References
Allen, K., Corre, M.D., Tjoa, A. & Veldkamp, E. (2015). Nutrient
leaching losses in lowland forests converted to oil palm and rubber
plantations in Sumatra, Indonesia. PLoS One , 10, e0133325.
Azhar, A., Hartke, T.R., Böttges, L., Lang, T., Larasati, A., Novianti,
N., et al. (2022). Rainforest conversion to cash crops reduces
abundance, biomass and species richness of parasitoid wasps in Sumatra,
Indonesia. Agric. For. Entomol. , 1–10.
Bardgett, R.D. & van der Putten, W.H. (2014). Belowground biodiversity
and ecosystem functioning. Nature , 515, 505–511.
Barnes, A.D., Jochum, M., Lefcheck, J.S., Eisenhauer, N., Scherber, C.,
O’Connor, M.I., et al. (2018). Energy Flux: The link between
multitrophic biodiversity and ecosystem functioning. Trends Ecol.
Evol. , 33, 186–197.
Barnes, A.D., Jochum, M., Mumme, S., Haneda, N.F., Farajallah, A.,
Widarto, T.H., et al. (2014). Consequences of tropical land use
for multitrophic biodiversity and ecosystem functioning. Nat.
Commun. , 5, 1–7.
Barnes, A.D., Weigelt, P., Jochum, M., Ott, D., Hodapp, D., Haneda,
N.F., et al. (2016). Species richness and biomass explain spatial
turnover in ecosystem functioning across tropical and temperate
ecosystems. Philos. Trans. R. Soc. B Biol. Sci. , 371, 20150279.
Basset, Y. (2001). Invertebrates in the canopy of tropical rain forests:
How much do we really know? Plant Ecol. , 153, 87–107.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear
mixed-effects models using lme4. J. Stat. Softw. , 67, 1–48.
Brose, U., Archambault, P., Barnes, A.D., Bersier, L.F., Boy, T.,
Canning-Clode, J., et al. (2019). Predator traits determine
food-web architecture across ecosystems. Nat. Ecol. Evol. , 3,
919–927.
Brose, U., Ehnes, R.B., Rall, B.C., Vucic-Pestic, O., Berlow, E.L. &
Scheu, S. (2008). Foraging theory predicts predator-prey energy fluxes.J. Anim. Ecol. , 77, 1072–1078.
Brown, J.H. (2004). Toward a metabolic theory of ecology.Ecology , 85, 1771–1789.
Cardinale, B.J., Srivastava, D.S., Duffy, J.E., Wright, J.P., Downing,
A.L., Sankaran, M., et al. (2006). Effects of biodiversity on the
functioning of trophic groups and ecosystems. Nature , 443,
989–992.
Chahartaghi, M., Langel, R., Scheu, S. & Ruess, L. (2005). Feeding
guilds in Collembola based on nitrogen stable isotope ratios. Soil
Biol. Biochem. , 37, 1718–1725.
Chaudhary, A., Burivalova, Z., Koh, L.P. & Hellweg, S. (2016). Impact
of forest management on species richness: Global meta-analysis and
economic trade-offs. Sci. Rep. , 6, 1–10.
Clough, Y., Krishna, V. V., Corre, M.D., Darras, K., Denmead, L.H.,
Meijide, A., et al. (2016). Land-use choices follow profitability
at the expense of ecological functions in Indonesian smallholder
landscapes. Nat. Commun. , 7, 13137.
Corley, R.H.V. & Tinker, P.B. (2015). Growth, Flowering and Yield. In:The Oil Palm . John Wiley & Sons, Ltd, pp. 89–137.
Cucherousset, J. & Villéger, S. (2015). Quantifying the multiple facets
of isotopic diversity: New metrics for stable isotope ecology.Ecol. Indic. , 56, 152–160.
Darras, K.F.A., Corre, M.D., Formaglio, G., Tjoa, A., Potapov, A.,
Brambach, F., et al. (2019). Reducing fertilizer and avoiding
herbicides in oil palm plantations—ecological and economic valuations.Front. For. Glob. Chang. , 2, 65.
Drescher, J., Rembold, K., Allen, K., Beckscha, P., Buchori, D., Clough,
Y., et al. (2016). Ecological and socio-economic functions across
tropical land use systems after rainforest conversion. Philos.
Trans. R. Soc. B , 371, 20150275.
Ellwood, M.D.F. & Foster, W.A. (2004). Doubling the estimate of
invertebrate biomass in a rainforest canopy. Nature , 429,
549–551.
Erdmann, G., Otte, V., Langel, R., Scheu, S. & Maraun, M. (2007). The
trophic structure of bark-living oribatid mite communities analysed with
stable isotopes (15N, 13C) indicates
strong niche differentiation. Exp. Appl. Acarol. , 41, 1–10.
Erwin, T.L. (1983). Tropical forest canopies: the last biotic frontier.Bull. Entomol. Soc. Am. , 29, 14–20.
Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielsen, F., Brühl,
C.A., Donald, P.F., et al. (2008). How will oil palm expansion
affect biodiversity? Trends Ecol. Evol. , 23, 538–545.
Gauzens, B., Barnes, A., Giling, D.P., Hines, J., Jochum, M., Lefcheck,
J.S., et al. (2019). fluxweb: An R package to easily estimate
energy fluxes in food webs. Methods Ecol. Evol. , 10, 270–279.
Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow,
J., et al. (2011). Primary forests are irreplaceable for
sustaining tropical biodiversity. Nature , 478, 378–381.
Gora, E.M., Lucas, J.M. & Yanoviak, S.P. (2019). Microbial composition
and wood decomposition rates vary with microclimate from the ground to
the canopy in a tropical forest. Ecosystems , 22, 1206–1219.
Greathead, D.J. (1983). The multi-million dollar weevil that pollinates
oil palms. Antenna , 7, 105–107.
Guillaume, T., Kotowska, M.M., Hertel, D., Knohl, A., Krashevska, V.,
Murtilaksono, K., et al. (2018). Carbon costs and benefits of
Indonesian rainforest conversion to plantations. Nat. Commun. , 9,
2388.
Hansen, M.C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S.A.,
Tyukavina, A., et al. (2013). High-resolution global maps of
21st-century forest cover change. Science , 342, 850–854.
Harrison, R.D. & Swinfield, T. (2015). Restoration of logged humid
tropical forests: An experimental programme at harapan rainforest,
Indonesia. Trop. Conserv. Sci. , 8, 4–16.
Hunt, H.W. & Wall, D.H. (2002). Modelling the effects of loss of soil
biodiversity on ecosystem function. Glob. Chang. Biol. , 8,
33–50.
Hyodo, F., Matsumoto, T., Takematsu, Y., Kamoi, T., Fukuda, D.,
Nakagawa, M., et al. (2010). The structure of a food web in a
tropical rain forest in Malaysia based on carbon and nitrogen stable
isotope ratios. J. Trop. Ecol. , 26, 205–214.
Jochum, M., Barnes, A.D., Brose, U., Gauzens, B. & Sünnemann, M.
(2021). For flux ’s sake : General considerations for energy-flux
calculations in ecological communities. Ecol. Evol. , 11,
12948–12969.
Juniyanti, L., Purnomo, H., Kartodihardjo, H. & Prasetyo, L.B. (2021).
Understanding the driving forces and actors of land change due to
forestry and agricultural practices in Sumatra and Kalimantan: A
systematic review. Land , 10, 463.
Kasmiatun, Hartke, T.R., Buchori, D., Hidayat, P., Siddikah, F.,
Amrulloh, R., et al. (2022). Rainforest conversion to smallholder
cash crops leads to varying declines of beetles (Coleoptera) on Sumatra.Biotropica , 1–13.
Kotowska, M.M., Leuschner, C., Triadiati, T., Meriem, S. & Hertel, D.
(2015). Quantifying above- and belowground biomass carbon loss with
forest conversion in tropical lowlands of Sumatra (Indonesia).Glob. Chang. Biol. , 21, 3620–3634.
Krause, A., Sandmann, D., Potapov, A., Ermilov, S., Widyastuti, R.,
Haneda, N.F., et al. (2020). Variation in community level trophic
niches of soil microarthropods with conversion of tropical rainforest
into plantations systems as indicted by stable isotopes
(15N, 13C). Front. Ecol.
Evol. , 9, 1–10.
Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. (2017). lmerTest
Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. ,
82, 1–26.
Lang, B., Ehnes, R.B., Brose, U. & Rall, B.C. (2017). Temperature and
consumer type dependencies of energy flows in natural communities.Oikos , 126, 1717–1725.
Laurance, W.F., Sayer, J. & Cassman, K.G. (2014). Agricultural
expansion and its impacts on tropical nature. Trends Ecol. Evol. ,
29, 107–116.
Manning, P., Van Der Plas, F., Soliveres, S., Allan, E., Maestre, F.T.,
Mace, G., et al. (2018). Redefining ecosystem multifunctionality.Nat. Ecol. Evol. , 2, 427–436.
Maraun, M., Erdmann, G., Fischer, B.M., Pollierer, M.M., Norton, R.A.,
Schneider, K., et al. (2011). Stable isotopes revisited: Their
use and limits for oribatid mite trophic ecology. Soil Biol.
Biochem. , 43, 877–882.
Margono, B.A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen,
M.C. (2014). Primary forest cover loss in Indonesia over 2000-2012.Nat. Clim. Chang. , 4, 730–735.
van der Merwe, N.J. & Medina, E. (1991). The canopy effect, carbon
isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. , 18,
249–259.
Nakamura, A., Kitching, R.L., Cao, M., Creedy, T.J., Fayle, T.M.,
Freiberg, M., et al. (2017). Forests and their canopies:
Achievements and horizons in canopy science. Trends Ecol. Evol. ,
32, 438–451.
Nazarreta, R., Hartke, T.R., Hidayat, P., Scheu, S., Buchori, D. &
Drescher, J. (2020). Rainforest conversion to smallholder plantations of
rubber or oil palm leads to species loss and community shifts in canopy
ants (Hymenoptera: Formicidae). Myrmecological News , 30,
175–186.
Novotny, V., Drozd, P., Miller, S.E., Kulfan, M., Janda, M., Basset, Y.,et al. (2006). Why are there so many species of herbivorous
insects in tropical rainforests? Science , 313, 1115–1118.
Novotny, V., Miller, S.E., Baje, L., Balagawi, S., Basset, Y., Cizek,
L., et al. (2010). Guild-specific patterns of species richness
and host specialization in plant-herbivore food webs from a tropical
forest. J. Anim. Ecol. , 79, 1193–1203.
O’Neill, R. V. (1969). Indirect estimation of energy fluxes in animal
food webs. J. Theor. Biol. , 22, 284–290.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. (2021).
nlme: Linear and nonlinear mixed effects models.
https://cran.r-project.org/package=nlme. R-project .
Pollierer, M.M., Langel, R., Scheu, S. & Maraun, M. (2009).
Compartmentalization of the soil animal food web as indicated by dual
analysis of stable isotope ratios
(15N/14N and13C/12C). Soil Biol.
Biochem. , 41, 1221–1226.
Potapov, A., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S.
(2019a). Linking size spectrum, energy flux and trophic
multifunctionality in soil food webs of tropical land-use systems.J. Anim. Ecol. , 88, 1845–1859.
Potapov, A.M. (2022). Multifunctionality of belowground food webs:
resource, size and spatial energy channels. Biol. Rev. , 97,
1691–711.
Potapov, A.M., Scheu, S. & Tiunov, A. V. (2019b). Trophic consistency
of supraspecific taxa in below‐ground invertebrate communities:
Comparison across lineages and taxonomic ranks. Funct. Ecol. , 33,
1172–1183.
Le Provost, G., Thiele, J., Westphal, C., Penone, C., Allan, E., Neyret,
M., et al. (2021). Contrasting responses of above- and
belowground diversity to multiple components of land-use intensity.Nat. Commun. , 12, 3918.
Ramos, D., Hartke, T.R., Buchori, D., Dupérré, N., Hidayat, P., Lia, M.,et al. (2022). Rainforest conversion to rubber and oil palm
reduces abundance, biomass and diversity of canopy spiders.PeerJ , 10, e13898.
Reineking, A., Langel, R. & Schikowski, J. (1993).15N, 13C-on-line measurements with
an elemental analyser (Carlo Erba, NA 1500), a modified trapping box and
a gas isotope mass spectrometer (Finnigan, MAT 251). Isot. Isot.
Environ. Heal. Stud. , 29, 169–174.
Reiss, J., Bridle, J.R., Montoya, J.M. & Woodward, G. (2009). Emerging
horizons in biodiversity and ecosystem functioning research.Trends Ecol. Evol. , 24, 505–514.
Rembold, K., Mangopo, H., Tjitrosoedirdjo, S.S. & Kreft, H. (2017).
Plant diversity, forest dependency, and alien plant invasions in
tropical agricultural landscapes. Biol. Conserv. , 213, 234–242.
Rip, J.M.K. & Mccann, K.S. (2011). Cross-ecosystem differences in
stability and the principle of energy flux. Ecol. Lett. , 14,
733–740.
Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A. &
Firth, D. (2019). Package ‘MASS’ (Version 7.3-51.4). Cran-R Proj.
De Ruiter, P.C., Van Veen, J.A., Moore, J.C., Brussaard, L. & Hunt,
H.W. (1993). Calculation of nitrogen mineralization in soil food webs.Plant Soil , 157, 263–273.
Sanders, D., Thébault, E., Kehoe, R. & Frank van Veen, F.J. (2018).
Trophic redundancy reduces vulnerability to extinction cascades.Proc. Natl. Acad. Sci. U. S. A. , 115, 2419–2424.
Seibold, S., Cadotte, M.W., MacIvor, J.S., Thorn, S. & Müller, J.
(2018). The necessity of multitrophic approaches in community ecology.Trends Ecol. Evol. , 33, 754–764.
Sibhatu, K.T., Steinhübel, L., Siregar, H., Qaim, M. & Wollni, M.
(2022). Spatial heterogeneity in smallholder oil palm production.For. Policy Econ. , 139, 102731.
Soliveres, S., Van Der Plas, F., Manning, P., Prati, D., Gossner, M.M.,
Renner, S.C., et al. (2016). Biodiversity at multiple trophic
levels is needed for ecosystem multifunctionality. Nature , 536,
456–459.
Susanti, W.I.W.I., Pollierer, M.M.M., Widyastuti, R., Scheu, S. &
Potapov, A. (2019). Conversion of rainforest to oil palm and rubber
plantations alters energy channels in soil food webs. Ecol.
Evol. , 9, 9027–9039.
Tilman, D., Isbell, F. & Cowles, J.M. (2014). Biodiversity and
ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. , 45,
471–493.
Tiunov, A. V. (2007). Stable isotopes of carbon and nitrogen in soil
ecological studies. Biol. Bull. , 34, 395–407.
Wan, B., Liu, T., Gong, X., Zhang, Y., Li, C., Chen, X., et al.(2022). Energy flux across multitrophic levels drives ecosystem
multifunctionality: Evidence from nematode food webs. Soil Biol.
Biochem. , 169, 108656.
Zemp, D.C., Ehbrecht, M., Seidel, D., Ammer, C., Craven, D., Erkelenz,
J., et al. (2019). Mixed-species tree plantings enhance
structural complexity in oil palm plantations. Agric. Ecosyst.
Environ. , 283, 106564.
Zhou, Z., Krashevska, V., Widyastuti, R., Scheu, S. & Potapov, A.
(2022). Tropical land use alters functional diversity of soil food webs
and leads to monopolization of the detrital energy channel.Elife , 11, 1–24.