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Key Points 15 

● We find widespread robust changes in two measures of interannual precipitation 16 

variability across the United States 17 

● We detect robust increases (decreases) in annual precipitation and wet day frequency 18 

across the central and eastern (western) United States  19 

● We explore the interaction of changes in precipitation frequency and wet day 20 

precipitation intensity on interannual variability 21 



Abstract 22 

 23 

Characterizing robust changes in precipitation patterns over time is critical for water resource 24 

management and agricultural planning. Here, we explore observed trends in interannual 25 

precipitation variability using a suite of metrics that describe changes in precipitation patterns 26 

over time. We analyze daily in-situ Global Historical Climatology Network precipitation data 27 

from 1970 to present over seventeen internally consistent sub-national United States domains 28 

using the regional Mann-Kendall trend test. We find increasing trends in annual precipitation 29 

and wet day frequency for most of the central and eastern U.S., but decreasing trends in the 30 

western U.S. Importantly, we also identify widespread significant trends in interannual 31 

precipitation variability with increasing variability in the southeast, decreasing variability in the 32 

far west, and mixed signals in the Rocky Mountains and north-central U.S. Our results provide 33 

important context for water resource management and a new observational standard for climate 34 

model performance assessments.  35 

 36 

 37 

Plain Language Summary 38 

  39 

While many studies have examined how annual precipitation and precipitation frequency have 40 

changed, few examine the variability, or consistency, of year-over-year precipitation. We test for 41 

these trends in daily observations from the Global Historical Climatology Network within 42 

seventeen regions within the U.S. We find changes in yearly precipitation variability for most 43 



regions, though results in the central U.S. are mixed. We also identify rising annual 44 

precipitation and precipitation frequency for the central and eastern U.S. and falling annual 45 

precipitation and frequency for the western U.S. Our results are important for agriculture and 46 

water resource management and can be compared against climate models to determine how 47 

well they reproduce our findings. 48 

 49 
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 57 

Introduction 58 

 59 

Precipitation patterns are shifting globally due to climate change (Douville et al., 2021). These 60 

changes are broadly driven by increased moisture availability due to rising temperatures (i.e., 61 

the Clausius-Clapeyron relationship) and shifts in atmospheric circulation patterns (e.g., 62 

poleward expansion of the Hadley cell; Polade et al., 2014), and are constrained by Earth’s 63 

energy budget (Pendergrass and Hartmann, 2014). Observationally-based historical studies and 64 

model-based future projections of precipitation commonly characterize changes across metrics 65 

like annual mean, wet day frequency, and measures of extremes. However, constraining the 66 

temporal variability of precipitation changes, using metrics such as interannual variability, is 67 

important to inform a number of societally-impactful realms. Interannual variability of 68 

precipitation describes the degree of consistency in year-over-year precipitation amounts: 69 

higher variability equates to greater irregularity about the annual mean, which brings increased 70 

challenges to fields like water resource management. Greater precipitation variability has been 71 

shown to reduce crop yields, including for staples like corn and rice (Shortridge, 2019; Rowhani 72 

et al., 2011), as well as decrease a grazing area’s ability to support livestock (Sloat et al., 2018). 73 

Hydrologically, shifts in interannual precipitation variability may also be driving increased 74 

variability in Great Lake water levels (Gronewold et al., 2021) and water quality via increased 75 

agricultural runoff (Loecke et al., 2017). Despite the importance of interannual variability, 76 

summary assessments like the U.S. National Climate Assessment have not yet included 77 



characterizations of its changes, instead focusing on mean and extreme precipitation (Easterling 78 

et al., 2017). Here, to better constrain historical changes in the year over year distribution of 79 

precipitation across the U.S., we examine shifts in observed interannual precipitation 80 

variability, as well as annual precipitation amounts and precipitation frequency – two metrics 81 

useful for understanding and explaining observed changes in interannual precipitation 82 

variability. 83 

 84 

How is interannual precipitation variability projected to change? 85 

Global climate models project that interannual precipitation variability will increase with rising 86 

greenhouse gas concentrations (Boer, 2009; Polade et al., 2014; Berg and Hall, 2015). Increases in 87 

the interannual variability of precipitation of 3 to 5%/K are projected globally, with 4 to 5%/K 88 

projected over land (Pendergrass et al., 2017; Wood et al., 2021; Chou and Lan, 2012), though 89 

some projections estimate smaller increases (He and Li, 2018). He and Li (2018) explain that the 90 

drivers of changes in interannual precipitation variability vary spatially; the increase of mean 91 

state specific humidity leads to an increase in variability over areas of climatological ascent. 92 

Conversely, variability increases in areas of climatological descent are driven primarily by 93 

changes in mean state precipitation. Good et al. (2016) further tie interannual precipitation 94 

variability to wet season length, individual rainfall event intensity, and variability in interstorm 95 

wait times.  96 

 97 

A number of studies, while not U.S.-focused, have used global climate models to project 98 

changes in interannual precipitation variability over the U.S. Wood et al. (2021) used initial 99 



perturbation large ensemble projections and found increasing interannual variability over the 100 

U.S. by the end of the century, particularly in the winter months, under the RCP8.5 emissions 101 

scenario. Polade (2014) revealed a similar widespread, though slight, increase in interannual 102 

variability across the U.S. (up to 4%), with a hotspot of increased variability over the southwest. 103 

This finding is replicated by Berg and Hall (2015) for California using a suite of RCP8.5-driven 104 

CMIP5 models. Similarly, Swain et al. (2018) projected increases in annual precipitation 105 

“whiplash events” (i.e., sub-20th percentile annual precipitation followed by super-80th 106 

percentile in the next year) for California. Chou and Lan (2012) find an expanding range of 107 

projected annual precipitation under the A1B emissions scenario over the U.S. midwest, 108 

northeast, and northwest, driven by rising maximum annual totals. These findings are mirrored 109 

by Pendergrass et al. (2017), who noted a similar spatial pattern using projections from the 110 

RCP8.5 emissions scenario.  111 

 112 

Despite numerous model projections of interannual precipitation variability change, there 113 

remains a dearth of observation-based analyses on the topic. Recently, Zhang et al. (2021) 114 

identified increases in the coefficient of variation of precipitation for regions of the 115 

southwestern and central United States using in situ observations from 1976-2019, however we 116 

are aware of no other U.S.-focused analyses. To address this deficiency of observation-based 117 

analyses and produce an observational standard for model studies, we explore changes in 118 

interannual variability and relevant precipitation metrics throughout the U.S. using a full 119 

complement of in situ measurements. 120 

 121 



 122 

Methods 123 

 124 

To characterize interannual precipitation variability in the U.S. we use daily in-situ station data 125 

from the Global Historical Climatology Network Daily (GHCN-D). The National Centers for 126 

Environmental Information curate the GHCN-D database, which consists of observations from 127 

over 80,000 stations from 180 countries and territories, including the most complete collection of 128 

U.S. daily data available  (Menne et al., 2012). GHCN-D observations have a sensitivity of 0.1 129 

mm and are subjected to a sequence of quality control tests to identify climatological outliers, 130 

duplicate data, and other inconsistencies (Durre et al., 2010). We subject available U.S. station 131 

records to additional constraints to determine station observations with sufficient length and 132 

completeness for trend analysis. Specifically, we require station records to consist of 90% or 133 

more complete station-years to qualify, where a station-year must contain 90% or more of all 134 

possible daily records within the year to be considered complete. These screenings filtered our 135 

set of available U.S. stations from 63,571 to 2,542 (using a 1970 start year); domain summary 136 

statistics of station availability are shown in Table S7. To overcome some of the limitations of 137 

individual station statistics, such as internal variability (e.g., Fischer et al., 2013), we center our 138 

analysis on regional trends and utilize the set of established domains determined by the 139 

National Ecological Observatory Network (NEON). These twenty domains were created to 140 

possess internally homogeneous climates but remain distinct across-domains, as determined by 141 

a multi-variable analysis using nine climate variables (Keller et al., 2008; Schimel et al., 2011). As 142 

labeled in Figure 1a, we use the seventeen domains that are predominantly within the 143 



contiguous United States. We also perform our  analysis for U.S. National Climate Assessment 144 

regions (Easterling et al., 2017) with results included within the Supporting Information. 145 

We employ the regional Mann-Kendall trend tests to identify trends in precipitation 146 

data at the NEON-domain level. The Mann-Kendall trend test is nonparametric and determines 147 

if a trend exists in the data regardless of underlying distribution or linearity (Mann, 1945; 148 

Kendall, 1975). As the Mann-Kendall trend test relies on the rank of values in place of actual 149 

values, it is less subject to outliers and is suitable for detecting robust trends in hydrological 150 

time series (Hamed, 2008). It is commonly used in studies assessing trends of precipitation over 151 

time (e.g., Zhang et al., 2021; Roque-Malo and Kumar, 2017). The regional Mann-Kendall trend 152 

test determines if a significant trend emerges across the collection of time series within a region 153 

(Helsel and Frans, 2006). We use the Theil-Sen slope estimator, which is similar in its 154 

underlying design to the Mann-Kendall trend test, to determine the slope of identified trends 155 

(Sen, 1968; Theil, 1950).  156 

We focus our analysis on four precipitation metrics: changes in interannual precipitation 157 

variability, interannual coefficient of variation (a.k.a. relative interannual variability), annual 158 

precipitation, and annual wet day frequency, where a wet day is defined as a station-day 159 

observing 1 mm or more of precipitation (a threshold common in precipitation analyses; e.g., 160 

Vaittinada Ayar and Mailhot, 2021; Ye, 2018; Zolina et al., 2013; Giorgi et al., 2019). Collectively, 161 

these four variables either directly characterize interannual variability, or provide crucial 162 

information to explain shifts in interannual variability. The relationships between these 163 

variables are described in the discussion section and illustrated in the Supporting Information. 164 



Here, we define interannual variability as the standard deviation in annual precipitation 165 

over a moving 11-year window. We use an 11-year window to limit the influence of known 166 

dominant modes of interannual climate variability (e.g., ENSO), though a sensitivity analysis 167 

reveals generally stable results for five to fifteen-year moving windows (Table S1-S2). We 168 

similarly determine the coefficient of variation by dividing the standard deviation by the mean 169 

annual precipitation over the concurrent 11-year moving window. The coefficient of variation is 170 

often used as a measure of precipitation variability as it removes the strong dependence of 171 

precipitation variability on the mean itself (e.g., Giorgi et al., 2019). For ease of understanding, 172 

we will refer to the coefficient of variation as the relative interannual variability for the 173 

remainder of this article. 174 

In addition to performing a sensitivity analysis on the width of the moving window, we 175 

analyzed the stability of precipitation trends across time periods by choosing different starting 176 

dates in 10 year increments, such that calculations are performed every ten years from 1920 177 

through 1980. We present findings using a 1970 starting date as it provides a balance of 178 

widespread station availability and length of observation record, but highlight discrepancies we 179 

identify within the sensitivity analysis in the discussion section. The full results of the 180 

sensitivity analysis presented in the Supporting Information (Tables S1-S8). 181 

 182 

 183 

Results 184 

  185 



To properly inform changes in interannual variability, we must also assess changes in annual 186 

precipitation and precipitation frequency over our domain. We find statistically significant (p < 187 

0.05) increases in annual mean precipitation for all domains east of the Rocky Mountains. These 188 

increases in annual precipitation range from 5.2-23.7 mm/decade (0.4-2.5%/decade; excluding 189 

the Atlantic Neotropical domain), with larger increases for a subset of central and eastern 190 

domains (Northeast, Great Lakes, Prairie Peninsula, Appalachians and Cumberland Plateau) 191 

ranging from 18.4-23.7 mm/decade (1.6-2.5 %/decade) (Figures 1a and s, Tables S9-S10). We 192 

identify statistically significant negative trends in annual precipitation over the western U.S. 193 

between -9.6 to -2.7 mm/decade (-2.4 to -0.6 %/decade; excluding the non-significant Northern 194 

Rockies domain). Spatial patterns in changes in annual wet day frequency largely mirror 195 

changes in annual mean precipitation, with some additional non-significant domains (Figure 196 

1b). We observe statistically significant increases in wet day frequency for northern domains 197 

east of the Rocky Mountains, and statistically significant decreases for most western domains, 198 

as well as the Southern Plains and Southeast domains. Changes in wet day frequency range 199 

from -1.0 to 0.9 wet days/decade (-3.3 to 1.0%/decade) with the greatest increases generally 200 

located in the most northern and southern domains (Figures 1b and 2, Tables S9-S10). 201 

 202 

Given robust changes in observed annual precipitation, it is important to determine if these 203 

changes have been equitably distributed. To assess precipitation distribution, we quantify two 204 

metrics of year-over-year variability. We identify statistically significant trends in both the 205 

interannual variability and relative interannual variability of precipitation for most NEON 206 

domains in the United States (Figures 1c-d, 2, Tables S9-S10). Changes in interannual variability 207 



range from -1.1 to 2.0 mm/decade (-4.4 to 9.5%/decade), with changes not reaching statistical 208 

significance for five domains, predominantly in the north central U.S. Generally speaking, 209 

interannual variability is decreasing in domain clusters in the western U.S. (five domains), and 210 

increasing in the south central and northeastern U.S. (Figure 1c; seven domains). We observe 211 

broadly similar spatial patterns in trends of relative interannual variability, though seven 212 

domains switched from significant to non-significant trends or vice versa. Additionally, the 213 

direction of change in the Desert Southwest domain switched from significantly negative to 214 

significantly positive (Figures 1c-d, 3). We explore this discrepancy in the discussion section. 215 

Collectively, trends in relative interannual variability range from -3.2 to 9.6%/decade with 216 

statistically significant changes occurring in all but two domains (Great Basin and Northeast). 217 

Results for U.S. NCA regions reveal similar spatial patterns and can be found in the Supporting 218 

Information (Figures S1-S2, Tables S11-S12). 219 

 220 

 221 



 222 

Figure 1: Domain Trends in Various Precipitation Metrics. (a) Map of changes in annual precipitation 223 

for each NEON domain within the contiguous U.S. Red-blue fill indicates domain-level trends in annual 224 

precipitation in mm/decade (dark grey borders). Hatching indicates domain trends of zero or those not 225 

reaching statistical significance. (b) Same as (a) but for annual precipitation frequency and units of 226 

days/decade. (c) Same as (a) but for interannual precipitation variability with purple-green fill and units 227 

of mm/decade. (d) Same as (c) but for relative interannual precipitation variability and units of decade-1. 228 

 229 



 230 

Figure 2: Domain Trends in Annual Precipitation Metrics. Trends in annual precipitation (dark blue), 231 

annual precipitation frequency (light blue), interannual precipitation variability (dark green), and 232 



relative interannual precipitation variability (light green) for each domain. Trends are normalized against 233 

the mean value within each domain to produce trends in percent change/decade. Non-filled circles 234 

indicate non-significant domain-trends (p < 0.05). Note outlying trends in both metrics of interannual 235 

variability for the Central and Southern Plains are not displayed. 236 

 237 

 238 

Discussion 239 

 240 

Broadly, our analysis of precipitation trends in the United States reveals increasing interannual 241 

variability for the south-central and eastern U.S., decreasing interannual variability for the 242 

Pacific coast, and mixed trends in the north-central and Rocky Mountain portions of the U.S., 243 

depending on the variability metric of interest. These changes are side-by-side with rising 244 

annual precipitation and wet day frequency over the central and eastern United States, with 245 

falling trends in the western United States. 246 

One result of particular interest is the finding that interannual variability increased but 247 

relative interannual variability decreased at a statistically significant level in the Desert 248 

Southwest. In addition, regardless of directionality, the trends in variability differed across 249 

metrics by one percent or more for eight domains. We explain this between-metric discrepancy 250 

through an examination of the components which influence interannual variability.  251 

 252 

Interannual variability vs relative interannual variability 253 



Together, changes in frequency and daily precipitation intensity drive changes in interannual 254 

and relative interannual precipitation variability. We demonstrate the underlying principles of 255 

these interactions using theoretical examples in Figures 3 and S3-S5. These examples apply 10% 256 

increases in precipitation frequency and intensity along with three different possible 257 

transformations of the underlying precipitation distribution – (1) a uniform increase at all 258 

intensities (Figures 3 and S3), (2)  increases in the higher intensities (Figure S4), and (3) increases 259 

in the lower and medium intensities (Figure S5) – to demonstrate the interplay between annual 260 

variability metrics and wet day frequency and intensity. 261 

 262 

 263 

Figure 3: Response of Annual Mean Precipitation and Interannual Variability of Precipitation to 264 

Changes in Wet Day Frequency. (a) Initial probability distribution function (light grey) of annual 265 

precipitation based on Great Lakes domain precipitation intensity distribution. Projected probability 266 

distribution function (blue) after incorporating 10% increase in wet day frequency. (b) Same as (a) but 267 

for interannual variability of precipitation. (c) Same as (a) but for relative interannual variability of 268 

precipitation. Figure is replicated within the full combination of changes in Figures S3-S5.  269 

 270 



Holding intensity constant (1), an increase in wet day frequency leads to an increase in 271 

interannual variability but a decrease in relative interannual variability (Figure 3 and Figures 272 

S3b-c, S4b-c, S5b-c). As would be expected, an increase in wet day frequency produces an 273 

increase in annual precipitation totals (Figures S3a, S4a, S5a). This rise in mean state leads to a 274 

corresponding increase in interannual variability as larger annual totals provide greater 275 

flexibility for interannual fluctuations. However, when accounting for the shift in baseline, 276 

relative interannual variability decreases. As wet day frequency rises, the contribution of 277 

extreme events toward annual totals is reduced, along with the likelihood that a given year of 278 

precipitation will be unduly influenced by extreme outlier events. Consequently, year-over-year 279 

annual precipitation totals become more consistent with more frequent precipitation. This 280 

scenario can be seen in reverse for the Desert Southwest domain: interannual variability 281 

decreases and relative interannual variability increases (Harp and Horton (in review) found no 282 

shift in underlying precipitation intensities for the Desert Southwest). A similar, abbreviated 283 

discussion of precipitation frequency on interannual variability can be found in Polade et al. 284 

(2014). 285 

The impacts of shifts in wet day precipitation intensity are more nuanced (compare 286 

across Figures S3-S5). Generally, increases in mean wet day precipitation intensity alone (2) will 287 

lead to increases in interannual variability, however, the standard deviation of the underlying 288 

wet day precipitation intensity distribution has critical impacts on relative interannual 289 

variability (Figures S3d-f, S4d-f, S5d-f). For example, if the standard deviation of wet day 290 

precipitation intensity does not change, then an increase in the mean wet day precipitation 291 

intensity leads to negligible impacts on relative interannual variability (Figure S3f). However, 292 



an increase in standard deviation leads to an increase in relative interannual variability and vice 293 

versa (Figures S4f, S5f). Ultimately, changing interannual variability is a byproduct of changes 294 

in wet day frequency and the underlying precipitation distribution – both the change in mean 295 

and standard deviation of the distribution are important – which can combine to produce 296 

differential impacts on interannual variability and relative interannual variability. This is 297 

illustrated by observed changes over the Northeast domain. Here, both wet day frequency and 298 

intensity increase (Harp and Horton, in review) leading to a 2.4% rise in interannual variability 299 

but no change in relative interannual variability, mirroring the hypothetical shown in Figures 300 

S4h-i. 301 

 302 

Highlighted Domains: Northern Rockies, Central/Southern Plains 303 

As discussed above, generally speaking, the paths to shifting interannual precipitation 304 

variability are driven by a combination of changes in precipitation frequency or the underlying 305 

precipitation intensity distribution. Intriguingly, the Northern Rockies domain displays 306 

decreases in both interannual variability and relative interannual variability despite observing 307 

no statistically significant change in annual precipitation or wet day frequency. One potential 308 

explanation for these discrepancies is that underlying trends exist in one or more of these 309 

variables that do not rise to the level of statistical significance based on the data analyzed here. 310 

It is also possible that there are shifts in circulation patterns or storm tracks which are persistent 311 

within years but vary between years, such as a shift in atmospheric river frequency tied to modes 312 

of climate variability. For instance, shifts in El Nino Southern Oscillation teleconnection patterns 313 

could explain increased interannual variability in precipitation metrics, despite no long-term 314 



trends in precipitation or the underlying intensity. We leave this as an avenue for future 315 

research.  316 

 A second pair of notable domains are the Central and Southern Plains. These two 317 

domains have the most substantial changes in both interannual variability (6.2% and 9.5%, 318 

respectively) and relative interannual variability (6.1% and 9.6%, respectively) in either 319 

direction despite modest changes in annual precipitation and wet day frequency. These changes 320 

are likely driven by strong shifts in the underlying distribution of precipitation intensity toward 321 

heavier rainfall (Harp and Horton, in review) with increases in mean wet day intensity of 4.6% 322 

and 8%, respectively. 323 

 324 

Comparison with earlier literature 325 

Our results on changes in observed annual precipitation largely mirror earlier findings 326 

from the fourth National Climate Assessment (Easterling et al., 2017) with subtle differences 327 

over the southeastern and northwestern U.S. Additionally, we find similar trends in wet day 328 

frequency as earlier in-situ, station-based observational studies such as Pal et al. (2013), though 329 

there is some discrepancy in findings over the western U.S. Despite a similar observation-driven 330 

and interannual variability-focused methodology, we identify differences between our findings 331 

and those of Zhang et al. (2021), where a similar methodology was applied to observations in 332 

NEON domains in the western U.S. Specifically, within the domains of overlap in our studies, 333 

we find statistically significant changes in relative interannual variability for all domains except 334 

for the Great Basin, while Zhang et al. find statistically significant changes in just three domains. 335 

The identified trends for these three domains do, however, agree with our results. We similarly 336 



find significant results across more domains for annual precipitation and wet day frequency 337 

than Zhang et al., though the directions of any identified trends nearly perfectly overlap. These 338 

discrepancies may be a byproduct of methodological decisions. For example, despite also using 339 

GHCN-D data, Zhang et al. focus their analysis on the period from 1976-2019 and use a shorter 340 

moving window (five years) for calculation of relative interannual variability, though our 341 

sensitivity analysis did not reveal strong window width dependency. 342 

While an imperfect comparison, we also compare our results of observed interannual 343 

variability with a suite of studies using high emission scenario model projections to determine if 344 

trends emerging in historical observations mirror future estimates. Our findings of increasing 345 

interannual variability of precipitation in the midwest and northeast match those of Chou and 346 

Lan (2012) and Pendergrass et al. (2017), though we disagree over the sign of change in the 347 

northwest U.S. Both Chou and Lan (2012) and Pendergrass et al. (2017) attribute rising 348 

interannual precipitation variability to greater moisture availability connected with increasing 349 

temperatures. The spatial patterns in interannual variability shifts we identify also differ from 350 

the generally uniform nationwide-increases projected by Wood et al. (2021) and Polade (2014), 351 

particularly in the western U.S. Similarly, our findings of falling interannual variability in 352 

California disagree with the modeled increases presented in multiple studies Berg and Hall 353 

(2015) and Swain et al. (2018), though both studies do not predict an emergence of signal until 354 

the middle 21st century. It should be noted that while our study examines changes in 355 

interannual variability over a period of rapidly increasing greenhouse gas concentrations and 356 

subsequent climate impacts, unlike the above studies, we do not explicitly examine the effects of 357 

climate change on interannual variability. 358 



 359 

Limitations and Sensitivity Analysis Implications 360 

 There are potential limitations of our study, beginning with an underlying assumption 361 

that stations within NEON domains are relatively homogeneous. While NEON domains were 362 

created to possess internally consistent climates, within-domain variability may exist and 363 

inconsistent station availability may influence domain-level findings. The quantity of qualifying 364 

stations varies also between domains and can impact the reliability of results, this is especially 365 

true for the Atlantic Neotropical domain with only six qualifying stations. 366 

Our sensitivity analysis revealed two domain clusters with start year-dependent results, 367 

in agreement with Kunkel (2003) which describes the importance of length of record for 368 

analysis, and notes that shorter time series may exhibit different trends than a greater length of 369 

record for a similar location. First, the direction of interannual variability trends over the three 370 

Plains domains and the Ozarks Complex between a 1950 and 1960 start date. Similarly, results 371 

for the western U.S. show a distinct shift in precipitation trends between a 1950 or earlier start 372 

date and a 1960 or 1970 start date. This shift occurs in trends for all metrics and across at least 373 

half of the western NEON domains (Tables S3-S6). Thus, while we have focused on results 374 

using a 1970 start date and 11-year moving window, we highlight that this combination should 375 

not be considered definitive. We further include results of analysis based on a 1950 start date in 376 

the Supporting Information (Figures S6-S9, Tables S13-S16). Finally, it should again be noted 377 

that although we examine trends in precipitation through a period of time of increasing 378 

greenhouse gas emissions and resultant climate impacts, we do not claim to directly attribute 379 

changes to anthropogenic climate change. 380 



 381 

 382 

Conclusion 383 

 We use curated daily in situ precipitation measurements from the GHCN to examine 384 

domain-level trends in annual precipitation metrics, with a focus on interannual variability. We 385 

identify rises in annual precipitation in the central and eastern U.S. and declines in the western 386 

U.S. Trends in wet day frequency broadly mirror those of annual precipitation. We also reveal 387 

significant trends in interannual precipitation variability and relative precipitation variability 388 

across the United States, though with some differences in within-domain trends depending on 389 

the variability metric of interest. Broadly, we find an increase in precipitation variability across 390 

both metrics for the southeastern U.S., a decrease along the west coast, and mixed signals in the 391 

central U.S. These findings have important implications for understanding the impact of 392 

changing precipitation variability on agriculture and water resource planning. The full 393 

complement of our results can be compared against climate model projections to inform climate 394 

model analyses across the full spectrum of precipitation metrics. Finally, we recommend that 395 

future studies carefully consider how interannual precipitation variability is characterized (i.e., 396 

interannual variability vs relative interannual variability) and any subsequent implications. 397 

 398 
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