐻(𝑤௛ + డ௛డ௧ + 𝑣. 𝛻ℎ),                                                (4) 196 

 197 
which consists of a mass flux that crosses an isopycnal surface (Stevenson and Niiler, 1983), 198 

assuming that the Ekman pumping is the vertical advection contribution (𝑤௛ = 𝛻. ቀ ఛఘబ௙ቁ ), ∂h/∂t 199 

is the tendency of the mixed layer, and 𝒗. 𝛻ℎ is the horizontal induction across the mixed layer. 200 
The constants used are the density of seawater (ρ0 = 1,025 kg m−3) and the specific heat of 201 
seawater (Cp = 4000 J kg−1 K−1).  202 
The horizontal advection term (c) can be further decomposed into its mean (bar) and time-203 
variable (prime) constituents:  204 
 205 𝑢𝑇௫ + 𝑣𝑇௬ ≈ 𝑢 + 𝑣തതതതതതത𝑇ത + 𝑢ᇱ𝑇௫ഥ + 𝑣ᇱ𝑇௬തതത + 𝑢ത𝑇௫′ + 𝑣̅𝑇௬ᇱ                            (5), 206 
 207 
where the subscripts denote the gradient in the x and y directions, the mean variability is defined 208 
as a 30-year mean, and the time-variable component is the residual from the mean.  209 
 210 

3 Results 211 

3.1 The main propagating mode in the South Atlantic 212 

The main propagating mode of SLA at interannual timescales in the South Atlantic (CEOF1) is 213 
an east-west pattern between 25°S and 35°S, with a periodicity of 3-5 years (Majumder et al., 214 
2019; Figure 1c). This mode explains ~28% of the interannual variance of SLA in the South 215 
Atlantic. The correlation between the reconstructed SLA and the band-pass SLA reaches r = 216 
0.75, and the correlation with SSTA reaches r=0.7, averaged over 33°S-27°S and 46°W-35°W in 217 
the western subtropical South Atlantic (Figure 1c). The evolution of this pattern for half-cycle 218 
(0-180° phase) snapshots every 45° (Figure 1a) shows that this mode has a signature in the 219 
South Atlantic SST field (Figure 1b), in that the correlation of SSTA with this mode shows an 220 
in-phase relationship pattern, where positive (negative) SLA are associated with high (low) 221 
SSTA. These co-located in-phase SLA and SSTA are observed mostly in the eastern and western 222 
parts of the basin. In the center of the basin, the anomalies in sea level and SST do not overlap; 223 
instead the SST correlation map shows a dipole pattern centered at ~30°S, which hints at an 224 
exchange of waters from north and south of the region. This SST dipole pattern is similar to the 225 
South Atlantic Subtropical Dipole mode (SASD), which is the leading EOF mode of interannual 226 
SST variability in the South Atlantic, explaining about 24% of the total variance (e.g., Morioka 227 
et al., 2011; Wainer et al., 2014). This mode has been linked to changes in the strength of the 228 
subtropical high, which interacts with SST by changing the wind speed pattern and latent heat 229 
flux (Sterl and Hazeleger, 2003). 230 
 231 
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subtropical South Atlantic, defined as 35°-46°W/27°-33°S (Fig. 6a). The seasonal cycle of the 324 
mixed layer heat budget (Figure S2) is dominated by the Qnet term. Qnet warms the ocean 325 
during summer (November-March), and damps the temperature during winter (May-September). 326 
The advection term is small, and vertical advection cools the ocean during fall (March-June), a 327 
period in which the mixed layer depth increases from 20 m to 180 m. To focus on interannual 328 
timescales, monthly anomalies of the heat budget terms (equation 3) are calculated, and a low-329 
pass filter of 19 months is applied. To understand the spatial contributions of the terms in the 330 
mixed layer heat budget, a correlation analysis was performed between ∂T/∂t and the three 331 
analyzed components (Figure 6a-c) by adding the components sequentially at each grid point. 332 
The correlation between ∂T/∂t and Qnet (Figure 6a) shows strong correlations (r > 0.7) 333 
particularly in the tropical region north of 25°S, and more modest correlations (0.7 > r > 0.4) in 334 
the subtropical region.  Adding the vertical entrainment to Qnet does not increase the correlation 335 
values considerably, but some improvement is observed in the subtropical region. When 336 
horizontal advection is included, the correlations in the subtropical region north of 33°S increase 337 
almost everywhere, reaching values of r=0.9 and above, which shows the importance of the 338 
oceanic contribution to changes in mixed layer temperature in the western South Atlantic. 339 
The time evolution of the heat budget terms averaged in the western subtropical South Atlantic 340 
(box in Figure 6c) estimated in ORAS5 shows that the atmospheric (Qnet) and oceanic 341 
(horizontal advection and vertical entrainment) terms contribute similarly to the SST tendency 342 
(Fig. 6d). The variability of the residual between the SST tendency and the sum of the 343 
atmospheric and oceanic contributions is smaller than the individual components, meaning that 344 
the residual does not have a major impact on the heat budget variability in the selected region. 345 
Other regions such as the western boundary and south of 35°S show lower correlations between 346 
changes in mixed layer temperature and the sum of atmospheric and oceanic terms (Fig. 6c), 347 
probably due to eddy covariance and mixing terms.  348 
On interannual timescales, the net surface heat flux from ERA5 is mostly dominated by the latent 349 
heat flux (Fig. 6e), with a regression coefficient of 0.71, compared to much lower values for 350 
sensible (0.13), shortwave (0.07), and longwave (0.08) radiation components, and there is a good 351 
degree of compensation between shortwave and longwave + sensible radiative fluxes. Most of 352 
the contribution of the vertical entrainment term comes from the tendency of the mixed layer 353 
term (∂h/∂t), with smaller contributions from Ekman vertical advection and lateral induction 354 
terms (not shown). The decomposition of the horizontal advection term into meridional and 355 
zonal mean and time-variable components shows that 𝑣′𝑇𝑦തതതത is by far the dominant component 356 
(Figure 6f). This suggests that meridional velocity is driving the oceanic exchanges in the 357 
region.  358 
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The lagged correlation between the AMOC and  SLA reconstructed from CEOF1 mode in the 429 
eastern part of the basin (25°S-33°S/10°W-10°E) (Fig. 9) shows that the magnitude of the 430 
correlation is largest at 30°S (r=-0.63, lag=-4; significant at 90%), followed by 25°S (r=-0.56, 431 
lag=-3), 20°S (r=-0.43, lag=-5), and 35°S (r=-0.4, lag=9). The negative correlations indicate that 432 
when the AMOC is stronger, there is a negative sea level anomaly in the east and therefore a 433 
positive SLA in the western side of the basin. These correlations are mostly driven by the 434 
geostrophic component of the AMOC, with correlations of about 0.55 for 25°S and 30°S, with 435 
the Ekman component playing a smaller role. The typical lags are between 3 and 9 months, 436 
similar to the timescales of northward propagation defined in Dong et al. (2021). The negative 437 
lags suggest that the AMOC leads the propagating pattern and therefore could be a precursor to 438 
the propagation.  439 

 440 
Figure 9: Lagged correlation of the reconstructed SLA in the eastern side of the basin (10°W-441 
10°E/34°S-25°S; box in Fig. 9a) with the AMOC at four different latitudes (20°S, 25°S, 30°S 442 
and 35°S) in the South Atlantic. For negative lags, the AMOC leads SLA. 443 
 444 
 445 
To further explore links between the propagating mode, the AMOC, and meridional heat 446 
transport (MHT), we calculated MHT across 30°S, the latitude with the highest correlation 447 
between CEOF1 and the AMOC. We divided the MHT across 30°S into western (west of 43°W), 448 
eastern (east of 3°E), and interior contributions, similar to what was performed in Dong et al. 449 
(2009) across 35°S. To focus on the upper layer of the ocean, we integrated the heat transport 450 
contributions from the surface to 500 m, instead of through the full ocean depth. The mean 451 
transport contribution in the west is southward (-0.59 +/- 0.12 PW), and it is northward in the 452 
interior (0.74 +/- 0.19 PW) and east (0.58 +/- 0.16 PW). Following the same procedure described 453 
above, the phase of the CEOF1 mode with the highest correlation with MHT anomalies is 454 
calculated for each of the three areas (Fig. 10). The optimal propagation phase in each area 455 
confirms the role of the CEOF mode in regulating the amount of heat exchanged between the 456 
tropics and extratropics, as highlighted by the arrows in Fig. 11. As such, stronger heat transport 457 
southward in the west and northward in the interior correspond to the CEOF1 phase with a 458 
positive SLA in the west (Fig. 10a, b), and an increased northward transport in the east 459 
corresponds to a CEOF1 phase with high SLA in the east (Fig. 10c). 460 
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leads to a phase difference between the temperature and velocity anomalies. The perturbed 495 
velocities advect warm water southward to the west and cold water northward to the east of the 496 
initial anomaly, thereby moving the warm anomaly westward. Our results suggest that, as the 497 
mode propagates, it influences the meridional heat transport of eastern and western boundary 498 
currents and the ocean interior in different phases (Fig. 10). A similar mechanism was also 499 
suggested for other western boundary currents (Elzahaby et al., 2021; Zhang et al., 2021). 500 
Because the AMOC consists of both boundary flows and ocean adjustment, this mechanism may 501 
modulate but also be influenced by AMOC variability. This relationship is supported by the 502 
significant correlation between the AMOC and the cross-basin SSH (Fig. 10). Therefore, this 503 
work highlights the importance of sustained AMOC monitoring for regional climate in the South 504 
Atlantic. The AMOC in the South Atlantic has been monitored for more than a decade by in-situ 505 
observations (e.g., Dong et al., 2009; Meinen et al., 2013), and for almost three decades using 506 
satellite observations (e.g., Dong et al., 2015, Schmid and Majumder, 2016). Previous studies 507 
have linked the AMOC to SST fingerprints in the South Atlantic (Dima and Lohman, 2010; 508 
Lopez et al., 2016), which can extend these time series back more than a century. Recently, 509 
Bodnariuk et al. (2021) found a link between the propagating modes in the South Atlantic and 510 
Indian and South Pacific basins, suggesting that there could be coherence of oceanic features 511 
throughout the Southern Hemisphere. Further investigations of links between the propagating 512 
SSH modes, the AMOC, and atmospheric teleconnections should be performed using numerical 513 
and simplified model studies.   514 
 515 

 5 Conclusions 516 

The leading mode of the interannual variability of SLA in the South Atlantic is characterized by 517 
westward propagating anomalies centered at 30°S, with a periodicity of 3 to 5 years. The 518 
propagating SLA signals associated with this mode are positively correlated with SSTA in the 519 
western subtropical South Atlantic. The temporal phase of the propagating mode is well 520 
correlated with interannual modulations of the MHW and CS mode centered in the western 521 
South Atlantic. We estimated that there is a 77% probability that the extreme daily sea surface 522 
temperature events occur when the SLA associated with the propagating mode bears the same 523 
sign. Our analysis shows that SST modulation by SLA in the subtropical region is driven mainly 524 
by latent heat flux anomalies and by oceanic horizontal advection. The latent heat flux appears to 525 
be related to wind speed anomalies associated with the subtropical high and atmospheric waves. 526 
The oceanic advection term mediates the exchange of tropical (warm) and subpolar (cold) waters 527 
in the region (Figure 11): clockwise circulation around a negative SLA anomaly favors 528 
advection of cold subpolar waters toward the subtropics, while counterclockwise circulation is 529 
generated around a positive SLA anomaly. The analyzed westward-propagating mode is 530 
significantly (at 90%) correlated (r = 0.63) with the AMOC at 30°S, and its origin in the eastern 531 
part of the basin lags the AMOC by approximately 3 to 9 months. Therefore, the sustained 532 
AMOC observations in the South Atlantic can provide strong multi-year predictability for 533 
extreme temperature and rainfall events in the western side of the basin. 534 
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data are available at 554 

https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/Mapped/Monthly_Climatology/9km/chlor_a/.  555 

 556 

Open Research 557 

All calculations and figures were performed in Matlab v. 2019 and Ferret v. 7.6. The CEOF 558 

methodology was performed using the pcatool toolbox in Matlab, and the mixed layer heat budget 559 

was performed using Ferret.  560 

 561 

  562 
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