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Introduction This Supporting Information provides all the methodological details of

the study. Text S1 details the simulations performed with the Glacier Drainage System

model. Text S2 details the architecture of the artificial neural network (ANN) developed

in this study. Text S3 details our selection and processing of inputs for the ANN. Text S4

details how training, validation, and test data have been separated. Text S5 details the

training procedure of the ANN. Text S6 details the configuration of the ice sheet model

simulations, which are presented in section Ice sheet model forcing of the main text. Text

S7 presents an additional sensitivity analysis to quantify the importance of each input in
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the performance of the ANN.

Table S1 provides the parameters used for the Glacier Drainage System model. Table

S2 shows the architecture of the ANN. Table S3 shows the separation between training,

validation, and test data. Figure S1 shows the configuration of the glaciers used for

the subglacial hydrology model simulations. Figure S2 shows the results of the input

importance sensitivity analysis.

All references are provided here, as well as in the reference list of the main text.
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Text S1: Hydrology model simulations

We use the Glacier Drainage System model (GlaDS, Werder et al., 2013) implemented

into the Ice-sheet and Sea-level System Model (ISSM, Larour et al., 2012) to generate data

for this study. GlaDS is run separately over the seven calibration glaciers (Petermann,

Jakobshavn, Helheim, Kangerlussuaq, Humboldt, Koge Bugt, and Russell, see Fig. S1)

for 40 years with a two hour time step, saving outputs every three days. Outputs from

these simulations are used to train, validate, and test our Artificial Neural Network (ANN)

in mapping a set of inputs to a spatial field of hydraulic potential (ϕ). All domains have

dimensions 100× 100 km2, except Petermann and Jakobshavn which have dimensions of

100 × 200 and 200 × 100 km2, respectively (Fig. S1). We use a mesh resolution varying

between 800 m in areas of fast ice flow and 2 500 m in areas of slow ice flow. We prescribe

ice velocities from Joughin et al. (2017), and bedrock topography and ice thickness fields

from Morlighem et al. (2017). We note that limited areas need bedrock smoothing to help

with numerical stability of GlaDS for the Helheim, Petermann, and Jakobshavn domains

(14%, 3%, and 4% of the domains, respectively). For our simulations, we integrate surface

runoff over the glacier domains from the diurnal Energy Balance Model over the period

1970-2009 (Krebs-Kanzow et al., 2020). The surface runoff is directed to the bedrock at

30 locations representing moulins. The moulin locations are randomly distributed, under

the conditions that ice thickness is greater than 500 m, ice velocity is greater than 25

m/yr, and that there is at least 10 km distance to the ocean, to the domain borders,

and to any other moulin location (see Fig. S1). We refine the mesh resolution to 800

m around moulin locations to help with numerical stability. At any time step, runoff is

equally partitioned between the 30 moulins.
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We use an ice viscosity parameter corresponding to an ice temperature of 271.15 K in

the parameterization of (Cuffey & Paterson, 2010). The spatial fields of the basal friction

coefficient are obtained through an inversion method, based on the present-day geometry

and ice velocities. GlaDS requires several parameters for the subglacial hydrology system.

We take all the parameter values following the original implementation (Werder et al.,

2013) and the default values of a recent intercomparison of subglacial hydrology models

(de Fleurian et al., 2018). The parameter values of the subglacial hydrology system are

listed in Table S1. Emulating GlaDS with other parameter values would require re-training

the ANN. For the subglacial water system, we use zero-flux boundary conditions on the

domain borders, and fixed hydrostatic ocean pressure at the grounding line. To preserve

numerical stability, GlaDS is run with a 2 hour time step. Numerical instabilities still

appeared in the simulations, in the form of infinite growth of the subglacial hydrological

sheet thickness at some mesh elements on domain boundaries, close to the grounding line,

or close to peripheral ice zones. This was caused by a negative cavity closing term, due

to negative effective pressure values. At such mesh elements, we enforce a zero effective

pressure, i.e, floatation.

In addition to these seven simulations, we perform a simulation at a test glacier (Uper-

navik, Fig. S1h) to generate additional test data. This simulation uses the same strategy

for runoff generation and meshing as described above. The domain of Upernavik is of size

100× 100 km2, and all the GlaDS parameter values remain the same (Table S1).

We note here that GlaDS calculations can lead to unphysical negative water pressure

values. Water pressure, pw is defined as the hydraulic potential, ϕ, minus the elevation

potential: pw = ϕ−ϕm, where ϕm = ρwgB with ρw, g, B being water density, gravitational
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acceleration, and bedrock elevation, respectively. In the GlaDS routine for computing ϕ,

there is no constraint on enforcing that ϕ ≥ ϕm, and negative pw values can arise in areas

with high bed elevation and thin ice thickness (Siu, 2022). This only affects zones of

peripheral ice.

Text S2: Architecture of the Artificial Neural Network

Our ANN is implemented with the Pytorch library (Paszke et al., 2019), and is a

modified version of the U-Net architecture developed in Ronneberger et al. (2015). Our

ANN architecture, detailed in Table S2, consists of an encoding and a decoding path-

way. In the encoding stage, features are extracted from the two-dimensional input fields

and spatial resolution is progressively reduced. Encoding is performed through a series

of down-convolution blocks. Each down-convolution block consists of three operations:

two convolution operations, each with a nonlinear activation function, and one pooling

operation. The convolutions use a 3×3 kernel size, a stride of 1, zero-padding, and a bias

term. We use the ReLU activation function after each convolution:

ReLU(x) = max(0, x). (1)

The pooling operation is a 2× 2 max-pooling, and thus reduces the horizontal resolution

at each down-convolution block by a factor of 2 along each spatial dimension. The number

of output features from the first down-convolution block is 24, and is then doubled for

each subsequent down-convolution block. We experimented with different numbers of

output features from the first down-convolution block, and found that 24 gives optimal

model performance. The last down-convolution does not use pooling and has 94 output

features instead of 96 to allow concatenation of two additional inputs at the end of the

encoding stage. Specifically, we concatenate the time inputs to the 94 features. The time
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inputs are the cosine and sine of the time step (in units of years) multiplied by 2π. The

decoding stage is symmetric to the encoding stage. It consists of up-convolution blocks.

Each up-convolution block consists of four operations: one transpose convolution, one

concatenation, and two convolutions. Every transpose convolution uses a 2×2 kernel size,

halves the number of features, and enhances the horizontal resolution by a factor of 2 along

each spatial dimension. The concatenation process allows to concatenate the features

from the corresponding encoding level, allowing propagation of information from higher-

resolution features. The convolution operations are similar to those from the encoding

stage. We exclude the concatenation operation from the last up-convolution block, as we

found that excluding it improves the spatial smoothness of the results from the ANN, in

better agreement with the validation data. This is explained by not passing information

at the high resolution of the initial data directly to the last up-convolution block, but

rather forcing all features to undergo at least one pooling operation. The final layer of

the ANN is a 1×1 convolution operation. No activation function is applied to this last

convolution, of which the output is the standardized predicted ϕ field.

Text S3: Inputs to the Artificial Neural Network

Because our ANN is a convolutional neural network, its input consists of two-

dimensional images, referred to as input features. We use as input features the bed

topography, the ice thickness, and the ice velocity fields. These input features are fixed

in time, and are therefore the same at any time step. However, they differ between the

seven calibration glaciers, and are thus different for training samples corresponding to the

different glaciers. In addition to these three input features, we use the spatial distribution

of surface meltwater inflow. Surface meltwater inflow is non-zero only at moulin locations,
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over which the meltwater is distributed uniformly at any time step. We integrate the spa-

tial meltwater inflow over different past time periods to be provided as input features to the

ANN. To select these past time periods, we use a feature selection method. This consists

of adding an increasing number of input features until no performance gain is achieved.

In our feature selection method, our baseline case is considering only the instantaneous

meltwater inflow, and meltwater inflow integrated over the previous 10 days. The first

step is to add also meltwater inflow integrated over the previous month. The second step

is to add meltwater inflow integrated over month-minus-1 to month-minus-2. We proceed

iteratively, adding one month of meltwater inflow information at a time. We find that the

optimal combination of features includes meltwater inflow (i) at the current time step,

integrated over (ii) the previous 10 days, (iii) the previous month, (iv) month-minus-1 to

month-minus-2, (v) month-minus-2 to month-minus-3, and (vi) month-minus-3 to month-

minus-4. Including months beyond this time period does not improve model performance,

when evaluated on the validation data. However, through our feature selection process,

we find that adding (vii) the meltwater inflow integrated over the entire previous year

further improves the ANN performance. This feature selection process results in a total

of 12 inputs: 10 two-dimensional input features, and the cosine and sine of the time step.

One input sample thus consists of the 12 inputs for a given glacier at a given time step.

While GlaDS is run at a 2-hourly time step to ensure numerical stability, model outputs

are saved every three days for storage reasons.

The two-dimensional input features have an inherent spatial scale, which our ANN is

sensitive to. For this reason, we consistently train and evaluate our ANN over 100×100

km2 windows. GlaDS runs on an irregular finite-element mesh, but results are bilinearly
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interpolated on a regular 128×128 mesh. It is important to preserve consistency in the

spatial scaling, and using the ANN for predictions over a domain size different than

the domain size used for training would be inappropriate. However, for larger domains

of interest, it is straightforward to use the ANN multiple times over separate 100×100

km2 parts of the domain, and concatenate the results. This is what has been done for the

Jakobshavn and Petermann glaciers in this study, each being separated in two subdomains.

As such, our data set of 8 glaciers corresponds to 10 domains. The ANN could also be

trained, and thus used for predictions, on any other domain size.

As explained in Section Architecture of the Artificial Neural Network, we concatenate

the time input at the end of the encoding stage as cosine and sine of the current time

multiplied by 2π (Table S2). This improves the ANN performance due to the assymetry

between early- and late-melt season behavior of the subglacial hydrology system. The

time inputs are not passed in the first input layer because they are not spatial fields. Still,

passing them at the end of the encoding stage allows the ANN to capture interactions

between time of year and the other inputs through the decoding stage. Each time step is

treated independently by the ANN, but our method of integrating past meltwater inflow

provides, de facto, some temporal dependence. Future work can focus on associating

the convolutional structure of our ANN with recurrent neural networks, which explicitly

simulate temporal dependencies.

Text S4: Separation of training, validation, and test data

The first 5 years (1970-1974) of the GlaDS simulations are discarded, as GlaDS evolves

transiently from an arbitrary initial state. For the seven calibration glaciers, years 1975-

2004 are used as calibration years, and years 2005-2009 are preserved for test data. The
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data of the seven calibration glaciers consist of nine domains because two glaciers (Jakob-

shavn and Petermann) span the size of two domains, and are therefore provided separately

to the ANN. The calibration years are further split between training and validation data,

with 90% (years 1975-2001) and 10% (years 2002-2004) of the data, respectively. For

the test glacier (Upernavik), all the data (years 1975-2009) are preserved for test data.

Furthermore, we proceed to data augmentation by applying three transformations of each

glacier domain and its input fields to use as additional training and validation data.

Data augmentation improves performance of artificial neural networks by increasing the

amount of data for calibration (Lemley et al., 2017). The transformations are a vertical

axial symmetry, a horizontal axial symmetry, and a diagonal axial symmetry. For each

training glacier, one of these transformations is used exclusively as validation data , and

the two others are used as training (years 1975-2001) and validation (years 2002-2004)

data. The splitting of the data between training, validation, and test data is detailed in

Table S3.

Text S5: Training of the Artificial Neural Network

For training efficiency, we standardize every two-dimensional input feature and the

ϕ output feature, such that our variables have zero mean and unit standard deviation.

For predictions, our ANN thus requires inputs standardized accordingly, and predicted

ϕ must be rescaled accordingly. Cosine and sine of time are not scaled, because they

range between -1 and 1. We initialize the parameters of our ANN using the He Normal

initialization method (He et al., 2015). We train our ANN with the training data such

that parameter values are updated through backpropagation by minimizing a loss function

measuring the misfit between ϕ fields predicted by the ANN and the GlaDS output. We
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use the L2 loss function, as it showed better results than when using alternative loss

functions such as mean absolute error or the Huber loss. The L2 loss is defined as:

L(ϕANN) =

√
1

N

∑
i

(ϕi,ANN − ϕi,GlaDS)
2, (2)

where ϕi,GlaDS denotes a ϕ value calculated by GlaDS, ϕi,ANN denotes the corresponding

value of ϕ calculated by the ANN, and ϕANN denotes the full sample of ϕ values calculated

by the ANN, with dimensions determined by the number of samples, and by the number

of pixels in the two-dimensional spatial domain. In the loss calculation, we exclude all

pixels with ice thickness less than 20 m or ice velocity less than 5 m/yr. Simulating ϕ

in such regions is not necessary, as ice flow variability has minimal impact on ice sheet

dynamics. And, because these outlier regions lead to different behaviors of subglacial

hydrology models, we prefer to make the ANN calibration insensitive to these regions.

During training, an epoch consists of passing the entire training data in sequences of

randomly selected batches to the ANN. We use a batch size of 32 samples, as we found

that it results in optimal model performance and training speed. The loss function is

evaluated on the training batch, used to update parameter values via backpropagation,

and on the validation data. Our backpropagation algorithm uses the Adam optimizer

(Kingma & Ba, 2014) with an initial learning rate of 0.001. We use an adaptive learning

rate, decreasing it by a factor of 2 after 5 consecutive epochs without improving the

validation loss. This allows more localized search in the parameter space as the training

procedure approaches a local minimum of the loss function. We stop the training after 10

consecutive epochs without improving the validation loss to avoid overfitting the training

data. The final parameter values saved from the training procedure are those having

led to the best validation loss score. As an additional tool to avoid overfitting, we use
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dropout. Similarly to (Ronneberger et al., 2015), we implement dropout only after the last

convolution operation of the encoding stage (layer 8 in Table S2), and we use a dropout

probability of 0.2. We train separately an ensemble of 20 networks. The training procedure

is identical for these networks, and they only differ due to the random initialization of

the parameters and the randomness of the optimization algorithm. Our final ANN is the

ensemble mean output of these 20 members, as this averaging approach has been shown

to improve deep neural network performance (Lakshminarayanan et al., 2016).

Text S6: Details on ice sheet model runs

The ice sheet model runs at Upernavik glacier, shown in section Ice sheet model runs,

are performed using the Ice sheet and Sea-level System model (Larour et al., 2012). The

ice rheology and basal friction coefficient parameters are kept identical as in the GlaDS

simulations (see Supporting Information). As initial conditions, we use the ice geometry

and ice velocity fields applied in the GlaDS runs. We prescribe a surface mass balance

field that is constant in space and time, which is taken as the mean 1970-2009 surface

mass balance averaged over the domain from the diurnal Energy Balance Model (Krebs-

Kanzow et al., 2020). We start the simulations from 1975, to avoid impacts from the first

5 years of GlaDS run, during which GlaDS evolves from an arbitrary initial state. We

perform a GlaDS-forced run, which applies the pw field as predicted by GlaDS. Similarly,

we perform an ANN-forced run, which applies the pw field as predicted by the ANN. Ice

flow dynamics are coupled to pw through the basal sliding law, for which we use the Budd

sliding law (Budd et al., 1984):

τb = −C2ubN, (3)
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where τb is the basal stress [Pa], ub is the basal ice velocity [m yr-1], and C2 is the basal

friction coefficient, varying in space [m-1 yr]. We also perform a control run, in which the

pw assumes a simple hydrostatic connection to the ocean: pw = −gρwB. The control run

captures the transient changes caused by the initial ice geometry not being in equilibrium.

We subtract these transient changes from the GlaDS-forced and ANN-forced runs when

analyzing the results in terms of ice thickness and ice velocities. As existing ice sheet

sliding laws are not applicable at very low effective pressures, we follow (Ehrenfeucht et

al., 2022) in applying a lower limit on N equal to 6% of the ice overburden pressure.

Text S7: Input importance

We evaluate the importance of each input feature to the quality of the ANN predictions.

To this end, we perturb randomly each input feature individually. After each perturbation,

we use the ANN to predict a ϕ̃ANN field, which is of lower accuracy than the ϕANN field

predicted without input perturbation. To perturb a given input feature, we add white

Gaussian noise of standard deviation 1 to the input feature. We add the noise to the

standardized features. In this way, each input feature is perturbed in a similar fashion,

because all the standardized input features have mean 0 and standard deviation 1 by

construction. The cosine and sine of time are not standardized. As such, we perturb

these variables by their standard deviation, which is approximately 0.67. We evaluate

ϕ̃ANN on the validation data of the non-transformed glacier domains (see Table S3).

Figure S2 shows the ratio in coefficient of determination (R2), in Root Mean Square

Error (RMSE), and in absolute bias of ϕ̃ANN with respect to these metrics evaluated

with ϕANN . These ratios thus show the reduction in model accuracy caused by each

perturbation. Results are shown for each perturbed input individually. Figure S2 shows
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that perturbing the ice thickness input has the most consequential impact on the ANN

accuracy, as both the R2 coefficient and the RMSE are more strongly impacted than

when perturbing any other input. The different time periods over which we integrate the

meltwater inflow show a similar importance on the ANN accuracy, except for the period

over the entire previous year, which has a stronger impact on accuracy. This could be

due to the strong correlation between each meltwater inflow input with its neighboring

meltwater inflow input, for example month-minus-0 to month-minus-1 and month-minus-1

to month-minus-2. In contrast, the meltwater inflow integrated over the entire previous

year has no neighboring time period with which it is strongly correlated. Finally, we find

that perturbing any input causes a decrease in the ANN accuracy, which implies that all

the inputs are to some extent useful for prediction.
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Table S1. Parameters of the GlaDS simulations
Parameter Value Units

Englacial void ratio 10−3 /
Pressure melt coefficient 7.5× 10−8 K Pa-1

Latent heat of fusion 334× 103 J kg-1

Bedrock bump height 0.1 m
Cavity spacing 2.0 m

Sheet conductivity 0.01 m7/4 kg-1/2

Channel conductivity 0.1 m3/2 kg-1/2
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Table S2. Architecture of the ANN
Layer Layer used Layer Activation Output
number as input type shape

0 - Input - 128×128×10
1 0 Conv 3×3 ReLU 128×128×24
2 1 Conv 3×3 ReLU 128×128×24
3 2 MaxPool 2×2 - 64×64×24
4 3 Conv 3×3 ReLU 64×64×48
5 4 Conv 3×3 ReLU 64×64×48
6 5 MaxPool 2×2 - 32×32×48
7 6 Conv 3×3 ReLU 32×32×94
8 7 Conv 3×3 ReLU (dropout p=0.2) 32×32×94
9 8,cos(2πt),sin(2πt) Concat - 32×32×96
10 9 Trans-Conv 2×2 - 64×64×48
11 5,10 Concat - 64×64×96
12 11 Conv 3×3 ReLU 64×64×48
13 12 Conv 3×3 ReLU 64×64×48
14 13 Trans-Conv 2×2 - 128×128×24
15 14 Conv 3×3 ReLU 128×128×24
16 15 Conv 3×3 ReLU 128×128×24
17 16 Conv 1×1 - 128×128×1
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Table S3. Training, validation, and test data split

Glacier (subdomain) Transformation Years 0-5 Years 5-32 Years 32-35 Years 35-40
Jakobshavn (0) None Discarded Train Validation Test
Jakobshavn (0) Diagonal symmetry Discarded Validation Validation Discarded
Jakobshavn (0) Vertical symmetry Discarded Train Validation Discarded
Jakobshavn (0) Horizontal symmetry Discarded Train Validation Discarded
Jakobshavn (1) None Discarded Train Validation Test
Jakobshavn (1) Diagonal symmetry Discarded Train Validation Discarded
Jakobshavn (1) Vertical symmetry Discarded Validation Validation Discarded
Jakobshavn (1) Horizontal symmetry Discarded Train Validation Discarded
Helheim (0) None Discarded Train Validation Test
Helheim (0) Diagonal symmetry Discarded Train Validation Discarded
Helheim (0) Vertical symmetry Discarded Train Validation Discarded
Helheim (0) Horizontal symmetry Discarded Validation Validation Discarded

Petermann (0) None Discarded Train Validation Test
Petermann (0) Diagonal symmetry Discarded Validation Validation Discarded
Petermann (0) Vertical symmetry Discarded Train Validation Discarded
Petermann (0) Horizontal symmetry Discarded Train Validation Discarded
Petermann (1) None Discarded Train Validation Test
Petermann (1) Diagonal symmetry Discarded Train Validation Discarded
Petermann (1) Vertical symmetry Discarded Validation Validation Discarded
Petermann (1) Horizontal symmetry Discarded Train Validation Discarded

Kangerlussuaq (0) None Discarded Train Validation Test
Kangerlussuaq (0) Diagonal symmetry Discarded Train Validation Discarded
Kangerlussuaq (0) Vertical symmetry Discarded Train Validation Discarded
Kangerlussuaq (0) Horizontal symmetry Discarded Validation Validation Discarded
Humboldt (0) None Discarded Train Validation Test
Humboldt (0) Diagonal symmetry Discarded Validation Validation Discarded
Humboldt (0) Vertical symmetry Discarded Train Validation Discarded
Humboldt (0) Horizontal symmetry Discarded Train Validation Discarded
Koge Bugt (0) None Discarded Train Validation Test
Koge Bugt (0) Diagonal symmetry Discarded Train Validation Discarded
Koge Bugt (0) Vertical symmetry Discarded Validation Validation Discarded
Koge Bugt (0) Horizontal symmetry Discarded Train Validation Discarded
Russell (0) None Discarded Train Validation Test
Russell (0) Diagonal symmetry Discarded Train Validation Discarded
Russell (0) Vertical symmetry Discarded Train Validation Discarded
Russell (0) Horizontal symmetry Discarded Validation Validation Discarded

Upernavik (0) None Discarded Test Test Test
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Figure S1. Model domains of the seven calibration glaciers ((a) Jakobshavn, (b) Helheim,

(c) Petermann, (d) Kangerlussuaq, (e) Humboldt, (f) Koge Bugt, (g) Russell), and of the test

glacier ((h) Upernavik). Map in the inset shows glacier locations. Light-grey points show mesh

vertices.
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Figure S2. Ratio of performance metrics on the validation data after random white noise

perturbation of input fields. The ratio is computed as the performance metric of the ANN

with input perturbation with respect to the performance metric of the ANN without input

perturbation. Metrics are (a) the coefficient of determination, (b) the Root Mean Square Error,

and (c) the absolute bias. The black horizontal dashed line shows the value of 1, corresponding

to no performance deterioration due to random input perturbation. Bed Topo is bed topography,

Runoff denotes the meltwater inflow at the instantaneous time step, Runoff x-y period denotes

the meltwater inflow integrated over the time interval between the past period x and period y.
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