References
Acker, T.S., Muscat, A.M., 1976. The Ecology of Craspedacusta
sowerbii Lankester, a freshwater Hydrozoan. The American Midland
Naturalist 95, 323–336. https://doi.org/10.2307/2424397
Álvarez, D., Nicieza, A.G., 2002. Effects of temperature and food
quality on anuran larval growth and metamorphosis. Functional Ecology
16, 640–648. https://doi.org/10.1046/j.1365-2435.2002.00658.x
Anderson, J.T., 2016. Plant fitness in a rapidly changing world. New
Phytologist 210, 81–87. https://doi.org/10.1111/nph.13693
Angilletta, M.J., 2009. Temperature and the life history, in: Angilletta
Jr., M.J. (Ed.), Thermal adaptation: A theoretical and empirical
synthesis. Oxford University Press, p. 157-180.
https://doi.org/10.1093/acprof:oso/9780198570875.003.0006
Angilletta, M.J., Niewiarowski, P.H., Navas, C.A., 2002. The evolution
of thermal physiology in ectotherms. Journal of Thermal Biology 27,
249–268. https://doi.org/10.1016/S0306-4565(01)00094-8
Arendt, J., 2015. Why get big in the cold? Size–fecundity relationships
explain the temperature-size rule in a pulmonate snail (Physa ).
Journal of Evolutionary Biology 28, 169–178.
https://doi.org/10.1111/jeb.12554
Audzijonyte, A., Jakubavičiūtė, E., Lindmark, M., Richards, S.A., 2022.
Mechanistic temperature-size rule explanation should reconcile
physiological and mortality responses to temperature. The Biological
Bulletin 000–000. https://doi.org/10.1086/722027
Blanchard, S., Lognay, G., Verheggen, F., Detrain, C., 2019. Today and
tomorrow: impact of climate change on aphid biology and potential
consequences on their mutualism with ants. Physiological Entomology 44,
77–86. https://doi.org/10.1111/phen.12275
Bosch, T.C., Krylow, S.M., Bode, H.R., Steele, R.E., 1988.
Thermotolerance and synthesis of heat shock proteins: these responses
are present in Hydra attenuata but absent in Hydra
oligactis . Proceedings of the National Academy of Sciences 85,
7927–7931.
Boutry, J., Tissot, S., Mekaoui, N., Dujon, A.M., Meliani, J., Hamede,
R., Ujvari, B., Roche, B., Nedelcu, A.M., Tokolyi, J., Thomas, F., 2022.
Tumors alter life history traits in the freshwater cnidarian,Hydra oligactis . iScience 25, 105034.
https://doi.org/10.1016/j.isci.2022.105034
Brooks, M., E., Kristensen, K., Benthem, K., J. ,van, Magnusson, A.,
Berg, C., W., Nielsen, A., Skaug, H., J., Mächler, M., Bolker, B., M.,
2017. glmmTMB balances speed and flexibility among packages for
Zero-inflated Generalized Linear Mixed Modeling. The R Journal 9, 378.
https://doi.org/10.32614/RJ-2017-066
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B.,
2004. Toward a Metabolic Theory of Ecology. Ecology 85, 1771–1789.
https://doi.org/10.1890/03-9000
Bryden, R.R., 1952. Ecology of Pelmatohydra oligactis in
Kirkpatricks Lake, Tennessee. Ecological Monographs 22, 45–68.
https://doi.org/10.2307/1948528
Cáceres, C.E., Schwalbach, M.S., 2001. How well do laboratory
experiments explain field patterns of zooplankton emergence? Freshwater
Biology 46, 1179–1189. https://doi.org/10.1046/j.1365-2427.2001.00737.x
Chamaillé-Jammes, S., Massot, M., Aragón, P., Clobert, J., 2006. Global
warming and positive fitness response in mountain populations of common
lizards Lacerta vivipara . Global Change Biology 12, 392–402.
https://doi.org/10.1111/j.1365-2486.2005.01088.x
Cooley, J.M., 1971. The effect of temperature on the development of
resting eggs of Diaptomus oregonensis Lillj (copepoda:
Calanoida). Limnology and Oceanography 16, 921–926.
https://doi.org/10.4319/lo.1971.16.6.0921
Decaestecker, E., De Meester, L., Mergeay, J., 2009. Cyclical
parthenogenesis in Daphnia : sexual versus asexual reproduction,
in: Schön, I., Martens, K., Dijk, P. (Eds.), Lost Sex: The Evolutionary
Biology of Parthenogenesis. Springer Netherlands, Dordrecht, pp.
295–316. https://doi.org/10.1007/978-90-481-2770-2_15
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor,
C.K., Haak, D.C., Martin, P.R., 2008. Impacts of climate warming on
terrestrial ectotherms across latitude. Proceedings of the National
Academy of Sciences 105, 6668–6672.
https://doi.org/10.1073/pnas.0709472105
Ekvall, M.K., Hansson, L.-A., 2012. Differences in recruitment and
life-history strategy alter zooplankton spring dynamics under
climate-change conditions. PLOS ONE 7, e44614.
https://doi.org/10.1371/journal.pone.0044614
Franch-Gras, L., García-Roger, E.M., Serra, M., José Carmona, M., 2017.
Adaptation in response to environmental unpredictability. Proceedings of
the Royal Society B: Biological Sciences 284, 20170427.
https://doi.org/10.1098/rspb.2017.0427
Fuchs, B., Wang, W., Graspeuntner, S., Li, Y., Insua, S., Herbst, E.-M.,
Dirksen, P., Böhm, A.-M., Hemmrich, G., Sommer, F., Domazet-Lošo, T.,
Klostermeier, U.C., Anton-Erxleben, F., Rosenstiel, P., Bosch, T.C.G.,
Khalturin, K., 2014. Regulation of Polyp-to-Jellyfish Transition in
Aurelia aurita. Current Biology 24, 263–273.
https://doi.org/10.1016/j.cub.2013.12.003
Gardner, J.L., Peters, A., Kearney, M.R., Joseph, L., Heinsohn, R.,
2011. Declining body size: a third universal response to warming? Trends
in Ecology & Evolution 26, 285–291.
Gergely, R, Tökölyi, J. in press . Resource availability modulates
the effect of body size on reproductive development. Ecology and
Evolution
Gilbert, J.J., 2017. Resting-egg hatching and early population
development in rotifers: a review and a hypothesis for differences
between shallow and deep waters. Hydrobiologia 796, 235–243.
https://doi.org/10.1007/s10750-016-2867-7
Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M., Charnov, E.L.,
2001. Effects of size and temperature on metabolic rate. Science 293,
2248–2251. https://doi.org/10.1126/science.1061967
Goldstein, J., Steiner, U.K., 2020. Ecological drivers of jellyfish
blooms – The complex life history of a ‘well-known’ medusa
(Aurelia aurita ). Journal of Animal Ecology 89, 910–920.
https://doi.org/10.1111/1365-2656.13147
Green, J., 1966. Seasonal variation in egg production by Cladocera.
Journal of Animal Ecology 35, 77–104. https://doi.org/10.2307/2691
Gulbrandsen, J., Johnsen, G.H., 1990. Temperature-dependent development
of parthenogenetic embryos in Daphnia pulex de Geer. Journal of
Plankton Research 12, 443–453. https://doi.org/10.1093/plankt/12.3.443
Gyllström, M., Hansson, L.-A., 2004. Dormancy in freshwater zooplankton:
Induction, termination and the importance of benthic-pelagic coupling.
Aquat. Sci. 66, 274–295. https://doi.org/10.1007/s00027-004-0712-y
Hairston, N.G., Kearns, C.M., 1995. The interaction of photoperiod and
temperature in diapause timing: a copepod example. The Biological
Bulletin 189, 42–48. https://doi.org/10.2307/1542200
Hartig, F., 2022. DHARMa: Residual diagnostics for hierarchical
(Multi-Level/Mixed) Regression Models (0.4.5).
Holst, S., 2012. Effects of climate warming on strobilation and ephyra
production of North Sea scyphozoan jellyfish, in: Purcell, J., Mianzan,
H., Frost, J.R. (Eds.), Jellyfish Blooms IV: Interactions with Humans
and Fisheries, Developments in Hydrobiology. Springer Netherlands,
Dordrecht, pp. 127–140. https://doi.org/10.1007/978-94-007-5316-7_10
Huey, R.B., Kingsolver, J.G., 2019. Climate warming, resource
availability, and the metabolic meltdown of ectotherms. The American
Naturalist 194, E140–E150. https://doi.org/10.1086/705679
Huey, R.B., Kingsolver, J.G., 1989. Evolution of thermal sensitivity of
ectotherm performance. Trends in Ecology & Evolution 4, 131–135.
https://doi.org/10.1016/0169-5347(89)90211-5
Innes, D.J., 1997. Sexual reproduction of Daphnia pulex in a
temporary habitat. Oecologia 111, 53–60.
https://doi.org/10.1007/s004420050207
Jenni, L., Kéry, M., 2003. Timing of autumn bird migration under climate
change: advances in long–distance migrants, delays in short–distance
migrants. Proceedings of the Royal Society of London. Series B:
Biological Sciences 270, 1467–1471.
https://doi.org/10.1098/rspb.2003.2394
Kaliszewicz, A., 2015. Intensity-dependent response to temperature in
Hydra clones. Zoological Sciences 32(1), 72-76. jzoo 32, 72–76.
https://doi.org/10.2108/zs140052
Kingsolver, J.G., Diamond, S.E., Buckley, L.B., 2013. Heat stress and
the fitness consequences of climate change for terrestrial ectotherms.
Functional Ecology 27, 1415–1423.
https://doi.org/10.1111/1365-2435.12145
Lee, K.P., Jang, T., Ravzanaadii, N., Rho, M.S., 2015. Macronutrient
balance modulates the temperature-size rule in an ectotherm. The
American Naturalist 186, 212–222. https://doi.org/10.1086/682072
Lenth, R., 2022. emmeans: Estimated Marginal Means, aka Least-Squares
Means. R package version 1.8.3.
Littlefield, C.L., 1991. Cell lineages in Hydra: Isolation and
characterization of an interstitial stem cell restricted to egg
production in Hydra oligactis . Developmental Biology 143,
378–388. https://doi.org/10.1016/0012-1606(91)90088-K
Littlefield, C.L., Finkemeier, C., Bode, H.R., 1991. Spermatogenesis inHydra oligactis : II. How temperature controls the reciprocity of
sexual and asexual reproduction. Developmental Biology 146, 292–300.
https://doi.org/10.1016/0012-1606(91)90231-Q
McCarty, J.P., 2001. Ecological consequences of recent climate change.
Conservation Biology 15, 320–331.
https://doi.org/10.1046/j.1523-1739.2001.015002320.x
McLean, K.D., Gowler, C.D., Dziuba, M.K., Zamani, H., Hall, S.R., Duffy,
M.A., 2022. Sexual recombination and temporal gene flow maintain host
resistance and genetic diversity. Evol Ecol.
https://doi.org/10.1007/s10682-022-10193-6
McNamara, J.M., Houston, A.I., 2008. Optimal annual routines: behaviour
in the context of physiology and ecology. Philosophical Transactions of
the Royal Society B: Biological Sciences 363, 301–319.
https://doi.org/10.1098/rstb.2007.2141
Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye,
A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A.,
Raper, S.C.B., Watterson, I.G., Weaver, A.J., Zhao, Z.C., 2007. Global
climate projections. Chapter 10.
Miklós, M., Laczkó, L., Sramkó, G., Barta, Z., Tökölyi, J., 2022.
Seasonal variation of genotypes and reproductive plasticity in a
facultative clonal freshwater invertebrate animal (Hydra
oligactis ) living in a temperate lake. Ecology and Evolution 12, e9096.
https://doi.org/10.1002/ece3.9096
Miklós, M., Laczkó, L., Sramkó, G., Sebestyén, F., Barta, Z., Tökölyi,
J., 2021. Phenotypic plasticity rather than genotype drives reproductive
choices in Hydra populations. Molecular Ecology 30, 1206–1222.
https://doi.org/10.1111/mec.15810
Molnár V, A., Tökölyi, J., Végvári, Z., Sramkó, G., Sulyok, J., Barta,
Z., 2012. Pollination mode predicts phenological response to climate
change in terrestrial orchids: a case study from central Europe. Journal
of Ecology 100, 1141–1152.
https://doi.org/10.1111/j.1365-2745.2012.02003.x
Ngo, K.S., R-Almási, B., Barta, Z., Tökölyi, J., 2021. Experimental
manipulation of body size alters life history in hydra. Ecology Letters
24, 728–738. https://doi.org/10.1111/ele.13698
Panov, V.E., Krylov, P.I., Riccardi, N., 2004. Role of diapause in
dispersal and invasion success by aquatic invertebrates. J Limnol 63,
56. https://doi.org/10.4081/jlimnol.2004.s1.56
Pelini, S.L., Diamond, S.E., MacLean, H., Ellison, A.M., Gotelli, N.J.,
Sanders, N.J., Dunn, R.R., 2012. Common garden experiments reveal
uncommon responses across temperatures, locations, and species of ants.
Ecology and Evolution 2, 3009–3015. https://doi.org/10.1002/ece3.407
Purcell, J.E., Uye, S., Lo, W.-T., 2007. Anthropogenic causes of
jellyfish blooms and their direct consequences for humans: a review.
Marine Ecology Progress Series 350, 153–174.
https://doi.org/10.3354/meps07093
R Core Team, 2020. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Reisa, J.J., 1973. Ecology of hydra, in: Biology of Hydra. Academic
Press, New York and London, pp. 59–105.
Ribi, G., Tardent, R., Tardent, P., Scascighini, C., 1985. Dynamics of
hydra populations in Lake Zürich, Switzerland, and Lake Maggiore, Italy.
Schweiz. Z. Hydrol 47, 45–56. https://doi.org/10.1007/BF02538183
Roff, D., 1993. Evolution Of Life Histories: Theory and Analysis.
Springer Science & Business Media.
Scheuerl, T., Stelzer, C.-P., 2019. Asexual reproduction changes
predator population dynamics in a life predator–prey system. Population
Ecology 61, 210–216. https://doi.org/10.1002/1438-390X.1017
Schröder, T., 2005. Diapause in monogonont rotifers. Hydrobiologia 546,
291–306. https://doi.org/10.1007/s10750-005-4235-x
Sebestyén, F., Barta, Z., Tökölyi, J., 2018. Reproductive mode, stem
cells and regeneration in a freshwater cnidarian with postreproductive
senescence. Functional Ecology 32, 2497–2508.
https://doi.org/10.1111/1365-2435.13189
Sebestyén, F., Miklós, M., Iván, K., Tökölyi, J., 2020. Age-dependent
plasticity in reproductive investment, regeneration capacity and
survival in a partially clonal animal (Hydra oligactis ). Journal
of Animal Ecology 89, 2246–2257.
https://doi.org/10.1111/1365-2656.13287
Shaffer, M.R., Davy, S.K., Maldonado, M., Bell, J.J., 2020. Seasonally
driven sexual and asexual reproduction in temperate Tethya species. Biol
Bull 238, 89–105. https://doi.org/10.1086/708624
Sheridan, J.A., Bickford, D., 2011. Shrinking body size as an ecological
response to climate change. Nature Climate Change 1, 401–406.
https://doi.org/10.1038/nclimate1259
Simon, J.-C., Rispe, C., Sunnucks, P., 2002. Ecology and evolution of
sex in aphids. Trends in Ecology & Evolution 17, 34–39.
https://doi.org/10.1016/S0169-5347(01)02331-X
Sinclair, B.J., Marshall, K.E., Sewell, M.A., Levesque, D.L., Willett,
C.S., Slotsbo, S., Dong, Y., Harley, C.D.G., Marshall, D.J., Helmuth,
B.S., Huey, R.B., 2016. Can we predict ectotherm responses to climate
change using thermal performance curves and body temperatures? Ecology
Letters 19, 1372–1385. https://doi.org/10.1111/ele.12686
Stearns, S.C., 1989. Trade-offs in life-history evolution. Functional
Ecology 3, 259–268. https://doi.org/10.2307/2389364
Thomas, C.D., 2010. Climate, climate change and range boundaries.
Diversity and Distributions 16, 488–495.
https://doi.org/10.1111/j.1472-4642.2010.00642.x
Thommen, A., Werner, S., Frank, O., Philipp, J., Knittelfelder, O.,
Quek, Y., Fahmy, K., Shevchenko, A., Friedrich, B.M., Jülicher, F.,
Rink, J.C., 2019. Body size-dependent energy storage causes Kleiber’s
law scaling of the metabolic rate in planarians. eLife 8, e38187.
https://doi.org/10.7554/eLife.38187
Tökölyi, J., Ősz, Z., Sebestyén, F., Barta, Z., 2017. Resource
allocation and post-reproductive degeneration in the freshwater
cnidarian Hydra oligactis (Pallas, 1766). Zoology 120, 110–116.
https://doi.org/10.1016/j.zool.2016.06.009
Tomczyk, S., Suknovic, N., Schenkelaars, Q., Wenger, Y., Ekundayo, K.,
Buzgariu, W., Bauer, C., Fischer, K., Austad, S., Galliot, B., 2020.
Deficient autophagy in epithelial stem cells drives aging in the
freshwater cnidarian Hydra. Development 147.
https://doi.org/10.1242/dev.177840
van Baaren, J., Le Lann, C., JM van Alphen, J., 2010. Consequences of
climate change for aphid-based multi-trophic systems, in: Kindlmann, P.,
Dixon, A.F.G., Michaud, J.P. (Eds.), Aphid biodiversity under
environmental change: patterns and processes. Springer Netherlands,
Dordrecht, pp. 55–68. https://doi.org/10.1007/978-90-481-8601-3_4
Vandekerkhove, J., Declerck, S., Brendonck, L., Conde-Porcuna, J.M.,
Jeppesen, E., Meester, L.D., 2005. Hatching of cladoceran resting eggs:
temperature and photoperiod. Freshwater Biology 50, 96–104.
https://doi.org/10.1111/j.1365-2427.2004.01312.x
Verberk, W.C.E.P., Atkinson, D., Hoefnagel, K.N., Hirst, A.G., Horne,
C.R., Siepel, H., 2021. Shrinking body sizes in response to warming:
explanations for the temperature–size rule with special emphasis on the
role of oxygen. Biological Reviews 96, 247–268.
https://doi.org/10.1111/brv.12653
Vowinckel, C., 1970. The role of illumination and temperature in the
control of sexual reproduction in the planarian Dugesia tigrina(girard). The Biological Bulletin 138, 77–87.
https://doi.org/10.2307/1540293
Walczyńska, A., Labecka, A.M., Sobczyk, M., Czarnoleski, M., Kozłowski,
J., 2015. The Temperature–Size Rule in Lecane inermis (Rotifera)
is adaptive and driven by nuclei size adjustment to temperature and
oxygen combinations. Journal of Thermal Biology, What sets the limit?
How thermal limits, performance and preference in ectotherms are
influenced by water or energy balance 54, 78–85.
https://doi.org/10.1016/j.jtherbio.2014.11.002
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee,
T.J.C., Fromentin, J.-M., Hoegh-Guldberg, O., Bairlein, F., 2002.
Ecological responses to recent climate change. Nature 416, 389–395.
https://doi.org/10.1038/416389a
Weitere, M., Vohmann, A., Schulz, N., Linn, C., Dietrich, D., Arndt, H.,
2009. Linking environmental warming to the fitness of the invasive clamCorbicula fluminea . Global Change Biology 15, 2838–2851.
https://doi.org/10.1111/j.1365-2486.2009.01925.x
Welch, P.S., Loomis, H.A., 1924. A limnological study of Hydra
oligactis in Douglas Lake, Michigan. Transactions of the American
Microscopical Society 43, 203–235. https://doi.org/10.2307/3221738
Winder, M., Schindler, D.E., 2004. Climate change uncouples trophic
interactions in an aquatic ecosystem. Ecology 85, 2100–2106.
https://doi.org/10.1890/04-0151
Yoshida, K., Fujisawa, T., Hwang, J.S., Ikeo, K., Gojobori, T., 2006.
Degeneration after sexual differentiation in hydra and its relevance to
the evolution of aging. Gene, Evolutionary Genomics 385, 64–70.
https://doi.org/10.1016/j.gene.2006.06.031
Table 1. Sexual development time, sexual fitness (number of gonads),
asexual fitness (number of buds) and survival rate of male and femaleH. oligactis polyps exposed to simulated summer heatwave (WS-CW),
elevated winter temperature (CS-WW), or both (WS-WW), compared to polyps
exposed to a cold summer – cold winter scenario (CS-CW). The table
shows estimated marginal means contrasts from Generalized Linear Mixed
Models (GLMMs) that included treatment as a fixed effect, and strain ID
and batch ID as random effects (see Methods for more detail). The type
of model is indicated above the contrasts: Gaussian
(“gaussian ”), Negative Binomial with linear parametrization
(“nbinom1 ”), Negative Binomial with quadratic parametrization
(“nbinom2 ”) or Binomial (“binomial ”). P-values are
after Dunnett’s correction for multiple comparisons. Significant
differences are highlighted in bold.