References:
Ashok, R. P., Babaahmadi, M., Lesaffer, A., & Dewettinck, K. (2015). Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. Journal of Agricultural and Food Chemistry, 63:4862-4869, 10.1021/acs.jafc.5b01548.
Backes, A. R., & Bruno, O. M. (2013). Texture analysis using volume-radius fractal dimension. Applied Mathematics and Computation, 219:5870-5875, 10.1016/j.amc.2012.11.092.
Barnes, W. M. (1994). PCR AMPLIFICATION OF UP TO 35-KB DNA WITH HIGH-FIDELITY AND HIGH-YIELD FROM LAMBDA-BACTERIOPHAGE TEMPLATES. Proceedings of the National Academy of Sciences of the United States of America, 91:2216-2220, 10.1073/pnas.91.6.2216.
Belury, M. A. (2002). Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annual Review of Nutrition, 22:505-531, 10.1146/annurev.nutr.22.021302.121842.
Benchabane, A., & Bekkour, K. (2008). Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, 286:1173-1180,
Çiftçi, D., Kahyaoglu, T., Kapucu, S., & Kaya, S. (2008). Colloidal stability and rheological properties of sesame paste. Journal of Food Engineering, 87:428-435,
Daubert, C. R. (2017). ’Rheological principles for food analysis.’ In,Food analysis (pp. 511-527). Springer.
Farshchi, A., Ettelaie, R., & Holmes, M. (2013). Influence of pH value and locust bean gum concentration on the stability of sodium caseinate-stabilized emulsions. Food Hydrocolloids, 32:402-411, 10.1016/j.foodhyd.2013.01.010.
Feng, Y.-x., Wang, Z.-c., Chen, J.-x., Li, H.-r., Wang, Y.-b., Ren, D.-F., & Lu, J. (2021). Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (Juglans regia L.) meal. Food Chemistry, 353:129471, https://doi.org/10.1016/j.foodchem.2021.129471.
Fernandes, S. S., & Salas Mellado, M. d. l. M. (2018). Development of Mayonnaise with Substitution of Oil or Egg Yolk by the Addition of Chia (Salvia Hispanica L.) Mucilage. Journal of Food Science, 83:74-83, 10.1111/1750-3841.13984.
Gambaro, A., Raggio, L., Ellis, A. C., & Amarillo, M. (2014). Virgin olive oil color and perceived quality among consumers in emerging olive-growing countries. Grasas y Aceites, 65:e023 [028pp.]-e023 [028pp.],
Hadjistamov, D. (2019). Thixotropy of Systems with Shear Thinning and Plastic Flow Behavior. J. of Mat. Sci. and Eng. B, 9:56-65,
Jose Moyano, M., Heredia, F. J., & Melendez-Martinez, A. J. (2010). The Color of Olive Oils: The Pigments and Their Likely Health Benefits and Visual and Instrumental Methods of Analysis. Comprehensive Reviews in Food Science and Food Safety, 9:278-291,
Karinkanta, P. (2014). Dry fine grinding of Norway spruce (Picea abies) wood in impact-based fine grinding mills. Oulun Yliopiston Tutkijakoulu,
Leskovar, D., Crosby, K., & Jifon, J. 2007. ”Impact of agronomic practices on phytochemicals and quality of vegetable crops.” In II International Symposium on Human Health Effects of Fruits and Vegetables: FAVHEALTH 2007 841 , 317-322.
Liu, H., Xu, X., & Guo, S. D. (2007). Rheological, texture and sensory properties of low-fat mayonnaise with different fat mimetics. LWT-Food Science and Technology, 40:946-954,
Loncarevic, I., Pajin, B., Petrovic, J., Zaric, D., Sakac, M., Torbica, A., . . . Omorjan, R. (2016). The impact of sunflower and rapeseed lecithin on the rheological properties of spreadable cocoa cream. Journal of Food Engineering, 171:67-77, 10.1016/j.jfoodeng.2015.10.001.
Lu, X., Chen, J., Guo, Z., Zheng, Y., Rea, M. C., Su, H., . . . Miao, S. (2019). Using polysaccharides for the enhancement of functionality of foods: A review. Trends in Food Science & Technology, 86:311-327,
Marti, I. (2004). ’Dairy fibre powders-Processing and application as rheology modifiers in confectionery systems’, ETH Zurich.
Martínez, M. L., Mattea, M. A., & Maestri, D. M. (2008). Pressing and supercritical carbon dioxide extraction of walnut oil. Journal of food engineering, 88:399-404,
Mehdi, A., Hadi Eskandari, M., & Zahra, D. (2019). Application and functions of fat replacers in low-fat ice cream: a review. Trends in Food Science & Technology, 86:34-40, 10.1016/j.tifs.2019.02.036.
Mengjie, G., Tan, H., Qi, Z., Ahmed, T., Lang, Q., Wenhui, L., . . . Hao, H. (2021). Effects of different nut oils on the structures and properties of gel-like emulsions induced by ultrasound using soy protein as an emulsifier. International Journal of Food Science & Technology, 56:1649-1660, 10.1111/ijfs.14786.
Miklos, R., Xu, X., & Lametsch, R. (2011). Application of pork fat diacylglycerols in meat emulsions. Meat Science, 87:202-205, 10.1016/j.meatsci.2010.10.010.
Misawa, N. (2009). Pathway engineering of plants toward astaxanthin production. Plant Biotechnology, 26:93-99, 10.5511/plantbiotechnology.26.93.
Mostafa, S.-N., Sara, N.-T., & Mozhdeh, S. (2019). Effect of emulsifier on rheological, textural and microstructure properties of walnut butter. Journal of Food Measurement and Characterization, 13:785-792, 10.1007/s11694-018-9991-1.
Mun, S., Kim, Y.-L., Kang, C.-G., Park, K.-H., Shim, J.-Y., & Kim, Y.-R. (2009). Development of reduced-fat mayonnaise using 4αGTase-modified rice starch and xanthan gum. International journal of biological macromolecules, 44:400-407,
Muresan, V., Danthine, S., Racolta, E., Muste, S., & Blecker, C. (2014). THE INFLUENCE OF PARTICLE SIZE DISTRIBUTION ON SUNFLOWER TAHINI RHEOLOGY AND STRUCTURE. Journal of Food Process Engineering, 37:411-426, 10.1111/jfpe.12097.
Nam, H. R., Kim, Y. J., Yang, S. S., & Ahn, J.-H. (2014). Ball-Milling of Graphite and Multi-Wall Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 14:9103-9107, 10.1166/jnn.2014.10096.
Nikzade, V., Tehrani, M. M., & Saadatmand-Tarzjan, M. (2012). Optimization of low-cholesterol–low-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocolloids, 28:344-352,
Ozrenk, K., Javidipour, I., Yarilgac, T., Balta, F., & Gundogdu, M. (2012). Fatty acids, tocopherols, selenium and total carotene of pistachios (P. vera L.) from Diyarbakir (Southestern Turkey) and walnuts (J. regia L.) from Erzincan (Eastern Turkey). Food Science and Technology International, 18:55-62, 10.1177/1082013211414174.
Qu, Q., Yang, X., Fu, M., Chen, Q., Zhang, X., He, Z., & Qiao, X. (2016). Effects of three conventional drying methods on the lipid oxidation, fatty acids composition, and antioxidant activities of walnut (Juglans regia L.). Drying Technology, 34:822-829, 10.1080/07373937.2015.1081931.
Reza, F., Reza Salahi, M., & Maryam, A. (2019). Flow behavior, thixotropy, and dynamic viscoelasticity of ethanolic purified basil (Ocimum bacilicum L.) seed gum solutions during thermal treatment. Food Science & Nutrition, 7:1623-1633, 10.1002/fsn3.992.
Sato, A. C. K., Perrechil, F. A., Costa, A. A. S., Santana, R. C., & Cunha, R. L. (2015). Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate. Food Research International, 75:244-251, 10.1016/j.foodres.2015.06.010.
Steffe, J. F. (1996). Rheological methods in food process engineering Freeman press.
Steiner, D., Finke, J. H., Breitung-Faes, S., & Kwade, A. (2016). Breakage, temperature dependency and contamination of Lactose during ball milling in ethanol. Advanced Powder Technology, 27:1700-1709, 10.1016/j.apt.2016.05.034.
Strzalka, K., Kostecka-Gugala, A., & Latowski, D. (2003). Carotenoids and environmental stress in plants: Significance of carotenoid-mediated modulation of membrane physical properties. Russian Journal of Plant Physiology, 50:168-172, 10.1023/a:1022960828050.
Sun, C., Liu, R., Wu, T., Liang, B., Shi, C., & Zhang, M. (2015). Effect of superfine grinding on the structural and physicochemical properties of whey protein and applications for microparticulated proteins. Food Science and Biotechnology, 24:1637-1643, 10.1007/s10068-015-0212-y.
Sun, Q., Cheng, Y., Yang, G., Ma, Z. F., Zhang, H., Li, F., & Kong, L. (2019). Stability and sensory analysis of walnut polypeptide liquid: response surface optimization. International Journal of Food Properties, 22:853-862, 10.1080/10942912.2019.1611600.
Tisserand, C., Fleury, M., Brunel, L., Bru, P., & Meunier, G. (2012). ’Passive microrheology for measurement of the concentrated dispersions stability.’ In, UK colloids 2011 (pp. 101-105). Springer.
Vardhanabhuti, B., & Ikeda, S. (2006). Isolation and characterization of hydrocolloids from monoi (Cissampelos pareira) leaves. Food Hydrocolloids, 20:885-891, 10.1016/j.foodhyd.2005.09.002.
Wagener, E. A., & Kerr, W. L. (2018). Effects of oil content on the sensory, textural, and physical properties of pecan butter (Carya illinoinensis). Journal of Texture Studies, 49:286-292, 10.1111/jtxs.12304.
Walker, R. M., Gumus, C. E., Decker, E. A., & McClements, D. J. (2017). Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & lemon oil. Journal of Food Engineering, 211:60-68, 10.1016/j.jfoodeng.2017.05.004.
Wang, L., Liu, H.-M., Zhu, C.-Y., Xie, A.-J., Ma, B.-J., & Zhang, P.-Z. (2019). Chinese quince seed gum: Flow behaviour, thixotropy and viscoelasticity. Carbohydrate Polymers, 209:230-238, 10.1016/j.carbpol.2018.12.101.
Xu, L., Gu, L., Su, Y., Chang, C., Dong, S., Tang, X., . . . Li, J. (2020). Formation of egg yolk-modified starch complex and its stabilization effect on high internal phase emulsions. Carbohydrate Polymers, 247, 10.1016/j.carbpol.2020.116726.
Yang, X., Gong, T., Lu, Y.-h., Li, A., Sun, L., & Guo, Y. (2020). Compatibility of sodium alginate and konjac glucomannan and their applications in fabricating low-fat mayonnaise-like emulsion gels. Carbohydrate Polymers, 229, 10.1016/j.carbpol.2019.115468.
Yun, L., Wu, T., Liu, R., Li, K., & Zhang, M. (2018). Structural variation and microrheological properties of a homogeneous polysaccharide from wheat germ. Journal of agricultural and food chemistry, 66:2977-2987,
Zhaohua, H., Baozhong, G., Chong, D., Shunjing, L., Chengmei, L., & Xiuting, H. (2020). Stabilization of peanut butter by rice bran wax. Journal of Food Science, 85:1793-1798, 10.1111/1750-3841.15176.