References
[1] Matsuura, N., Igai, H., &Kamiyoshihara, M. (2021).Carinal
resection and reconstruction: now and in the future. Transl Lung
Cancer Res , 10 , 4039-4042.
[2] Duan, L., Li, Q., Dai, J., &Jiang. G.(2022).Modified slide tracheoplasty technique in the management of a
long-segment tracheoesophageal fistula. Eur J Cardiothorac Surg ,62 , ezac413.
[3] Xu, Y., Guo, Z., Liu, R., Wang, H., Wang, S., Weder, W., Pan,
Y., Wu, J., Zhao, H., Luo, Q., &Tan, Q.(2020).Bioengineered carina reconstruction using In-Vivo Bioreactor technique
in human: proof of concept study. Transl Lung Cancer Res ,9 , 705-712.
[4] Vranckx, J.J., &Delaere, P. (2020). The current status
and outlook of trachea transplantation. Curr Opin Organ
Transplant , 25 , 601-608.
[5] Pan, S., Shen, Z., Xia, T., Pan, Z., Dan, Y., Li, J., &Shi, H.(2022).Hydrogel modification of 3D printing hybrid tracheal scaffold to
construct an orthotopic transplantation. Am J Transl Res ,14 , 2910-2925.
[6] Etienne, H., Fabre, D., Gomez Caro, A., Kolb, F., Mussot, S.,
Mercier, O., Mitilian, D., Stephan, F., Fadel, E., &Dartevelle, P.(2018).Tracheal replacement. Eur Respir J , 51 , 1702211.
[7] Gao, E., Wang, P., Chen, F., Xu, Y., Wang, Q., Chen, H., Jiang,
G., Zhou, G., Li, D., Liu, Y., &Duan, L. (2022). Skin-derived
epithelial lining facilitates orthotopic tracheal transplantation by
protecting the tracheal cartilage and inhibiting granulation
hyperplasia. Biomater Adv , 139 , 213037.
[8] Park, J.H., Park, J.Y., Nam, I.-C., Hwang, S.-H,, Kim, C.-S.,
Jung, J.W., Jang, J., Lee, H., Choi, Y., Park, S.H., Kim, S.W., &Cho,
D.-W.(2015).Human
turbinate mesenchymal stromal cell sheets with bellows graft for rapid
tracheal epithelial regeneration. Acta Biomater , 25 ,
56-64.
[9] Shan, Y., Wang, Y., Li, J., Shi, H., Fan, Y., Yang, J., Ren, W.,
&Yu, X. (2017). Biomechanical properties and cellular
biocompatibility of 3D printed tracheal graft. Bioprocess Biosyst
Eng , 40 , 1813-1823.
[10] Pan, S., Zhong, Y., Shan, Y., Liu, X., Xiao, Y., &Shi, H.(2019). Selection of the optimum 3D-printed pore and the
surface modification techniques for tissue engineering tracheal scaffold
in vivo reconstruction. J Biomed Mater Res A , 7 , 360-370.
[11] Ge, L., Dong, L., Wang, D., Ge, Q., &Gu, G. (2018). A
digital light processing 3D printer for fast and high-precision
fabrication of soft pneumatic actuators.Sensor
Actuat A-Phys , 273 , 285-292.
[12] Kim, M.H., Park, &W.H. (2016). Chemically
cross-linked silk fibroin hydrogel with enhanced elastic properties,
biodegradability, and biocompatibility. Int J Nanomedicine ,11 , 2967-2978.
[13] Sheng, R., Chen, J., Wang, H., Luo, Y., Liu, J., Chen, Z., Mo,
Q., Chi, J., Ling, C., Tan, X., Yao, Q., &Zhang, W. (2022).Nanosilicate-Reinforced Silk Fibroin Hydrogel for Endogenous
Regeneration of Both Cartilage and Subchondral Bone. Adv Healthc
Mater , 11 , e2200602.
[14] Johnson, K., Zhu, S., Tremblay, M.S., Payette, J.N., Wang, J.,
Bouchez, L.C., Meeusen, S., Althage, A., Cho, C.Y., Wu, X., &Schultz,
P.G. (2012). A stem
cell-based approach to cartilage repair. Science , 336 ,
717-721.
[15] Elder, S., Roberson, J.G., Warren, J., Lawson, R., Young, D.,
Stokes, S., &Ross, M.K. (2022). Evaluation of Electrospun
PCL-PLGA for Sustained Delivery of Kartogenin. Molecules ,27 , 3739.
[16] The Ministry of Science and Technology of the People’s Republic
of China. Guidance suggestion of caring and using laboratory animals.
September 2006.
[17] Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., Tamayol, A.,
Annabi, N., &Khademhosseini, A. (2015). Synthesis, properties,
and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.Biomaterials , 73 , 254-271.
[18] Liu, J., Qu, M., Wang, C., Xue, Y., Huang, H., Chen, Q., Sun,
W., Zhou, X., Xu, G., &Jiang, X. (2022). A Dual-Cross-Linked
Hydrogel Patch for Promoting Diabetic Wound Healing. Small ,18 , e2106172.
[19] Kondo, M., Tamaoki, J., Takeyama, K., Nakata, J., &Nagai, A.(2002). Interleukin-13 induces goblet cell differentiation in
primary cell culture from Guinea pig tracheal epithelium. Am J
Respir Cell Mol Biol , 27 , 536-541.
[20] Sun, F., Lu, Y., Wang, Z., Zhang, B., Shen, Z., Yuan, L., Wu,
C., Wu, Q., Yang, W., Zhang, G., Pan, Z., &Shi, H. (2021).Directly construct microvascularization of tissue engineering trachea in
orthotopic transplantation. Mater Sci Eng C Mater Biol Appl ,128 , 112201.
[21] Axtell, A.L., &Mathisen, D.J. (2018). Idiopathic
subglottic stenosis: techniques and results. Ann Cardiothorac
Surg , 7 , 299-305.
[22] Grewal, H.S., Dangayach, N.S., Ahmad, U., Ghosh, S., Gildea,
T., &Mehta, A.C. (2019). Treatment of Tracheobronchial
Injuries: A Contemporary Review. Chest , 155 , 595-604.
[23] Soriano, L., Khalid, T., Whelan, D., O’Huallachain, N.,
Redmond, K.C., O’Brien, F.J., O’Leary, C., &Cryan, S.-A.(2021). Development and clinical translation of tubular
constructs for tracheal tissue engineering: a review. Eur Respir
Rev , 30 , 210154.
[24] Sahakyants, T., &Vacanti, J.P. (2020). Tissue
engineering: from the bedside to the bench and back to the bedside.Pediatr Surg Int , 36 , 1123-1133.
[25] Xia, D., Jin, D., Wang, Q., Gao, M., Zhang, J., Zhang, H., Bai,
J., Feng, B., Chen, M., Huang, Y., Zhong, Y., Witman, N., Wang, W., Xu,
Z., Zhang, H., Yin, M., &Fu, W. (2019). Tissue-engineered
trachea from a 3D-printed scaffold enhances whole-segment tracheal
repair in a goat model. J Tissue Eng Regen Med , 13 ,
694-703.
[26] Dikina, A.D., Alt, D.S., Herberg, S., McMillan, A., Strobel,
H.A., Zheng, Z., Cao, M., Lai, B.P., Jeon, O., Petsinger, V.I., Cotton,
C.U., Rolle, M.W., &Alsberg, E. (2018). A Modular Strategy to
Engineer Complex Tissues and Organs. Adv Sci (Weinh) , 5 ,
1700402.
[27] Chen, C., Tang, J., Gu, Y., Liu, L., Liu, X., Deng, L.,
Martins, C.,
Sarmento,
B., Cui, W., &Chen, L. (2019). Bioinspired Hydrogel
Electrospun Fibers for Spinal Cord Regeneration. Adv. Funct.
Mater , 29 , 1806899.
[28] Li, L., Li, J., Guo, J., Zhang, H., Zhang, X., Yin, C., Wang,
L., Zhu, Y., &Yao, Q. (2019). 3D Molecularly Functionalized
Cell-Free Biomimetic Scaffolds for Osteochondral Regeneration.Adv. Funct. Mater , 29 , 1807356.
[29] Zhang, W., Chen, J., Qu, M., Backman, L.J., Zhang, A., Liu, H.,
Zhang, X., Zhou, Q., &Danielson, P. (2020). Sustained Release
of TPCA-1 from Silk Fibroin Hydrogels Preserves Keratocyte Phenotype and
Promotes Corneal Regeneration by Inhibiting Interleukin-1β Signaling.Adv Healthc Mater , 9 , e2000591.
[30] Kim, S.H., Yeon, Y.K., Lee, J.M., Chao, J.R., Lee, Y.J., Seo,
Y.B., Sultan, M.T., Lee, O.J., Lee, J.S., Yoon, S.-II., Hong, I.-S.,
Khang, G., Lee, S.J., Yoo, J.J., &Park, C.H. (2018). Precisely
printable and biocompatible silk fibroin bioink for digital light
processing 3D printing. Nat Commun , 9 , 1620.
[31] Kim, S.H., Hong, H., Ajiteru, O., Sultan, M.T., Lee, Y.J., Lee,
J.S., Lee, O.J., Lee, H., Park, H.S., Choi, K.Y., Lee, J.S., Ju, H.W.,
Hong, I.-S., &Park, C.H. (2021). 3D bioprinted silk fibroin
hydrogels for tissue engineering. Nat Protoc , 16 ,
5484-5532.
[32] Hong, H., Seo, Y.B., Kim, D.Y., Lee, J.S., Lee, Y.J., Lee, H.,
Ajiteru, O., Sultan, M.T., Lee, O.J., Kim, S.H., &Park, C.H.(2020). Digital light processing 3D printed silk fibroin
hydrogel for cartilage tissue engineering. Biomaterials ,232 , 119679.
[33] Wu, X., Zhou, M., Jiang, F., Yin, S., Lin, S., Yang, G., Lu,
Y., Zhang, W., &Jiang, X. (2021). Marginal sealing around
integral bilayer scaffolds for repairing osteochondral defects based on
photocurable silk hydrogels. Bioact Mater , 6 , 3976-3986.
[34] Rajput, M., Mondal, P., Yadav, P., &Chatterjee, K.(2022). Light-based 3D bioprinting of bone tissue scaffolds
with tunable mechanical properties and architecture from photocurable
silk fibroin. Int J Biol Macromol , 202 , 644-656.
[35] Partlow, B.P., Hanna, C.W., Rnjak-Kovacina, J., Moreau, J.E.,
Applegate, M.B., Burke, K.A., Marelli, B., Mitropoulos, A.N., Omenetto,
F.G., &Kaplan, D.L. (2014). Highly tunable elastomeric silk
biomaterials. Adv Funct Mater , 24 , 4615-4624.
[36] Xu, Y., Duan, L., Li, Y., She, Y., Zhu, J., Zhou, G., Jiang,
G., &Yang, Y. (2020). Nanofibrillar Decellularized Wharton’s
Jelly Matrix for Segmental Tracheal Repair.Adv Funct
Mater, 30 , 1910067
[37] Pan, S., Lu, Y., Li, J., &Shi, H. (2022). The
biological properties of the decellularized tracheal scaffolds and 3D
printing biomimetic materials: A comparative study. J Biomed Mater
Res A , 110 , 1062-1076.
[38] Huo, Y., Xu, Y., Wu, X., Gao, E., Zhan, A., Chen, Y., Zhang,
Y., Hua, Y., Swieszkowski, W., Zhang, Y.S., &Zhou, G. (2022).Functional Trachea Reconstruction Using 3D-Bioprinted Native-Like Tissue
Architecture Based on Designable Tissue-Specific Bioinks. Adv Sci
(Weinh) , 9 , e2202181.
[39] Den Hondt, M., Vanaudenaerde, B., Verbeken, E., &Vranckx, J.J.(2018). Requirements for Successful Trachea Transplantation: A
Study in the Rabbit Model. Plast Reconstr Surg , 141 ,
845e-856e.