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Abstract 18 

Effective flood prediction significantly enhances risk management and response strategies, yet 19 
remains challenging, particularly in ungauged basins. This study investigates the capacity for 20 
integrating streamflow derived from Synthetic Aperture Radar (SAR) and U.S. National Water 21 
Model (NWM) output to provide enhanced predictions of above-normal flow (ANF). Leveraging 22 
the Global Flood Detection System (GFDS) and Principal Component Regression (PCR) of SAR 23 
data, we apply the Spatial-temporal Hierarchical model (STHM) for ANF prediction replacing 24 
antecedent streamflow with SAR-derived flow. Our evaluation shows promising results, with 25 
STHM-SAR significantly improving prediction accuracy of NWM, especially coastal regions 26 
where approximately 60% of sites demonstrated enhanced performance compared to previous 27 
efforts. Spatial and temporal validations underscore the model's robustness, with SAR data 28 
contributing to explained variance by 24% on average. This approach not only streamlines post-29 
processing modeling but also uniquely combines existing data, showcasing its potential to 30 
improve hydrological modeling, particularly in regions with limited measurements. 31 

Plain Language Summary 32 

This study explores improving flood prediction accuracy, which is vital for effective risk 33 
management and response planning. It focuses on integrating Synthetic Aperture Radar (SAR) 34 
data and the U.S. National Water Model (NWM) to predict above-normal flow (ANF). By 35 
combining SAR and NWM data using advanced techniques like the Global Flood Detection 36 
System (GFDS) and Principal Component Regression (PCR), a Spatial-temporal Hierarchical 37 
model (STHM) was developed. This model showed promising results, especially in coastal 38 
regions, with SAR data contributing significantly to the model's accuracy. This approach 39 
streamlines the modeling process and showcases the potential of combining existing data sources 40 
to improve hydrological modeling, particularly in regions with limited measurements. 41 

 42 

  43 
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1. Introduction  44 

Developing accurate flood prediction models provides critical information to ensure 45 
sustainable flood risk management, early warning systems, and lifesaving responses (Johnson et 46 
al., 2016; Maidment, 2009). In the United States, the NOAA Office of Water Prediction provides 47 
runoff forecasts for the entire river network of the United States (National Weather Service, 48 
2022; Salas et al., 2023) through the National Water Model (NWM). The NWM forecasts are 49 
used to generate flood inundation maps (Johnson et al., 2019) which are being used by River 50 
Forecasting Centers to provide operational guidance during flood events. However, the 51 
operational skill can still benefit from improved above-normal flows (defined as exceeding the 52 
67th percentile flow, ANF) as the raw NWM outputs suffer from both marginal and conditional 53 
biases (Johnson et al., 2023).  54 

Postprocessing model outputs has been shown to enhance the forecast skill, however, 55 
NSEs of forecasts for ANF conditions near gauged locations are only skilled in 50% of evaluated 56 
basins (Fang et al., 2024; Frame et al., 2021; Johnson et al., 2023). The ability to predict above-57 
normal flows is likely worse in ungauged basins highlighting the need for improved ANF 58 
prediction and the opportunity for utilizing using the unprecedented availability of NWM 59 
forecasts as a starting point.  60 

Recent advancements in remote sensing (RS) data have emerged as a viable alternative to 61 
supplement in situ observations and process-based models (Sogno et al., 2022). Studies show 62 
they can benefit real-time forecasting capabilities, particularly in estimating the current stage and 63 
discharge (Van Dijk et al., 2015). RS data have been an important component of the Global 64 
Flood Monitor System (GFMS), which has been running in real-time for the last few years with 65 
results (including rainfall, flood, and Tropical Cyclone) being displayed at the NASA TRMM 66 
website (http://trmm.gsfc.nasa.gov/). The GFMS uses satellite-based estimates of precipitation to 67 
estimate runoff generation, routing, and flood inundation attributes such as stage. However, the 68 
challenge is effectively translating RS data into accurate streamflow forecasts in ungauged 69 
basins, despite its role in systems like the Global Flood Monitor System (GFMS) with the 70 
potential for real-time streamflow forecasting. 71 

Streamflow forecasts can also be developed using process-based models (Archfield et al., 72 
2015; Clark et al., 2015; Wood et al., 2011) and/or data-driven models (Kratzert et al., 2019). 73 
Traditionally Process based models have been used to tackle the “grand challenge of hydrology” 74 
of achieving consistence hydrologic prediction everywhere on earth (Sperna Weiland et al., 75 
2012; Wood et al., 2011). And while efforts have substantially improved these modeling 76 
paradigms, successfully achieving accurate hydrologic prediction everywhere remains a 77 
challenge due to difficulties in estimating and maintaining antecedent conditions. Process-based 78 
models can utilize remotely derived variables like precipitation, soil moisture, and 79 
evapotranspiration (AghaKouchak et al., 2015; Vinukollu et al., 2011). To this end, there are 80 
numerous studies focused on incorporating synthetic, in situ, or remote sensing-derived water 81 
level observations into forecasting systems (Mazrooei et al., 2019; Mazrooei et al., 2021). For 82 
example, Revilla-Romero et al. (2016) utilized the ensemble Kalman filter to integrate low-83 
resolution satellite-based flood extents from the GFDS into a global forecasting system aimed at 84 
real-time flood forecasting.  85 

http://trmm.gsfc.nasa.gov/
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While streamflow can be derived from remote sensing instruments, e.g., MODIS (Sahoo 86 
et al., 2022; Tarpanelli et al., 2019) or LANDSAT (Gleason et al., 2014) these sensors provide 87 
lower spatial resolution and can be impeded by clouds and other obstacles - particularly in 88 
periods of above-normal or high flows (Alquraish and Khadr, 2021). On the other hand, 89 
technologies such as synthetic aperture radar (SAR) can provide high-resolution images of water 90 
conditions, even in adverse weather conditions  ((Tsokas et al., 2022; Yoon et al., 2022).  91 
Streamflow estimation using SAR data usually involves building empirical relationships between 92 
ground-measured streamflow and the SAR data to estimate above-normal/high flow signal(Yoon 93 
et al., 2022); a curve number approach by estimating runoff from rainfall amounts (Beck et al., 94 
2009; Hong and Adler, 2008); or a histogram thresholding or clustering method to separate 95 
flooded from non-flooded areas in SAR imagery (Martinis et al., 2009). Hostache et al. (2018) 96 
employed a modified Particle Filter with Sequential Importance Sampling to integrate 97 
probabilistic flood maps from SAR into a hydrologic and hydraulic model, while Cooper et al. 98 
(2018) demonstrated that assimilating SAR backscatter could outperform transforming it into 99 
water levels in their study. While the mentioned studies have demonstrated notable skill in 100 
predicting streamflow at a basin scale, their applicability on a continental scale (e.g., 101 
Coterminous US) has not been demonstrated to date. Largely, assimilating RS data into a 102 
process-based hydrological models at large scales is typically limited by computational time. In 103 
these cases,  data-driven methods like Spatiotemporal Hierarchical Model (STHM) or Long 104 
short-term memory (LSTM) (Feng et al., 2020; Frame et al., 2021), can provide a hybrid 105 
approach that leverage remote sensing products and physics-based model outputs to inform 106 
statistical and machine learning models to combine the products into a n improved output. In 107 
2023, Fang et al. introduced a STHM model that improved NWM streamflow predictions using a 108 
set of geospatial catchment characteristics and a three-day averaged streamflow observation 109 
(aggregated to the HUC8 watershed level). This study presented a hierarchical spatial-temporal 110 
model (STHM) that improves above-normal flow (ANF) prediction across CONUS basins, with 111 
significant enhancements in ANF prediction for most sites, while also facing challenges in 112 
predicting ANF for coastal basins and obtaining antecedent streamflow conditions for ungauged 113 
basins. 114 

The aim of this study is to understand if the process based NWM, a suite of geospatial 115 
catchment characteristics, and SAR streamflow data can be integrated to improve on previous 116 
STHM efforts to provide improved ANF estimates. The paper is structured as follows: Section 2 117 
outlines the materials and data used, Section 3 presents the results with a thorough analysis of the 118 
model's predictions, and Section 4 discusses the results, emphasizing research gaps and 119 
suggesting potential solutions to overcome challenges. 120 

2. Materials and Methods  121 

2.1  Hydroclimate and land use data 122 

The NWM makes predictions across a modified version of the National Hydrographic 123 
Dataset (NHDPlusV2, McKay, 2012; Blodgett, 2023). To compare forecasts to observations, co-124 
located common feature IDs  and USGS National Water Information System (NWIS) gauges 125 
were extracted from the Routelink file associated with NWM v2.1. The dataRetrieval R package 126 
(De Cirro et al., 2018) was used to identify and retrieve streamflow data for sites with a 127 
minimum of 10 years of data between 1993 and 2018. Hourly simulations for NWM 2.1 were 128 
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obtained using the "nwmTools" package (Johnson et al, 2023b, Johnson et al, 2021) and 129 
aggregated to a daily mean. Catchment characteristics were accessed from Johnson, et al., 130 
(2023), which summarized dam, hydroclimatic, land use, and anthropogenic characteristics to 131 
gage locations in the Gages II Network (Falcone, 2011). Furthermore, the GAGESII dataset 132 
includes the 2009 hydro-climatic network (HDCN) categories, distinguishing between controlled 133 
and natural basins. Lastly, the REACHCODE associated with the NHDPlusV2 COMID enables 134 
the identification of Hydrologic Unit Code (HUC) regions provided by the Watershed Boundary 135 
Dataset. All the above-mentioned data can be accessed at https://github.com/LynkerIntel/nwm-136 
evaluation-2023.   137 
2.2 Water Surface Metrics from GFDS–SAR 138 

The Global Flood Detection System (GFDS) provides a flood monitoring system created 139 
by the Joint Research Centre of the European Commission in partnership with the Dartmouth 140 
Flood Observatory at Colorado University 141 
(https://www.gdacs.org/flooddetection/Download/Technical_Note_GFDS_Data_Products_v1.pd142 
f). 143 

The system integrates satellite measurements from sensors including the Tropical 144 
Rainfall Measuring Mission (TRMM), Global Precipitation Measuring (GPM), Advanced 145 
Microwave Scanning Radiometer-Earth (AMSRE), and AMSR2. These measurements are 146 
amalgamated to generate a variety of products displaying flood signals. GFDS water surface 147 
metrics have been instrumental in numerous studies (Van Dijk et al., 2016; Yoon et al., 2022). 148 
Moreover, various real-time flood monitoring applications rely on the data streams provided by 149 
GFDS.  150 

GFDS estimates water surface metrics using brightness temperatures. If the physical 151 
temperature remains constant, changes in brightness can be assumed to be caused by changes in 152 
water in the pixel. Since the raw values are influenced by factors such as physical temperature, 153 
permittivity, surface roughness, vegetation, atmospheric moisture, and other environmental 154 
variables (Kugler and De Groeve, 2007; Van Dijk et al., 2016), 𝑇!,#$%&'($#$)* is scaled by the 155 
signal of land observation of surface temperature.  156 

An M/C value can be defined as the ratio of measurement/wet signal (𝑇!,#$%&'($#$)*t) 157 
over calibration/dry observations, which is detected by SAR as water surface signal for proxy 158 
streamflow:  159 

𝑠 = !
"
= #!,#$%&'($#$)*

#!,+%,-!(%*-.)
	 	 	 (1)		160 

where, Tb is passive microwave radiometers, brightness temperature, subscript 161 
“measurement” and “calibration” M and C, respectively. These can be accessed from GFDS 162 
website (https://www.gdacs.org/flooddetection/DATA/SINGLE/SignalTiffs/).  163 
 164 
2.3 Principal Component Regression (PCR) of M/C ratio  165 

Since the M/C ratio provided by GFSD is spatially explicit, we use Principal Component 166 
Analysis (PCA) to reduce the dimension to estimate the conditions of a given river. Principal 167 
Component Analysis (PCA) helps convert the correlated time series available at multiple grid 168 
points into orthogonal components, so that fewer components can explain the observed variance 169 
across space.  For each gauged location, we retain two components of brightness temperature (T) 170 

https://github.com/LynkerIntel/nwm-evaluation-2023
https://github.com/LynkerIntel/nwm-evaluation-2023
https://www.gdacs.org/flooddetection/Download/Technical_Note_GFDS_Data_Products_v1.pdf
https://www.gdacs.org/flooddetection/Download/Technical_Note_GFDS_Data_Products_v1.pdf
https://www.gdacs.org/flooddetection/DATA/SINGLE/SignalTiffs/
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by performing PCA on the 24 nearest GFDS grid cells and developed a regression with the 171 
observed depth of daily streamflow (discharge divided by the drainage area). When doing this. 172 
we pool stations by HUC08 (See Figure 1 for detailed steps). Thus, each HUC8 will have a 173 
unique regression that can convert the PCs of the M/C ratio available for any given location to 174 
estimate the depth of streamflow at ungauged locations. By utilizing Principal Component 175 
Analysis (PCA) to reduce the dimensionality of the M/C ratio from GFDS data, we can 176 
effectively capture the essential features for estimating streamflow conditions in ungauged 177 
basins. 178 

Thus, PCR is that after choosing two PCs that is indexed as “g”, the important features of 179 
X have been retained by score matrix (𝑇+) (Camps-Valls and Bruzzone, 2005), and then applied a 180 
multiple linear regression (MLR) with 𝑇+ instead of X (M/C ratio) for calibration data matrix Y 181 
(observed depth of daily streamflow): 182 

   𝑦 = 𝑇+𝐶 + 𝜖(2) 183 

Where, the coefficient of regression (𝐶) is given by: 184 

𝐶* = +𝑇+,𝑇+,
-.𝑇+,𝑦 (3)	185 

 186 

 187 

 188 
Figure 1. Key steps of deriving satellite remotely sensed ANF signals to streamflow. Step 1: 189 

Identify all Gages-II basins, grouped within the same HUC8 (colored in blue); Step 2: 190 
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Sampling M/C data for the gauged location and the 24 neighboring cells; Step 3: Principal 191 

Component regression for neighbors is applied; Step 4: Using top 2 a a polynomial 192 

regression is defined as described in Equation 2.  193 

2.4 Spatial-temporal Hierarchical model for above-normal flow prediction using SAR data 194 

(STHM-SAR) 195 

The aim of the study is to use SAR-estimated streamflow to further advance post 196 
processing techniques that can be applied to large scale process-based models. Here we start with 197 
the STHM defined in Fang et al, 2024 and replace the 3-day area-weighted gaged flows with the 198 
SAR-derived streamflow for the previous 3 days. Thus the new SAR informed STHM-SAR can 199 
be written as:  200 
𝑄{*(1,2,3,4)} =	𝛽{777,1} +	𝛽{.(1,2,3,4)}8{%(',),*,+)}./0 + 𝛽{9(1,2,3,4)}𝑄{*(1,2,3,4)}

:;< +	𝛽{7.(1,3,4)}=>,{'(*,+)} +201 

	𝛽{77.,1};?{)(*,+)} +	𝛽{779,1}?#@{)(*,+)} + 𝛽{77A,1}𝜌{2(3,4)} + 𝜀{*(1,2,3,4)}     (4) 202 

where, QBCD is the NWM daily flow; 𝜌	is the Spearman correlation indicating moisture 203 
and energy being in-phase or out-phase; PET is the mean 10-day potential evaporation as 204 
mentioned above; S is the upstream total dam storage; AI is the aridity index; Imp is the percent 205 
impervious; and 𝜀 is the residual. 206 
2.5 Model evaluation  207 

To evaluate the skill of our model, we use the Nash–Sutcliffe efficiency (NSE) metric 208 
which is widely used to measure the predictive skill of hydrological models (McCuen et al., 209 
2006). In a perfect model with an estimation error variance equal to zero, the resulting NSE 210 
equals 1. A model with an estimation error variance equal to the variance of the observed time 211 
series, results in an NSE of 0. Conversely, an NSE less than zero occurs when the observed mean 212 
is a better predictor than the model. The model performance criteria recommended by Moriasi et 213 
al. (2007) was used for evaluating performance meaning predictions were considered 214 
“acceptable” if NSE scores are greater than 0.5 and “good” if the NSE is above 0.67.  215 

Since we are interested in assessing the performance of the model for estimating flows in 216 
ungauged locations, we use both spatial and temporal validation procedures similar to that of 217 
Fang et al., (2024). For spatial validation, we used a k(20)-fold cross-validation method 218 
(Browne, 2000) treating 5% of locations as ungauged within each hierarchical group and fit the 219 
remaining 95% of stations for the period 1993 and 2018. We evaluated the STHM-SAR 220 
performance for the period 2009 to 2018 for the left-out basins. This process of leaving out 5% 221 
of the basins is repeated until all evaluated in a cross-validation mode. The temporal validation is 222 
performed to evaluate the STHM-SAR performance over a period different from the calibration, 223 
whereas the spatial validation is performed to evaluate the STHM-SAR for application in 224 
ungauged basins. The temporal validation is performed by calibrating the STHM-SAR model 225 
using the data from 1993 to 2008 with the remaining data from 2009 to 2018 being considered 226 
for validation. Thus, all the reported model evaluation, NSEs in Figures 2-4, are for the period 227 
2009 to 2018 based on k(20-fold cross-validation. 228 
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3. Results  229 

We first evaluated the correlation between GFDS SAR-derived and observed daily 230 
streamflow across all natural basins (Figure 2) and also calculated the NSE between the 3-day 231 
average streamflow from the GFDS-SAR and observed 3-day average streamflow (Y axis) 232 
(Figure 3). Figure 3a also compares the NSE from the GFDS-SAR with the NSE (X-axis) 233 
between the 3-day average streamflow estimated based on the simple depth of streamflow (i.e., 234 
without using the GFDS-SAR stage estimates) with the observed streamflow. We then conducted 235 
an analysis of model performance using SAR-derived data (Figure 4) and present an examination 236 
of contributing factors in the STHM-SAR compared to the base STHM (Fang et al., 2024). 237 
3.1 SAR-derived streamflow represents observed streamflow moderately well 238 

The correlation between SAR-derived and observed discharge varies across the CONUS 239 
is important to understand when looking to use SAR-derived products as a proxy for flow 240 
prediction (Figure 2), but Figure 2 shows improvement in estimating 3-day streamflow using the 241 
SAR-derived streamflow when compared with the 3-day streamflow estimated using the simple 242 
depth of streamflow. The correlation between SAR-derived streamflow and observed above 243 
average streamflow is notably strong, as depicted in Figure 2. Across all Gages-II basins, the 244 
mean correlation exceeded 0.53 for high flows during validation, underscoring the reliability of 245 
the SAR-derived streamflow. Spatially, the Northwest regions exhibited the highest correlation, 246 
while the lowest correlation was observed around the 95th meridian (Seager, 2017; Johnson et al 247 
2023a; Johnson et al 2023b). Notably, the Tennessee River Basins demonstrated limited 248 
performance by using SAR-derived high streamflow. Prior work from Van Dijk et al. (2016) 249 
suggested that the most successful sites (with R > 0.8) are concentrated in the southeast of the 250 
USA. However, their focus was on the entire daily streamflow time series whereas we focus 251 
primarily in estimating high flows in Figure 2.  252 
 253 
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 254 
Figure 2. Spearman Rank correlation between above average SAR-derived and observed 255 

streamflow (all conditions) for Gages-II basins during the validation period (2010-2018).  256 

  257 
Figure 3 Left: SAR-derived streamflow compared with previous 3-day streamflow as the 258 

antecedent condition in Fang et al. 2024 by comparing the r-squared values with observed 259 
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streamflow. Right: SAR-derived streamflow r-squared values improvements from previous 260 

3-day streamflow relationship as the number of sites within the same HUC08. 261 

The analysis conducted in Fang et al. (2024), comparing the R-squared values between 262 
GFDS SAR-derived streamflow and the 3-day average streamflow estimated from the simple 263 
depth method, demonstrates that GFDS-SAR derived streamflow consistently surpasses the 264 
performance of the simple depth approach in explaining the variability observed in streamflow 265 
(see Figure 3a). This suggests that GFDS-SAR derived streamflow better captures the underlying 266 
variability in streamflow dynamics compared to the traditional 3-day flow approach. Moreover, 267 
Figure 3b shows that the improved performance of SAR derived streamflow decreased as the 268 
number of gauges increases in the same HUC08. The relationship underscores that these 269 
performance enhancements are notably more significant in basins with limited gauged locations, 270 
where 29% of these basins with ≤ 2 gauges often located within coastal basins (<150km along 271 
coastal line, Fang et al. 2024). 272 
3.2 STHM-SAR improves above-normal streamflow predictions 273 

Next we look more closely at how the STHM-SAR enhances NWM predictions in ANF 274 
events (as illustrated in Figure 4). The results show 81.6% of the sites exhibit improved skill 275 
compared to the NWM alone. Most of these improved sites were concentrated in HUC2 regions 276 
(01-06, 15-18 as shown in Figure 2). The most substantial enhancements were observed in the 277 
northwest regions, where over 85% of the sites exhibited NSE values greater then 0.67. In 278 
comparison with the findings of the gage aggregated STHM, the STHM-SAR demonstrated 279 
notable improvements, particularly in coastal sites, showcasing an average NSE improvement of 280 
0.15. This highlights the benefits of refining predictions with RS inputs to better predict high-281 
flow events. The accuracy of streamflow forecasting provides the capability for continuous 282 
adjustments and updates to the forecast as new and relevant data becomes available (for example 283 
through the Next Generation Water Resource Modeling Framework (Odgen, 2021, 284 
https://www.weather.gov/media/owp/oh/docs/2021-OWP-NWM-NextGen-Framework.pdf ). 285 
This adaptability is crucial for maintaining the forecast's precision and relevance. 286 

https://www.weather.gov/media/owp/oh/docs/2021-OWP-NWM-NextGen-Framework.pdf
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 287 
Figure 4 (a) Spatial distribution of NWM (RS) model predicted high streamflow (>67%) 288 

multiple years average performance (as in NSE) for HCDN basins during calibration 289 

period (2010-2018); (b) NWM(RS) model predicted high streamflow (>67%) improvement 290 

(as in NSE performance) for each site compared with NWM (original) streamflow during 291 

calibration period (2010-2018). 292 

3.3 STHM-SAR predictors’ contribution  293 

The STHM-SAR model, incorporating all predictors from Fang et al., (2023) along with 294 
the 3-day average streamflow estimated from GFDS-SAR estimates, resulted in improvements in 295 
86% of sites from natural basins, and 76% of sites from coastal basins. To better understand the 296 
impact of individual predictors, each predictor was assessed using the relative importance 297 
estimator proposed by Grömping (2007) (Figure 5).  The NWM streamflow alone accounts for 298 
more ~43% of the variance in observed above-normal streamflow across the CONUS proving 299 
the value of having an operational, process-based model to draw on. Critically, this suggests that 300 
the NWM prediction is doing well at capturing variation in flow regimes but not magnitudes. 301 
SAR-derived flow contributes significantly as well, explaining 27% of the corresponding 302 
variance. The remaining predictors contribute between 5-12% of the observed streamflow 303 
variance, as depicted in Figure 5.  304 
 305 
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 306 
Figure 5. (a) Standardized model coefficients of selected predictor variables; (b) Overall 307 

average relative importance of selected predictor variables, expressed as % variance 308 

explained by the hierarchical model for HCDN basins.  309 

From Figure 5a, it is evident that, apart from the coefficients associated with SAR-flow 310 
and NWM, the coefficients of other predictors were predominantly negative. This indicates an 311 
inverse relationship between these predictors and the observed streamflow. According to Figure 312 
5b, the impact of individual hydroclimatic predictors on regionalization performance is relatively 313 
limited. In contrast, combinations of these predictors play a more substantial role, especially 314 
during specific periods. Notably, the combination of PET and aridity index together explained 315 
over 10% of the streamflow variance. This underscores the importance of considering specific 316 
combinations of hydroclimatic information, as they can substantially enhance the understanding 317 
and prediction of streamflow patterns across CONUS. 318 

 In Figure 5b, it is evident that NWM reanalysis streamflow predominantly 319 
contributes in explaining the observed streamflow variance particularly accounting for 54% 320 
overall on average in warmer seasons. Notably, SAR-flow provides better antecedent conditions, 321 
particularly when NWM experiences below-average performance in the summer and fall months. 322 
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This demonstrates the synergy between these predictors, where SAR-flow fills in the gaps and 323 
enhances predictive accuracy, ensuring a more reliable estimation. Particularly, during the 324 
months of June and September, SAR-flow becomes especially influential, explaining over 35% 325 
of the streamflow variance.  326 

4. Discussion 327 

The proposed STHM-SAR framework used the same model structure as STHM (Fang et 328 
al. 2024), while showing more local accuracy through improvements in antecedent conditions by 329 
replacing the previous subbasin averaged 3-day streamflow with SAR-derived flow. The results 330 
of our study confirm the effectiveness of the proposed framework in GAGES-II basins. The 331 
spatial calibration of the modeled streamflow, illustrated in Figure 4, indicates that a well-tuned 332 
model can improve predictive accuracy. One of the notable strengths of the suggested approach 333 
lies in its simplicity; it does not require complex models or additional predictors to enhance 334 
streamflow predictions and relies on open data and products. It leverages the inherent dynamics 335 
present in remote sensing data to effectively improve antecedent conditions as illustrated in 336 
Figure 5. This approach not only simplifies the post processing modeling process but also 337 
demonstrates the potential of utilizing existing data creatively to address challenges in 338 
hydrological modeling, especially in regions lacking comprehensive streamflow measurements 339 
(Figure 3). 340 

The modeled above-normal streamflow, as depicted in Figure 4, aligns closely with the 341 
magnitude of the observed streamflow, surpassing the performance of STHM flow from Fang et 342 
al. 2023. This alignment underscores the utility of the proposed SAR-derived flow in better 343 
representing all locations across a diverse domain. This achievement is attributed to the 344 
integration of the correlation between the M/C ratio and observed flow from neighboring 345 
locations, accomplished through the PCR method. By leveraging these correlations, the SAR-346 
derived flow not only captures the high streamflow patterns more effectively but demonstrates its 347 
capability in bridging the gap in data-scarce regions.  348 

 349 

Compared with STHM (Fang et al. 2024), the substantial improvement in the STHM-350 
SAR performance stems from the addition of SAR-derived data. Satellite products provide 351 
valuable information about ANF conditions that can complement or substitute in-situ readings. 352 
The increasing availability of high-resolution Earth Observation data, offered freely by numerous 353 
space agencies, opens avenues for enhancing above-normal flow forecasting and reanalysis 354 
based on Earth Observation. 355 

5. Conclusion 356 

The study demonstrates the effectiveness of integrating Synthetic Aperture Radar (SAR) 357 
data with the National Water Model (NWM) to enhance predictions of above-normal flow 358 
(ANF) in ungauged basins. The Spatial-temporal Hierarchical model for ANF prediction using 359 
SAR data (STHM-SAR) shows a significant improvement of 54% on average compared to 360 
previous STHM results (Fang et al., 2024), particularly benefiting coastal regions. The 361 
evaluation results indicate promising performance, with SAR data contributing substantially to 362 
explaining variance by 27% on average. 363 
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The correlation analysis between SAR-derived and observed streamflow highlights the 364 
reliability of SAR-derived streamflow as a proxy for flow prediction, especially during high-flow 365 
events. The STHM-SAR model, incorporating SAR-derived streamflow, outperforms the NWM 366 
alone, with 81.6% of sites showing improved skill. The spatial distribution of model-predicted 367 
high streamflow demonstrates significant enhancements, particularly in basins lacking gauged 368 
locations. 369 

The contribution analysis of predictors in the STHM-SAR model emphasizes the 370 
importance of NWM reanalysis streamflow and SAR-derived flow, which together explain a 371 
significant portion of observed streamflow variance. The study underscores the value of 372 
considering specific hydroclimatic factors and leveraging remote sensing data to enhance flood 373 
prediction capabilities, especially in data-scarce regions and ungauged basins. Overall, the 374 
findings of this study highlight the potential of remote sensing data integration and suggest 375 
avenues for further research and improvements in flood prediction modeling, contributing to 376 
more effective risk management and response strategies. 377 
 378 

 379 
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