Quantifying uncertainties in soil hydraulic parameters for dual-porosity models using a null-space Monte Carlo method - implications for groundwater recharge estimation
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CORE IDEAS
· Uncertainty in DPM parameters and groundwater recharge prediction was analyzed using the NSMC method.
· NSMC method is suitable for complex subsurface flow and transport models such as the dual-porosity model.
· Recharge estimated by conventional tritium peak method with piston flow model was overestimated.
· Using a single set of parameter derived through inverse modeling could result in biased recharge prediction.














ABSTRACT 
Groundwater recharge can be significantly influenced by the macropores, especially in fine structured soils. However, models considering macropores require a number of additional parameters which are difficult to determine by conventional methods. Thus, inverse modeling is often applied to estimate soil hydraulic and solute transport properties of the unsaturated zone. In this study, an efficient method for recharge prediction and parameter uncertainty quantification by coupling a dual-porosity model (DPM) to the null-space Monte Carlo (NSMC) algorithm was developed, and the impact of uncertainty in the key model parameters on groundwater recharge were analyzed. Recharge estimates were further compared to the one by tritium peak method. Results showed that the estimated recharge was much smaller than the one estimated from the tritium peak method, indicating the possible overestimation of recharge by conventional tritium peak method with piston flow model. Our study further demonstrated that the conventional practice of deriving single set of parameters through inverse modeling could result in biased recharge prediction, and that for the complex subsurface flow and transport models such as the DPM, NSMC method can provide a practical solution for predictive uncertainty analysis.








ABBREVIATIONS
DPM: Dual-porosity model
DPerM: Dual-permeability model
NSMC: Null-Space Monte Carlo



















1. INTRODUCTION
Estimating groundwater recharge is important to sustainably manage water resources and to assess their vulnerability to pollution (Scanlon et al., 2002). A variety of methods to estimate groundwater recharge has been developed, including the usage of water budgets, tracers, geophysics, and numerical simulation models. Nevertheless, the accurate quantification of groundwater recharge remains a challenge (Scanlon et al., 2002; Walker et al., 2019). Because of the inherent uncertainty associated with any of these methods, more than one method should be applied to estimate the recharge (Lerner et al., 1990; Walker et al., 2019). Among the tracer methods, tritium has been traditionally used for this purpose (Jimenez-Martinez et al., 2009; Wang et al., 2008, among others). Numerical flow and tracer transport models in the unsaturated zone are other important tools to estimate potential groundwater recharge below the root zone (hereafter, referred to as recharge). For example, one-dimensional water flow models in unsaturated zone by solving the Richards equation are widely used to estimate recharge (e.g., Jimenez-Martinez et al., 2009; Dafny & Simunek, 2016; Turkeltaub et al., 2015; Kurtzman & Scanlon, 2011). 
However, preferential flow through macropores has significant  influence on the fluxes in soil. Dual-porosity models (DPMs) handle water and solute transport through permeable macropores together with water flow and solute transport between macropores and less permeable intra‐aggregate pore regions (Simunek et al., 2018; Haws et al., 2005; Kohne et al., 2004; Freiberger et al., 2018; among others). Both the dual-permeability models (DPerMs) and DPMs can represent the equilibrium, nonequilibrium, and water exchange processes between the macropores and the intra‐aggregate pore regions. DPerMs conceptualize the matrix additionally as a flow pathway in addition to the macropores, thus requiring additional model parameters compared with the DPMs. To account for spatial heterogeneity and at the same time to reduce the complexity in solving the inverse problem, the DPMs have been chosen to model the flow and transport processes in the unsaturated zone.
DPMs may perform better considering the heterogeneous properties of the porous media, while the major disadvantage is the increased number of model parameters, some of which cannot be measured directly. The model parameters are often estimated by inverse modeling where the objective function that calculates the misfit between the measurements and model results is minimized, and a single set of calibrated parameters is obtained. Calibrating models with large number of parameters typically leads to non-unique solutions, i.e., many different feasible parameter sets can explain the observations satisfactorily well (Herckenrath et al., 2011; Moore & Doherty, 2005; Carrera & Neuman, 1986). Non-uniqueness and parameter non-identifiability can be significant, especially when the parameters are interdependent (Simunek & Hopmans, 2002), and/or the information content of the observations used for calibration is limited. Because predictions highly rely on the parameters applied, non-uniqueness of the model parameters can result in large uncertainties in the predictions. 
Even though there are a variety of different approaches available to handle uncertainties 
(Keating et al., 2010; Pappenberger & Beven, 2006), uncertainty analysis is not undertaken frequently. In the field of estimating groundwater recharge using numerical models, comprehensive uncertainty analysis on the hydraulic parameters and predicted recharge is scarce. To explore the uncertainty of a model, a Monte Carlo type analysis is typically used, however, these methods are computationally intensive (Tonkin and Doherty, 2009). The null-space Monte Carlo algorithm (NSMC), which uses the knowledge of the calibration null space to reduce the computational burden, is an efficient alternative to the Monte Carlo approach (e.g., Doherty, 2018b). 
The specific objectives of this study are to characterize the uncertainty in groundwater recharge estimates from a computer model HYDRUS-1D (Simunek et al., 2018) that simulates water and solute movement in variably saturated porous media considering dual-porosity representation using the NSMC method, and to analyze the effect of uncertainty in the model parameters on the estimated recharge. 
In the present study, we chose a study site in Punjab, the Indo-Gangetic alluvial plains of India, where its high water demand has resulted in a significant drawdown of groundwater table in the alluvium aquifer (Wada et al., 2012; Central Ground Water Board, 2016). To estimate natural recharge, a grass-covered site far away from any kind of agricultural activity was chosen as a study site. Time series of soil moisture and tritium profile data were used to estimate soil hydraulic parameters and solute transport parameters. Non-linear uncertainty analyses in parameter estimation and recharge prediction were performed using the NSMC method proposed by Tonkin and Doherty (2009). 

2. DATA AND METHODS
2.1.	Site description and data collection
The study area (75° 48' 39.6'', 30° 54' 43.2''), inside the Punjab Agricultural University (PAU) campus, Ludhiana district, Punjab, India, lies in the Indo-Gangetic alluvium at an elevation of 245 m above the mean sea level (Figure 1). The subsurface soil is composed of sand, silt, clay, and kankar in various proportions (Central Ground Water Board, 2016). Ludhiana district can be classified as a tropical steppe. The average annual rainfall for the period between 1971 and 2010 was 74.5 cm (Rangarajan et al., 2012). 
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Figure 1. Location map of the study area (left), and the schematic diagram showing the soil profile and model domain (right). The soil profile data are from Rangarajan et al. (2012). Also shown is the tritium injection interval within the soil layer 2.

An observation borehole (BW1, Figure 1) was drilled in the PAU campus to a depth of 53.0 m over a non-agricultural/rain fed site to explore subsurface soil lithology, and to monitor groundwater levels. An automatic rain gauge was installed inside the PAU campus to monitor daily rainfall during the study period of 2008 to 2009. Daily meteorological data for the site were available from an automatic weather station in the PAU campus. Water levels in the observation well were monitored continuously using an automatic water level logger, which showed that water level was much lower than the studied 700 cm profile throughout the year. Soil moisture was measured using a neutron moisture probe up to a depth of 700 cm with depth intervals of 20 cm for the period of 2008 to 2009 at specified times.

2.2. Moisture flux measurements using tritium
Tritium was injected into the unsaturated soil at  day 153 of the year 2008 (DOY) (DOY 1 = 1 January 2008) (Rangarajan & Athavale, 2000). Near the observation well, 3.0 ml of tritiated water, having a specific activity of 25 µC/ml, was injected into five holes of which diameters were about 1.25 cm (one at the center and four symmetrically placed with a radius of 5 cm).  Tritium was tagged at a depth of 90 cm to avoid the root zone. The holes were then filled with local soil. After the cessation of monsoon, i.e., 342nd DOY, soil core samples were collected in 20 cm sections using a hand auger up to maximum depth of 700 cm. The samples were analyzed in the laboratory for moisture content by gravimetric method, and for tritium concentration using Liquid Scintillation Counter (Rangarajan & Athavale, 2000).

 2.3.	Numerical model 
2.3.2.	Description of DPM
HYDRUS-1D (Simunek et al., 2018) was used to simulate one-dimensional water flow and solute movement in an unsaturated dual-porosity porous medium. Water flow using DPM which partitions total water content into mobile (inter-aggregate pores, θm) and immobile (intra-aggregate pores, θim) water, is represented by the equations (1) to (3) (Simunek et al., 2003) (parameters are described in the Appendix): 
					(1)
								(2)
								(3)
In HYDRUS 1D, the mobile porosity θm and the immobile porosity θim are characterized by their residual (θrm and θrim, respectively) and saturated water contents (θsm and θsim, respectively). The sink term for the mobile zone (Sm) as a function of h by plant water uptake is described as:
							(4)
where Sp is the potential water uptake rate [T-1] and φ(h) is the dimensionless water stress response function (0 ≤ φ ≤ 1). The term φ(h) is expressed as (Feddes et al., 1978): 
				(5)
In this study, the threshold parameters for root water uptake, h1, h2, h3, and h4 were selected as those for pasture (Wessling, 1991). 
The water transfer rate (Гw) was calculated under the assumption that Гw is proportional to the difference in the effective saturation between the two domains (Simunek et al., 2018). Then, equation (2) can be rewritten as: 
						(6)
where Sem, and Seim are defined as:
							(7)
							(8)
The water retention properties of the mobile and immobile domain are assumed to be identical, and the van Genuchten–Mualem relationships (Mualem, 1976; van Genuchten, 1980) were applied for both soil water retention and hydraulic conductivity. These are written as: 
						(9)
						(10)
				(11)
				(12)
Nonreactive solute transport processes in DPM are described based on the advection-dispersion and mass balance equations, and are written as (Simunek et al., 2018):
				(13)	
			(14)								(15)

2.3.2.	Initial and boundary conditions
The simulated domain was a vertical profile with 700 cm thickness where the soil profile was divided into three layers based on the grain size distribution (Figure 1); spatial variability within the same soil layer is not considered. Discretization of the soil profile was also indicated in Figure 1, with finer mesh near the surface. In this study, the maximum time step was restricted to 0.5 day with an initial time step of 0.001 day, and an adaptive time step scheme was applied (Simunek et al., 2018). 
The initial values of soil hydraulic and solute transport parameters are listed in Table 1. Initial values for the soil hydraulic parameters were derived from soil texture and bulk density using the Rosetta program, a pedo transfer function (Schaap et al., 2001) embedded in HYDRUS 1D. A spin-up simulation for a one-year period was conducted using the daily precipitation and potential evapotranspiration data to prepare initial conditions for the transient simulations. Initial water content for the spin-up simulation was set to be 0.12, 0.25 and 0.1 for soil layers 1, 2 and 3, respectively. 

Table 1. Initial guesses, ranges, and optimized values of the parameters for the dual porosity model.
	Parameter
	
	θm
	α
	n
	Ks
	θrim
	θsim
	ω
	αs
	λ

	
	
	(-)
	(cm-1)
	(-)
	(cm/d)
	(-)
	(-)
	(d-1)
	(d-1)
	(cm)

	Layer 1
	Initial
	0.2
	0.02
	1.52
	1.46
	0.01
	0.1
	0.8
	0.001
	2.0

	
	Min.
	0.09
	0.01
	1.2
	0.5
	0.001
	0.01
	0.01
	-
	-

	
	Max.
	0.4
	0.2
	3.0
	10
	0.2
	0.4
	100
	-
	-

	
	Optimized
	0.095
	0.013
	1.32
	0.84
	0.017
	0.16
	0.03
	0.001*
	2.0*

	Layer 2
	Initial
	0.3
	0.01
	1.4
	0.5
	0.01
	0.1
	0.8
	0.001
	2.0

	
	Min.
	0.09
	0.005
	1.2
	0.05
	0.001
	0.01
	0.01
	1e-5
	1

	
	Max.
	0.45
	0.2
	3.0
	10
	0.2
	0.3
	100
	10
	20

	
	Optimized
	0.135
	0.006
	2.07
	0.87
	0.008
	0.18
	0.07
	2.1e-5
	7.1

	Tritium Injection Layer
	Initial
	0.385
	0.01
	1.4
	0.5
	0.0001
	0.001
	100
	0.001
	2.0

	
	Min.
	-
	0.005
	1.2
	0.05
	-
	-
	-
	1e-5
	1

	
	Max.
	-
	0.2
	3.0
	10
	-
	-
	-
	10
	20

	
	Optimized
	0.385*
	0.006
	2.07
	0.87
	0.0001*
	0.001*
	100*
	2.1e-5
	2.3

	Layer 3
	Initial
	0.2
	0.14
	2.68
	500.0
	0.01
	0.1
	0.8
	0.001
	2.0

	
	Min.
	0.05
	0.01
	1.2
	300
	0.001
	0.01
	0.01
	-
	-

	
	Max.
	0.4
	0.2
	4.0
	1000
	0.2
	0.45
	100
	-
	-

	
	Optimized
	0.09
	0.16
	2.43
	300.5
	0.1
	0.31
	1.7
	0.001*
	2.0*


*  Parameters are fixed, as explained in Sections 2.3.2 and 2.3.3.

Initially, tritium was injected at a depth of 90 cm (Figure 1). Assuming complete saturation for the tritium injection layer as observed in the field, a small layer (tritium injection interval) was created within the soil layer 2 (Figure 1). This layer was set to be fully saturated at the time of tritium injection, and the saturated water content of this layer was set to be constant (Table 1) to mimic the field condition and to keep the injected initial tritium mass constant before all the transient simulations began. 
Potential evapotranspiration was calculated using the weather station data in the study site by the Penman-Monteith method. The surface boundary condition was set as a system-dependent boundary condition, which cannot be defined a priori. The surface boundary was a flux type boundary if the pressure head was within the user-specified maximum and minimum pressure heads. These were set to be 0 cm and -15000 cm, respectively. Once these pressure head conditions were reached, the soil surface boundary condition changed from a prescribed flux to a prescribed head boundary condition, and the actual surface flux was calculated. The bottom boundary was set as a free drainage, i.e., vertical hydraulic gradient to be unity (Lu et al., 2011; Jimenez-Martinez et al., 2009), and discharge calculated at the bottom node was considered as recharge. Considering that the water table was far below from the model domain of interest, i.e., fluctuating between 17.8 m to 20.3 m from the surface, free drainage boundary was rendered reasonable. For tritium transport, the upper boundary was set to be zero concentration, and a zero gradient boundary condition allowing free outflow of tritium was chosen for the bottom. 

2.3.3.	Parameter estimation by coupling HYDRUS 1D and PEST
In the inversion procedure, all model parameters except l and θrm were subjected to the estimation. l was insensitive in many numerical experiments (Nakhaei & Simunek, 2014, Turkeltaub et al., 2015), hence, in this study, it was set to be 0.5 (Mualem, 1976). The parameter θrm was kept constant at zero, implying that residual water is present only in the immobile domain. Parameters λ and αs were optimized only for layer 2. These simplifications resulted in the total number of model parameters to be calibrated to be 23. For the tritium injection interval, θrim and θsim were set to be small values whereas a large value of ω was considered (Table 1) in order to minimize water transfer between mobile and immobile zone, and to keep all tritium mass in the mobile zone. Note that θrim, θsim, and ω values of the tritium injection layer were fixed values.
Concerning the parameter ranges, the values of λ were allowed to vary in a wider range to account for heterogeneity, and to sustain numerical stability in the model calculations. Molecular diffusion was not considered as hydrodynamic dispersion was supposed to dominate the total dispersion (Jimenez-Martinez et al., 2012). Saturated hydraulic conductivity (Ks) was constrained to be within a realistic range (Table 1) based on the grain size characteristics. Other parameter ranges were also considered based on the grain size characteristics (Figure 1 and Table 1). Rather wide ranges of values were permitted for the immobile zone parameters θrim, θsim, ω, and αs (Table 1), as values for these parameters were unavailable or inconclusive (Haws et al., 2005), and thus, to reflect the poor prior knowledge. 
We used PEST (Doherty, 2018a) in conjunction with HYDRUS 1D to estimate the model parameters. A dataset consisting of measured soil water contents at different time periods and tritium profile was used to calibrate the model. Parameter estimation was performed by minimizing the error between observed and calculated water contents and tritium profile data. Equal weight was given to both the water contents and tritium profiles. 

2.3.4.	Uncertainty analysis of hydraulic and transport parameters and model predictions
The procedures for non-linear uncertainty analysis using the NSMC method were presented in Figure 2. The model was first calibrated by using the singular value decomposition technique to reduce the dimensionality of the problem. Tikhonov regularization was applied to achieve parameter uniqueness by imposing a set of constraints on parameter values or on the relationships among them (Doherty, 2018a), in this case by setting the initial values as the preferred values. The model was then recalibrated by considering the calibrated parameters as the initial values. In these simulations, weights for both observation groups (moisture contents and tritium concentrations) were adjusted using a utility program of PEST (PWTADJ2) (Doherty, 2018a) to ensure that both observation groups contributed significantly to the objective function. Next, a thousand sets of parameters, centered around the initial values and following a normal distribution, were generated by random distribution within the parameter ranges. In the next step, the randomly generated parameters were perturbed by the following procedure: at first, the parameter space in PEST was decomposed into two perpendicular sub-spaces (solution and null-space). Null-space projections of the generated random parameter fields were undertaken, and the differences between these parameter sets and the calibrated parameters were projected into the null-space. These projected differences were added to the calibrated parameters and a new thousand sets of parameters were generated. Here, the solution space is the representation of parameter combinations that are estimable based on the current calibration field, and the null-space spans the other part, which is not in the solution space, and the parameter combinations are not estimable. In the case the model is linear, each of these parameter sets should calibrate the model to the same accuracy as that of the calibrated model. However, as the model is non-linear, the model was recalibrated with these parameter sets using the truncated singular value decomposition regularization method and with the constraint on the objective function below a certain specified value representing measurement or structural noise (Tonkin & Doherty, 2009; Herckenrath et al., 2011). With this method, a small number of linear combinations of the base parameters, defined as super-parameters spanning the whole calibration solution space, were estimated, and it resulted in saving much computational cost (Tonkin & Doherty, 2009). 
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Figure 2. Outline of non-linear uncertainty analysis using HYDRUS 1D and PEST. See text for details.
The calibrated parameters and the bottom flux calculated with these new sets of parameters were used for further statistical analyses. In this study, different parameters were independently assumed in the prior statistics, and the posterior correlations between these parameters were assessed. 

3. RESULTS AND DISCUSSION
3.1 Soil moisture dynamics simulation and recharge prediction
The simulation period considered in this study was from 1st June 2008 to 31st March 2009 (calendar days 152 to 456). During the months of June, July, and August, several moderate to high intensity rainfall events were observed (Figure 3). Total rainfall during the study period was 86.7 cm and the calculated total potential evapotranspiration was 89.8 cm (Figure 3). The observed soil moisture profiles at different time periods showed increased water contents in layer 2, and sudden decrease of water contents at a depth of 120 cm (Figure 4). The tritium profile (Figure 5), on the other hand, peaked at a depth of 120 cm, suggesting a 30 cm displacement of the tritium front (tritium was injected at a depth of 90 cm). This allowed the calculation of the moisture influx at 342th calendar day following the piston flow model, which amounts to 5.1 cm (Rangarajan et al., 2012). 
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Figure 3. Observed daily rainfall and calculated daily potential evapotranspiration for the study area.
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Figure 4. Comparison between measured (filled circles) and simulated (solid lines) soil moisture contents using the optimized parameters shown in Table 1. 
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Figure 5. Normalized tritium concentration profile at 342th calendar day. Comparison between observed (filled circles) and simulated (solid lines) concentrations using the optimized parameters shown in Table 1. 

Evaluation of the calibrated model parameters and predicted recharge
 Simulation results by using the optimized parameters showed that both soil moisture content and tritium profiles of the multi-layered soil were well reproduced by the model (Figures 4 and 5). Even the change in moisture contents at the interface between different soil layers and the falling limb of the tritium profile were successfully captured by the model. In addition to better reproducibility of the main features of the soil moisture content and tritium profiles, it is also important that the calibrated parameters reasonably represent the physical processes in the porous media. As per Table 1, the estimated parameters characterize soil layer 2 to be a low hydraulic conductivity layer with a much smaller α value than those of the soil layers 1 and 3, and soil layer 3 to be high hydraulic conductivity layer with larger α value indicating sandy nature. Classifying the soil layers as silt loams for soil layers 1 and 2, and sand for soil layer 3 based on grain size analysis (Figure 1), α, n and Ks values of soil layers 1 and 3 are within the range of values for those as reported in Carsel and Parrish (1988), whereas those for layer 2, estimated α was lower than reported, and n was higher by a factor of 1.5. Smaller estimated θm values of the layers restricted water srtorage in the macropores, thus, rapid drainage. On the other hand, larger θsim values compared with θm values and larger water exchange rates in all the layers allowed water exchange to the flow domain resulting in slow and delayed recharge. The larger calibrated θsim value of layer 3 is unexpected considering sandy nature of this layer, however, larger water mass transfer rate was aslo estimated for this layer. 
The calculated cumulative bottom flux (i.e., drainage) was 2.68 cm at 342th calendar day. Figure 6a showed the daily values of calculated water fluxes across the model surface, and the cumulative values are shown in Figure 6b. Cumulative evaporation amounted to 30 cm (34.5% of total rainfall), and cumulative runoff amounted to 49 cm (55% of total rainfall) during the simulation period. Thus, in the study area, most of the intensive rainfall resulted in significant surface runoff (Figures 6(a) and 6(b)) because of the low hydraulic conductivity of the upper part of the soil. Daily values of surface flux, which is positive for evaporation and negative for infiltration, were lower than potential surface fluxes for most of the time period, indicating insufficient soil moisture, i.e., high water stress during the simulation period. The cumulative surface flux was negative during the simulation period, indicating an overall downward flux. Even so, the high water holding capacity of, and low water supply from the silt loam layer, i.e., soil layer 2, resulted in small and delayed recharge.  
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Figure 6. (a) Temporal changes of daily precipitation, calculated surface runoff, and calculated surface flux (positive for evaporation and negative for infiltration), and (b) Cumulative calculated surface and bottom boundary fluxes, with optimized parameters shown in Table 1.

3.2.	Model parameters and Non-linear uncertainty analysis
3.2.1.	Properties of the soil layers
The post-calibration probability distribution functions of the parameters obtained by using the NSMC method are shown in Figure 7. The statistical characteristics of the parameters are also summarized in Table 2. The probability distributions of most of the parameters did not follow a normal distribution (Figure 7 and Table 2), hence, higher order moments such as skewness (characterizing asymmetry of the distribution) and kurtosis (characterizing peakedness of the distribution) were necessary to characterize the shape of the distributions. 

Table 2. Summary of posterior distributions for the model parameters calculated with the null-space Monte Carlo procedure.
		Parameters
	θm
	α
	n
	Ks
	θrim
	θsim
	ω
	αs
	λ

	
	(-)
	(cm-1)
	(-)
	(cm/d)
	(-)
	(-)
	(d-1)
	(d-1)
	(cm)

	Layer 1
	Min.
	0.09
	0.01
	1.2
	1.00
	0.001
	0.01
	0.01
	-
	-

	
	Max.
	0.18
	0.02
	2.68
	6.64
	0.19
	0.4
	100
	-
	-

	
	Median
	0.14
	0.01
	1.2
	1.6
	0.01
	0.04
	0.97
	-
	-

	
	St. Dev.
	0.02
	0.001
	0.1
	0.42
	0.01
	0.04
	16.2
	-
	-

	
	Skewness
	-0.50
	1.60
	6.70
	3.78
	5.32
	2.43
	4.04
	-
	-

	
	Kurtosis
	-0.86
	4.9
	68.4
	30.79
	48.8
	8.7
	17.5
	-
	-

	Layer 2
	Min.
	0.09
	0.005
	1.20
	0.07
	0.002
	0.03
	0.01
	1e-5
	1.0

	
	Max.
	0.33
	0.02
	3.00
	2.03
	0.20
	0.21
	100.0
	0.03
	20.0

	
	Median
	0.16
	0.01
	1.85
	0.25
	0.03
	0.12
	2.35
	1e-4
	5.6

	
	St. Dev.
	0.04
	0.002
	0.37
	0.14
	0.04
	0.03
	22.68
	0.001
	3.55

	
	Skewness
	0.03
	1.78
	1.18
	3.47
	1.67
	0.10
	2.93
	21.4
	0.54

	
	Kurtosis
	0.23
	3.46
	1.47
	32.0
	2.61
	-0.20
	8.0 
	556.5
	0.39

	Layer 3
	Min.
	0.07
	0.09
	1.61
	300.0
	0.02
	0.22
	0.01
	-
	-

	
	Max.
	0.4
	0.2
	3.12
	1000.0
	0.13
	0.45
	100.0
	-
	-

	
	Median
	0.13
	0.2
	2.1
	357.9
	0.1
	0.37
	1.73
	-
	-

	
	St. Dev.
	0.03
	0.01
	0.19
	103.6
	0.02
	0.04
	18.8
	-
	-

	
	Skewness
	3.4
	-2.81
	1.21
	1.73
	-2.03
	-0.02
	3.60
	-
	

	
	Kurtosis
	23.4
	14.1
	3.17
	3.88
	3.28
	0.20
	13.5
	-
	-
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Figure 7.  Posterior probability distribution of model parameters as calculated with null-space Monte Carlo method. The lines in each of the figures represent the value obtained from the inversion procedure (Table 1). The inset figures for α were shown to better identify the posterior distributions. 
Histograms of the soil hydraulic parameters indicated the characteristics of the properties of each layer. Ks distributions were centered on 1.5 cm/d and 0.2 cm/d, and those of α were centered on 0.01 cm-1 and 0.006 cm-1, for layers 1 and 2, respectively, depicting the characteristics of a much lower hydraulic conductivity layer 2 than those of layer 1. Classifying soil layer 2 as silt loam as per grainsize distribution, α for layer 2, as estimated by the ROSETTA program, compares well to the values centered at 0.006 cm-1, whereas Ks values centered at 0.2 cm/d were underestimated. As for layer 3, Ks distribution was centered on 300 cm/d, α on 0.2 cm-1 and n on 2.04, all characterizing a sandy material for this layer. Soil hydraulic properties of the soil layers are also easily understandable from Figure 8 (soil moisture retention curves and hydraulic conductivity curves, shown in the pressure head ranges of 0.1<|h|<1000 cm). For example, for layers 1 and 2, a consistent slope in the retention curve implying gradual release of water with an increase in tension could be observed, whereas layer 3 was characterized by a sudden steepening slope indicating a distinct air entry value with poor water holding capacity and faster release of water.
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Figure 8.  Soil moisture retention curves (a-c) and hydraulic conductivity curves (d-f) predicted with parameters presented in Figure 7 for soil layers 1, 2 and 3, respectively. 

The mobile porosity (θm) of layer 1 was larger than the immobile porosity (θim), whereas for layers 2 and 3, the immobile porosities showed similar values with (layer 2) or larger than (layer 3) the mobile porosities (Figure 7 and Table 2). The water transfer parameter (ω), with a peak at 1.5 d-1 for all the layers, and a median of 0.97 d-1 for layer 1, 2.35 d-1 for layer 2, and 1.73 d-1 for layer 3, respectively (Figure 7 and Table 2), were orders of magnitude larger than those optimized through inversion procedure (Tables 1 and 2). It should be noted that larger ω implies faster equilibration of the water contents between mobile and immobile zones. A wide range of ω was reported, for example, ω of 0.24 d-1 was used by Freiberger et al. (2018) for a silt loam soil, and ω ranged from 0.4 d-1 to 5.6 d-1, depending on the initial soil moisture condition, for a loamy soil (Kohne et al., 2004). The larger values of ω obtained with the NSMC procedure in this study may indicate relatively faster equilibrium processes between the mobile and immobile zones. 
The transport parameter αs for layer 2 was estimated to be 2.1e-5 d-1 by inversion (Table 1) and a peak on 1.5 e-5 d-1 (Figure 7) was obtained with the NSMC procedure, while λ had a value of 7.1 cm by inversion (Table 1) and two peaks on 0.9 cm and 6.8 cm (Figure 7) with the NSMC procedure. Values of αs are traditionally believed to range between 2.4 and 120 d−1 (Radcliffe & Simunek, 2010). Kohne et al. (2004) reported αs in the range of 2.0 d-1 to 4.6 d-1, depending on the initial soil moisture condition, for a loamy soil, and αs of 4.8 d-1 for silty loam soil were reported by Freiberger et al. (2018). On the other hand, much lower ranges of αs, 4.2e-4 d-1 to 0.16 d-1 for loam soil (Gonzalez-Delgado & Shukla, 2014), and 0.01 d-1 to 0.1 d-1 for weathered limestones (Alletto et al., 2006), were also reported. Smaller values for αs resulted in good match to the observed tritium profile, especially the tailing, while larger αs values by an order magnitude showed symmetric tritium profiles. 

3.2.2.	Characteristics of the parameter probability distribution functions
Some parameters were rather well constrained, for example, α and Ks of layers 1 and 2, with both having large reduction in their posterior ranges as compared to those of the prior ranges (prior and posterior ranges were 0.01 cm-1 to 2.0 cm-1, and 0.01 cm-1 to 0.02 cm-1, respectively, and those of Ks were 0.05 cm/d to 10.0 cm/d, and 1.0 cm/d to 6.6 cm/d, respectively (Tables 1 and 2)). Significant reduction in parameter ranges between prior and posterior distributions indicated high sensitivity of these parameters. Some parameters, instead, occupied almost all the parameter space set by the prior, e.g., n, θrim, and λ of layer 2 (Tables 1 and 2), indicating that these parameters were not well constrained even though a reasonable range of parameters was considered. It should be noted that, though the posteriors of the parameters n and θrim of layer 1, and α of layer 3 occupied close to the full range of the prior parameter and the posteriors were developed near the boundaries of the parameter space, the distributions were characterized by high kurtosis (Table 2) with sharp peaks, thus were well constrained. θsm exhibited a wide range for all the layers addressing the variability of the parameter. To be also noted here is that, during our simulation period, layer 3 was not completely saturated to accurately estimate θsm. 
Parameters that had narrow posterior ranges displayed smaller standard deviation (e.g., α and Ks of layers 1 and 2), however, as most of the parameter distributions are non-Gaussian, skewness and kurtosis of the distributions were also needed to be taken into account: in general, the distributions showed skewed distribution; negatively skewed for θsm of layer 1, α, θrim, and θsim of layer 3, suggesting a long left tail for these parameters, and positively skewed for all the others. Most of the parameters with long tail were also characterized by high kurtosis values.
Considering the soil moisture retention curves and unsaturated hydraulic conductivity curves (Figure 8), a wider spread of posterior realizations of retention curves in accordance with the results of parameter distributions presented in Figure 7 was observed, especially for layers 2 and 3, which could be related to larger input uncertainty. 

Table 3. Correlation (r) matrix for the parameters presented in Figure 7*.
	Correlation
 coefficients
	θm
	α
	n
	Ks
	θrim
	θsim
	ω

	Layer 1
	
	
	
	
	
	
	
	

	
	θm
	1.00
	
	
	
	
	
	 

	
	α
	-0.11
	1.00
	
	
	
	
	

	
	n
	-0.39
	0.40
	1.00
	
	
	
	

	
	Ks
	-0.38
	0.22
	0.29
	1.00
	
	
	

	
	θrim
	-0.22
	0.01
	0.10
	0.03
	1.00
	
	

	
	θsim
	-0.82
	0.34
	0.66
	0.47
	0.12
	1.00
	

	
	ω
	0.06
	0.07
	-0.01
	0.11
	-0.01
	-0.06
	1.00

	Layer 2
	
	
	
	
	
	
	
	

	
	θm
	1.00
	
	
	
	
	
	

	
	α
	0.17
	1.00
	
	
	
	
	

	
	n
	-0.64
	0.18
	1.00
	
	
	
	

	
	Ks
	0.34
	0.69
	-0.18
	1.00
	
	
	

	
	θrim
	-0.25
	0.70
	0.55
	0.34
	1.00
	
	

	
	θsim
	-0.69
	-0.67
	0.13
	-0.59
	-0.29
	1.00
	

	
	ω
	0.08
	0.02
	0.03
	-0.04
	-0.02
	-0.08
	1.00

	Layer 3
	
	
	
	
	
	
	
	

	
	θm
	1.00
	
	
	
	
	
	

	
	α
	0.21
	1.00
	
	
	
	
	

	
	n
	-0.18
	-0.14
	1.00
	
	
	
	

	
	Ks
	0.16
	0.35
	-0.02
	1.00
	
	
	

	
	θrim
	0.08
	-0.09
	-0.55
	-0.09
	1.00
	
	

	
	θsim
	0.03
	0.00
	0.05
	0.33
	0.24
	1.00
	

	
	ω
	0.10
	0.05
	0.03
	0.06
	0.10
	0.05
	1.00


* Parameters with |r| > 0.5 are italicized and underlined.

The posterior distributions of some of the parameters showed bi-modal nature. For example, distributions of n for layer 2, and θrim for layers 2 and 3 were bi-modal with a high probability region, and another region well separated from the first cluster (Figure 7). θsm and α for layer 1, θsim of layer 3, and λ of layer 2 also exhibited bi-modal characteristics. Bi-modal parameters can contain a lot of information about the parameters despite possibly having a wide posterior. In DPM, the macropores are filled/drained first during infiltration/drainage, followed by mass transfer to/from the less permeable intra-aggregate pores. In this study, the water retention properties of both domains are assumed identical, thus, bi-modal posterior distribution of the parameters may also suggest that the data are from different domains of the dual-porosity model (de Rooji et al., 2004; Arora et al., 2012). 
Bi-modal posteriors can also be the result of the inherent structure of the prior distribution (Escobar & West, 1995; Kim & Maddala, 1991), and/or parameter unidentifiability (Tanner & Wong, 1987). We examined the possible correlation among the parameters (Table 3), as parameter correlation often leads to parameter unidentifiability (Doherty & Hunt, 2009). Some parameter pairs were moderately correlated, while most others appeared to be uncorrelated or only weakly correlated. Pearson coefficient r > ± 0.5 was found for parameter pairs θsim and θsm, θsim and n of layer 1, θsim and θsm, θsim and α, θsim and Ks, θrim and α, θrim and n, and θsm and n of layer 2, and θrim and n of layer 3 (Table 3). Among parameters in different layers, no correlation was found except α of layer 2 and θrim of layer 3.
In case when one parameter is bi-modally distributed, this may result in bi-modality of the correlated parameters. In other words, this may imply that the values of these parameters might have been compromised in response to the correlated parameters. From our analysis, bimodality among correlated parameters was observed only for the parameter pair θrim and n in layer 2. Also, as discussed in Hill and Osterby (2003), correlation coefficients with absolute values rounding to 1.0 are good indicators of parameter correlation, however, smaller values do not necessarily provide enough information about correlations. Thus, moderate correlations achieved among the posterior parameters do not necessarily explain bi-modality in the parameter distributions in this case.

3.2.3.	Effect of parameter uncertainty on estimated recharge 
Bottom fluxes calculated with the posterior parameter sets are shown in Figure 9. Relatively large range of recharge was predicted (0.01 cm to 10 cm, with some extreme values) (Figure 9) because of the variable retention properties of each layer resulting different water holding capacities and bottom fluxes. However, most of the predicted recharge lied in the range of 0.1 cm to 1.6 cm, with a unimodal bottom flux distribution having a peak at 0.2 cm (Figure 9). The obtained recharge peak was more than an order of magnitude smaller than that calculated by tritium peak method, i.e., 5.1 cm (Rangarajan et al., 2012), and the calculated value by inversion (2.68 cm). As explained, the discrepancy in recharges calculated with inversion and NSMC procedure was due to that individual posterior peaks for most of the parameters do not match with the parameter values estimated with the calibration procedure resulting in different bottom fluxes. 
Considering the recharge estimated by tritium peak method, recharge is calculated by using displaced tritium peak depth, which appeared in layer 2 in this case. Furthermore, simulation results with DPM predicted smaller bottom flux for the 7.0m soil profile. With DPM, the predicted immobile porosities are of same value (layer 2) or larger than (layer 3) the mobile porosities, indicating that moisture is held in these layers instead of downward drainage. The small recharge estimates by the model also illustrate the  buffering capacity of the soil layers 1 and 2 to short term fluxes, e.g., rain events in this case. 
Based on these observations, it can be argued that adequate match to field observations can be found with a wide range of parameter sets, signifying the high degree of non-uniqueness of the inversion problem. The uncritical use of a default soil hydraulic parameter set, or selection of parameters solely based on the fit to soil water retention data ignores the potential error in the estimated recharge. Through this study, we would recommend quantifying uncertainty in the parameters and recharge estimates as a part of modeling practice instead of assigning a single parameter set.
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Figure 9. Posterior probability distribution of the recharge amount predicted with the parameters in Figure 7. The line represents the bottom flux obtained from the inversion procedure.

4. CONCLUSIONS
This study tried to quantify uncertainty in recharge estimates in a semi-arid area. The NSMC method was applied to identify uncertainties in the model parameters, and to explore the likely range and uncertainty in recharge using a dual-porosity model with soil moisture and tritium profile data as observations for calibration. The following main conclusions were drawn from this study.
Predicted parameters of the dual-porosity model could describe the layered soil properties to a great extent, though large variability was observed for some of the model parameters. In this particular case, parameters for soil layers 1 and 2 were better constrained than that of layer 3. 
Few parameters of the layered profile exhibited bi-modal distribution, which may suggest that these data are from two different soil domains of the dual-porosity model. Obtained higher immobile porosities supplemented the importance of considering the contribution of immobile water on water flow. 
Most of the predicted recharge for the study period June 2008 to December 2008 lay in the range of 0.1 cm to 1.6 cm with a peak at 0.2 cm, in comparison to recharge calculated by tritium mass balance method (5.1 cm) and by inversion (2.68 cm). This large discrepancy highlighted that assignment of a single set of parameters is inadequate to predict recharge because the uncertainty in these parameters greatly affects the uncertainty in recharge prediction. This also implies that conventional parameter estimation procedures may experience problems in the simultaneous estimation of soil hydraulic and solute transport parameters for layered soils. 
Limitations of the present study remain. This study considered uncertainty arising from model parameters, however, the impact of other sources of uncertainty, such as calculated evapotranspiration values, model structure, and measurement errors are not considered, which are more likely expected to reduce the uncertainty. These will be explored in our future work. Besides, the calibration-constrained parameter realizations produced through this work can be used as a basis for quantifying uncertainty in recharge estimates in the surrounding areas considering different environmental conditions, to incorporate these pieces of information in decision-making processes.
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Appendix: 
Variables used
cm : solute concentration in the mobile zone [ML-3]
cim : solute concentration in the immobile zone [ML-3] 
Dm : dispersion coefficient for the mobile region [L2T-1] 
h : pressure head [L]
h1, h2, h3, and h4 : threshold parameters for root water uptake [L]
Khm : unsaturated soil hydraulic conductivity of the mobile domain [LT-1]
Khim : unsaturated soil hydraulic conductivity of the immobile domain [LT-1]
Ks : saturated hydraulic conductivity [LT-1]
l : pore-connectivity parameter in the hydraulic conductivity function [-]
n : exponent in the soil water retention function [-]
qm : Darcian flux in the mobile region [LT-1]
Sm : sink term for the mobile region [L3 L-3 T−1] 
 : effective fluid saturations of the mobile domain [-]
 : effective fluid saturation of the immobile domain [-]
Sp : potential water uptake rate [T-1]
t :  time [T]
z : spatial coordinate, vertical upward [L]
α : parameter in the soil water retention function [L-1]
φ(h) : dimensionless water stress response function [-] 
λ: longitudinal dispersivity [L]
αs : first-order solute transfer rate coefficient [T-1]
Γw : transfer rate of water from the mobile domain to the immobile domain [T-1]
Γs : solute transfer rate between mobile and immobile domain [M L-3 T-1] 
θ : volumetric water content of the bulk porous medium [L3L-3]
θm : water content in the mobile domain [L3L-3]
θim : water content in the immobile domain [L3L-3] 
θrm : residual water content of the mobile domain [L3L-3]
θsm : saturated water content of the mobile domain [L3L-3]
θrim : residual water content of the immobile domain [L3L-3]
θsim : saturated water content of the immobile domain [L3L-3]
ω : first-order rate coefficient in the water mass transfer equation  [T-1]
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Figure Captions
Figure 1. Location map of the study area (left), and the schematic diagram showing the soil profile and model domain (right). The soil profile data are from Rangarajan et al. (2012). Also shown is the tritium injection interval within the soil layer 2.
Figure 2. Outline of non-linear uncertainty analysis using HYDRUS 1D and PEST. See text for details.
Figure 3. Observed daily rainfall and calculated daily potential evapotranspiration for the study area.
Figure 4. Comparison between measured (filled circles) and simulated (solid lines) soil moisture contents using the optimized parameters shown in Table 1. 
Figure 5. Normalized tritium concentration profile at 342th calendar day. Comparison between observed (filled circles) and simulated (solid lines) concentrations using the optimized parameters shown in Table 1. 
Figure 6. (a) Temporal changes of daily precipitation, calculated surface runoff, and calculated surface flux (positive for evaporation and negative for infiltration), and (b) Cumulative calculated surface and bottom boundary fluxes, with optimized parameters shown in Table 1.
Figure 7.  Posterior probability distribution of model parameters as calculated with null-space Monte Carlo method. The lines in each of the figures represent the value obtained from the inversion procedure (Table 1). The inset figures for α were shown to better identify the posterior distributions. 
Figure 8.  Soil moisture retention curves (a-c) and hydraulic conductivity curves (d-f) predicted with parameters presented in Figure 7 for soil layers 1, 2 and 3, respectively. 
Figure 9. Posterior probability distribution of the recharge amount predicted with the parameters in Figure 7. The line represents the bottom flux obtained from the inversion procedure.

Table Captions
Table 1: Initial guesses, ranges, and optimized values of the parameters for the dual porosity model.
Table 2. Summary of posterior distributions for the model parameters calculated with the null-space Monte Carlo procedure.
Table 3. Correlation matrix for the parameters shown in Figure 7.















Table 1. Initial guesses, ranges, and optimized values of the parameters for the dual porosity model.
	Parameter
	
	θm
	α
	n
	Ks
	θrim
	θsim
	ω
	αs
	λ

	
	
	(-)
	(cm-1)
	(-)
	(cm/d)
	(-)
	(-)
	(d-1)
	(d-1)
	(cm)

	Layer 1
	Initial
	0.2
	0.02
	1.52
	1.46
	0.01
	0.1
	0.8
	0.001
	2.0

	
	Min.
	0.09
	0.01
	1.2
	0.5
	0.001
	0.01
	0.01
	-
	-

	
	Max.
	0.4
	0.2
	3.0
	10
	0.2
	0.4
	100
	-
	-

	
	Optimized
	0.095
	0.013
	1.32
	0.84
	0.017
	0.16
	0.03
	0.001*
	2.0*

	Layer 2
	Initial
	0.3
	0.01
	1.4
	0.5
	0.01
	0.1
	0.8
	0.001
	2.0

	
	Min.
	0.09
	0.005
	1.2
	0.05
	0.001
	0.01
	0.01
	1e-5
	1

	
	Max.
	0.45
	0.2
	3.0
	10
	0.2
	0.3
	100
	10
	20

	
	Optimized
	0.135
	0.006
	2.07
	0.87
	0.008
	0.18
	0.07
	2.1e-5
	7.1

	Tritium Injection Layer
	Initial
	0.385
	0.01
	1.4
	0.5
	0.0001
	0.001
	100
	0.001
	2.0

	
	Min.
	-
	0.005
	1.2
	0.05
	-
	-
	-
	1e-5
	1

	
	Max.
	-
	0.2
	3.0
	10
	-
	-
	-
	10
	20

	
	Optimized
	0.385*
	0.006
	2.07
	0.87
	0.0001*
	0.001*
	100*
	2.1e-5
	2.3

	Layer 3
	Initial
	0.2
	0.14
	2.68
	500.0
	0.01
	0.1
	0.8
	0.001
	2.0

	
	Min.
	0.05
	0.01
	1.2
	300
	0.001
	0.01
	0.01
	-
	-

	
	Max.
	0.4
	0.2
	4.0
	1000
	0.2
	0.45
	100
	-
	-

	
	Optimized
	0.09
	0.16
	2.43
	300.5
	0.1
	0.31
	1.7
	0.001*
	2.0*


*  Parameters are fixed, as explained in Sections 2.3.2 and 2.3.3.
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Table 2. Summary of posterior distributions for the model parameters calculated with the null-space Monte Carlo procedure.
		Parameters
	θm
	α
	n
	Ks
	θrim
	θsim
	ω
	αs
	λ

	
	(-)
	(cm-1)
	(-)
	(cm/d)
	(-)
	(-)
	(d-1)
	(d-1)
	(cm)

	Layer 1
	Min.
	0.09
	0.01
	1.2
	1.00
	0.001
	0.01
	0.01
	-
	-

	
	Max.
	0.18
	0.02
	2.68
	6.64
	0.19
	0.4
	100
	-
	-

	
	Median
	0.14
	0.01
	1.2
	1.6
	0.01
	0.04
	0.97
	-
	-

	
	St. Dev.
	0.02
	0.001
	0.1
	0.42
	0.01
	0.04
	16.2
	-
	-

	
	Skewness
	-0.50
	1.60
	6.70
	3.78
	5.32
	2.43
	4.04
	-
	-

	
	Kurtosis
	-0.86
	4.9
	68.4
	30.79
	48.8
	8.7
	17.5
	-
	-

	Layer 2
	Min.
	0.09
	0.005
	1.20
	0.07
	0.002
	0.03
	0.01
	1e-5
	1.0

	
	Max.
	0.33
	0.02
	3.00
	2.03
	0.20
	0.21
	100.0
	0.03
	20.0

	
	Median
	0.16
	0.01
	1.85
	0.25
	0.03
	0.12
	2.35
	1e-4
	5.6

	
	St. Dev.
	0.04
	0.002
	0.37
	0.14
	0.04
	0.03
	22.68
	0.001
	3.55

	
	Skewness
	0.03
	1.78
	1.18
	3.47
	1.67
	0.10
	2.93
	21.4
	0.54

	
	Kurtosis
	0.23
	3.46
	1.47
	32.0
	2.61
	-0.20
	8.0 
	556.5
	0.39

	Layer 3
	Min.
	0.07
	0.09
	1.61
	300.0
	0.02
	0.22
	0.01
	-
	-

	
	Max.
	0.4
	0.2
	3.12
	1000.0
	0.13
	0.45
	100.0
	-
	-

	
	Median
	0.13
	0.2
	2.1
	357.9
	0.1
	0.37
	1.73
	-
	-

	
	St. Dev.
	0.03
	0.01
	0.19
	103.6
	0.02
	0.04
	18.8
	-
	-

	
	Skewness
	3.4
	-2.81
	1.21
	1.73
	-2.03
	-0.02
	3.60
	-
	

	
	Kurtosis
	23.4
	14.1
	3.17
	3.88
	3.28
	0.20
	13.5
	-
	-


















Table 3. Correlation (r) matrix for the parameters presented in Figure 7*.
	Correlation
 coefficients
	θm
	α
	n
	Ks
	θrim
	θsim
	ω

	Layer 1
	
	
	
	
	
	
	
	

	
	θm
	1.00
	
	
	
	
	
	 

	
	α
	-0.11
	1.00
	
	
	
	
	

	
	n
	-0.39
	0.40
	1.00
	
	
	
	

	
	Ks
	-0.38
	0.22
	0.29
	1.00
	
	
	

	
	θrim
	-0.22
	0.01
	0.10
	0.03
	1.00
	
	

	
	θsim
	-0.82
	0.34
	0.66
	0.47
	0.12
	1.00
	

	
	ω
	0.06
	0.07
	-0.01
	0.11
	-0.01
	-0.06
	1.00

	Layer 2
	
	
	
	
	
	
	
	

	
	θm
	1.00
	
	
	
	
	
	

	
	α
	0.17
	1.00
	
	
	
	
	

	
	n
	-0.64
	0.18
	1.00
	
	
	
	

	
	Ks
	0.34
	0.69
	-0.18
	1.00
	
	
	

	
	θrim
	-0.25
	0.70
	0.55
	0.34
	1.00
	
	

	
	θsim
	-0.69
	-0.67
	0.13
	-0.59
	-0.29
	1.00
	

	
	ω
	0.08
	0.02
	0.03
	-0.04
	-0.02
	-0.08
	1.00

	Layer 3
	
	
	
	
	
	
	
	

	
	θm
	1.00
	
	
	
	
	
	

	
	α
	0.21
	1.00
	
	
	
	
	

	
	n
	-0.18
	-0.14
	1.00
	
	
	
	

	
	Ks
	0.16
	0.35
	-0.02
	1.00
	
	
	

	
	θrim
	0.08
	-0.09
	-0.55
	-0.09
	1.00
	
	

	
	θsim
	0.03
	0.00
	0.05
	0.33
	0.24
	1.00
	

	
	ω
	0.10
	0.05
	0.03
	0.06
	0.10
	0.05
	1.00


* Parameters with |r| > 0.5 are italicized and underlined.
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