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Abstract16

Air-sea flux variability has contributions from both ocean and atmosphere at different17

spatio-temporal scales. Atmospheric synoptic scales and the air-sea turbulent heat flux18

that they drive are well represented in climate models, but ocean mesoscales and their19

associated variability are often not well resolved due to non-eddy-resolving spatial res-20

olutions of current climate models. We deploy a physics-based stochastic subgrid-scale21

parameterization for ocean density, that reinforces the lateral density variations due to22

oceanic eddies, and examine its effect on air-sea heat flux variability in a comprehensive23

coupled climate model. The stochastic parameterization substantially modifies sea sur-24

face temperature (SST) and latent heat flux (LHF) variability and their correlations, pri-25

marily at scales near the resolution of the ocean model grid. Changes in the SST-LHF26

anomaly correlations indicate that the ocean-intrinsic component of the air-sea heat flux27

variability improves with respect to the satellite observational product, especially in west-28

ern boundary current extensions.29

Plain Language Summary30

Variations in air-sea heat fluxes arise from both ocean and atmosphere at differ-31

ent space and time scales. Studies suggest that at large scales, e.g., thousands of kilo-32

meters, atmospheric processes drive the ocean variability at the surface, such as sea-surface33

temperature. However, at smaller spatial scales, e.g., [100−1000] km, the oceans con-34

trol the atmosphere variability near the air-sea interface. These local air-sea feedbacks35

influence both oceans and the atmosphere on various levels and are of significant dynam-36

ical importance. However, climate models typically use large grid spacing and fail to rep-37

resent the air-sea interaction mechanism inherent to these small scales. We address this38

problem by modifying the ocean density using random noise at multiple places in the39

model before coupling it to the atmosphere. We chose density because it is used for mul-40

tiple purposes in ocean models, and imperfections in it arise due to the missing subgrid-41

scale effects that can have a major impact all over the oceans, especially the upper ocean42

which interacts the most with the atmosphere. The proposed approach led to significant43

improvement in the air-sea interaction properties at various spatial scales compared to44

satellite observations.45

1 Introduction46

Air-sea coupling plays a key role in shaping the Earth’s climate and representing47

it correctly is essential for reducing the uncertainties in climate projections. Theoret-48

ical studies and satellite observations suggest that the mechanisms that control this cou-49

pling are largely length- and time-scale-dependent. In mid-latitudes and extratropics,50

synoptic-scale atmospheric weather patterns drive turbulent heat flux (THF) variabil-51

ity at scales larger than or equal to O(103) km through wind speed fluctuations and air-52

sea temperature and humidity anomalies. The generated THF anomaly receives a lagged53

response from the oceans, for example; heat loss from the oceans leading to cooling of54

the oceans on a timescale of several weeks (Xie, 2004). In contrast, at mesoscales (101−55

103 km), persistent and vigorous intrinsic eddy variability in the oceans creates strong56

SST anomalies and as the wind passes over them, strong air-sea temperature and hu-57

midity differences are generated that drive the THF variability (Hausmann et al., 2017).58

This mechanism is well represented in idealized coupled model studies, such as Hasselmann59

(1976); Frankignoul and Hasselmann (1977); von Storch (2000), where the atmospheric60

and oceanic forcings are specified stochastically, and their dominance is tuned using the61

noise amplitude.62

However, most global climate models employ ocean models at a non-eddy-resolving63

resolution, or eddy-permitting resolution at best, and therefore do not resolve the ocean64

mesoscale eddies (10-100 km) and the respective impact on the air-sea flux variability.65
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This is clearly problematic because studies have shown that the relative contributions66

of intrinsic oceanic and atmospheric variability in air-sea flux modulation bear enormous67

dynamical implications both for the oceans (Ma et al., 2016) and the atmosphere (Kuo68

et al., 1991; Minobe et al., 2008; Ma et al., 2017; Williams, 2012). The reader is referred69

to Czaja et al. (2019) for a concise review of the state of knowledge of modeled atmo-70

sphere response to mid-latitude SST and their scale dependence. The midlatitude SST71

fluctuations on scales close to the ocean deformation scale (i.e., 10-100 km) significantly72

affect the variability of lower atmosphere (reviewed in Small et al. (2008)) and the pre-73

dictability of the midlatitude weather system (Dunstone et al., 2016). Contemporary stud-74

ies involving ultra high-resolution of the atmosphere are starting to divulge the phys-75

ical mechanisms by which such small-scale oceanic variability is communicated to the76

troposphere above the atmospheric boundary layer (Parfitt et al., 2016; Foussard et al.,77

2019). These results underscore the importance of parameterizing/resolving such eddy78

variability at the ocean gridscale in order to reduce the uncertainty in air-sea fluxes and79

their climatic impacts.80

In this work, we employ a stochastic subgrid-scale (SGS) parameterization for ocean81

density and study its impact on air-sea THF variability in a coupled climate model. Ocean82

density depends on temperature T , salinity S, and pressure p through a nonlinear equa-83

tion of state (EOS); SGS fluctuations in T and S cause the grid-cell-averaged density84

to be different from that obtained by evaluating the EOS at the grid-cell-averaged val-85

ues of T and S (pressure fluctuations are sub-dominant). Brankart (2013) first proposed86

a parameterization for these density errors and discussed their non-trivial global impacts.87

An alternative parameterization, which is more accurate and more computationally ef-88

ficient, was proposed by Stanley et al. (2020) and tested in an ocean-only configuration89

by Kenigson et al. (2022). Whereas Kenigson et al. (2022) only tested the parameter-90

ization in the computation of the buoyancy force and associated hydrostatic pressure,91

we use this parameterization to correct density at three places in the ocean model: the92

hydrostatic pressure, isopycnal slopes in the Gent-McWilliams parameterization (here-93

inafter, GM; Gent and McWilliams (1990)), and the mixed-layer lateral buoyancy gra-94

dient in the mixed-layer restratification parameterization of Fox-Kemper et al. (2008).95

In this study, we aim to explore the possibility of employing this stochastic parameter-96

ization of the mesoscale eddy effects on density to strengthen the ocean-intrinsic SST97

variability and its impact on air-sea THF variability.98

2 Theory and Methods99

2.1 SGS Density Parameterization100

The ocean density correction used in this paper derives from the Taylor expansion101

of the nonlinear EOS (denoted as ρ̂) about the grid-cell average quantities. Following102

the notations used in Stanley et al. (2020), the corrected grid-cell-mean density (denoted103

ρ) is given as,104

ρ = ρ̂(T , S, p) +
∂2
T ρ̂(T , S, p)

2
σ2
T , (1)

where T (x, y, z, t) and S(x, y, z, t) are grid-cell-averaged temperature and salinity, respec-105

tively, and σ2
T (x, y, z) is the variance of unresolved SGS temperature. The stochastic pa-106

rameterization proposed by Stanley et al. (2020) for σ2
T is107

σ2
T = ceχ|δx ◦ ∇T |2. (2)

Here ∇T is the lateral gradient of the resolved temperature field, δx is the horizontal grid108

size, ◦ is the Hadamard product, χ(x, y, t) is a depth-independent normally-distributed109

random noise with zero mean and variance σ2
χ, and c is a tunable parameter. Stanley110

et al. (2020) performed a rigorous offline diagnostic for the parameter c for different spa-111

tial resolutions of the target model and suggested c = 0.25 for our model resolution.112
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However, following Kenigson et al. (2022) we increase this value to c = 0.5 to account113

for the weaker resolved temperature gradients in a coarse-model simulation compared114

to those obtained by coarsening a high-resolution simulation. The log-normal form of115

noise is chosen based on the statistical analysis of the residuals from the deterministic116

form (i.e., Eq. 2 without the term eχ), and the multiplicative formulation is adopted to117

ensure the parameterization expression is always positive, as we are approximating vari-118

ance. Furthermore, χ is uncorrelated in space but has the following AR(1) structure in119

time120

χ(x, y, t) = ϕ(x, y, t)χ(x, y, t− δt) + ϵ(x, y, t), (3)

where ϵ(x, y, t) is a zero-mean Gaussian random noise with no correlations in space and121

time. The variance of ϵ varies with the AR(1) parameter ϕ(x, y, t) such that the process122

variance σ2
χ remains constant; Stanley et al. (2020) found σ2

χ = 0.39. Next, ϕ(x, y, t)123

is expressed using the decorrelation time scale (τ) of the local kinetic energy as124

ϕ(x, y, t) = e
δt

τ(x,y,t) , (4)

where δt is the model baroclinic time step and τ is equal to125

τ(x, y, t) = k

√
δx2 + δy2

u2 + v2
. (5)

Here u(x, y, t) and v(x, y, t) are the upper-ocean instantaneous velocities, and k = 3.7126

is a tunable parameter whose value was estimated by Stanley et al. (2020). The decor-127

relation timescale τ essentially depends on the resolved fields, and the offline diagnos-128

tics have shown that it varies between a few days to several months for 2/3◦ resolution129

ocean model. The global map of the parameterized SGS temperature variance for a 2/3◦130

resolution MOM6 simulations stored as monthly mean is shown in Figure 1a. It is easy131

to note that the variance is significantly higher in mid-latitude western boundary cur-132

rent (WBC) regions compared to the tropics (note the logarithmic scaling). This is due133

to the enormous lateral temperature gradients and strong mesoscale eddy variability present134

in those regions.135

2.2 Model and Observations136

We tested the above parameterization in the Modular Ocean Model, version 6, (MOM6)137

ocean general circulation model which solves the hydrostatic primitive equations on a138

tripolar grid with C-grid horizontal stencil. It uses an Arbitrary Lagrangian-Eulerian ver-139

tical coordinate method (Adcroft et al., 2019; Griffies et al., 2020) and the energetically140

consistent mesoscale backscatter proposed byJansen et al. (2019) involving mesoscale eddy141

kinetic energy budget and GM parameterization. MOM6 is coupled to Los-Almos Sea142

Ice Model, version 5, (CICE5; Hunke et al. (2010)) in the Community Earth System Mod-143

eling Version 2.3, (CESM2) framework. The model uses the GEOMETRIC parameter-144

ization (Marshall et al., 2012) to set the GM coefficient κ. Explicit diapycnal mixing in145

the oceans due to convection and static instabilities is not permitted due to the hydro-146

static approximation, but is parameterized using the K-profile parameterization (KPP)147

proposed in Large et al. (1994); restratification of the mixed layer is handled using the148

FFH parameterization (Fox-Kemper et al., 2008). The Wright EOS (Wright, 1997) is149

used to compute density as a function of pressure, temperature, and salinity.150

We configured CESM-MOM6 as a fully coupled global ocean-atmosphere-sea ice151

model with 2/3◦ nominal spatial resolution for the ocean and sea-ice model and a coarser152

0.95◦×1.25◦ resolution for the atmosphere and the land component. The ocean model153

uses 65 vertical levels in z* coordinates (Adcroft & Campin, 2004) with finer vertical res-154

olution around the ocean surface (2.5m) and coarser towards the bottom (≈ 250m) and155

integrated using a baroclinic time step of 1800 seconds. The atmosphere is represented156

using the finite-volume based Community Atmospheric Model Version 6 (CAM6; Danabasoglu157

et al. (2020)) where the atmospheric primitive equations are discretized on 70 vertical158
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Figure 1. Illustration of the characteristics of the SGS density parameterization, model, and

observations: (a) Spatial pattern of the parameterized SGS SST variance using (2); (b)-(c) Stan-

dard deviation of monthly anomalies of SST and LHF, respectively, from CESM-MOM6 Stoch

simulation; (d)-(e) Same as (b)-(c) but for the J-OFURO3 observations for the period 2000-2015.

The monthly anomalies were computed by removing the monthly climatology and the linear

trend. In (a), the variance is scaled using log10, and the color bar denotes the exponent of 10.

levels and integrated using a time step of 300 seconds. The atmosphere, sea-ice, and land159

communicate their fluxes and state information every 30 mins via the CESM coupler bun-160

dled with the Earth System Modeling Framework (ESMF) distribution. The air-sea fluxes161

are computed within the coupler and are passed to the atmospheric model every 30 mins162

and to the ocean model every hour. The model was run for a total of 100 years under163

the pre-industrial greenhouse gas conditions with and without the stochastic SGS den-164

sity parameterization, referred to here as Stoch and Control, respectively. In this study,165

we have analyzed monthly means from the last 35 years of both experiments. We used166

monthly-mean products because mesoscale ocean eddy variability is strongest on monthly167

to annual time scales, and the employed eddy parameterization can be expected to pro-168

duce notable impacts on these frequencies.169

The benchmarking observational products of SST and surface heat fluxes used in170

this paper are taken from a remote-sensing-based third-generation Japanese ocean flux171

dataset, abbreviated J-OFURO3 (Tomita et al. (2019); hereinafter, also referred to as172

OBS). It provides datasets for surface heat, momentum, freshwater fluxes, and the as-173

sociated physical parameters over the ice-free global oceans from 1986-2017 in daily and174

monthly-mean temporal resolutions with 0.25 degrees spatial resolution; we used the monthly175

mean products. J-OFURO project computes the turbulent surface fluxes using a bulk176

method where all physical parameters are satellite-derived except the 2m air tempera-177

ture, which is obtained from the NCEP-DOE reanalysis product. The latest version, i.e.178

J-OFURO3, is a significant advancement over its predecessors as it uses state-of-the-art179

algorithms to estimate near-surface specific humidity and employs advanced techniques180

to combine multi-satellite sensor outputs. In addition, rigorous and systematic valida-181

tions against the in-situ observations and other datasets ensure more accuracy for J-OFURO3.182
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The OBS version 1.1 monthly-mean products are available from 1988-2017, but we only183

used the years 2000-2015 in this paper to avoid data gaps.184

For a basic illustration of the OBS and model outputs, standard deviations of the185

monthly anomalies of SST and LHF from the Stoch simulation and OBS are shown in186

Figure 1(b-e). While the spatial patterns of the SST and LHF variability are similar for187

both OBS and Stoch, the magnitude of the variability differs across them. This is es-188

pecially true near the ocean jets and currents, such as Gulf Stream (GS), Kuroshio, Oy-189

ashio, Agulhas, and Brazil-Malvinas confluence, which are the areas of focus in this study.190

These major jets and currents generally show a stronger SST/LHF variability in OBS191

than in the CESM-MOM6 simulation. Kuroshio is an exception to this, as the Stoch sim-192

ulation possesses stronger and more eastward extended sub-monthly SST variability in193

this region (compare Figure 1b and d). This is a known bias related to the convergence194

of the mean kinetic energy and the largest SST gradient regions (Thompson & Kwon,195

2010). Additionally, Stoch possesses significantly high LHF variability around the Labrador196

and Irminger seas region, which is perhaps related to a known long-term bias in this re-197

gion. Nevertheless, the generally reduced variance around the jets in model simulations198

is expected due to their coarse spatial resolution, which does not permit mesoscale ed-199

dies and their large-scale feedback and the difference in the lengths of model simulation200

and OBS products.201

2.3 Analysis Methods202

In this paper, we consider the latent heat flux (LHF) and SST for all our analy-203

ses. We only focus on the LHF component of the net surface heat flux because several204

previous studies have shown that latent heat dominates the net surface heat flux response205

to the SST; the contributions from the sensible and radiative heat fluxes are sub-dominant206

(Frankignoul & Kestenare, 2002; Park et al., 2005; Hausmann et al., 2017). In CESM207

simulations, LHF is computed using a bulk flux formula – proportional to the air den-208

sity, wind speed, and difference in the specific humidity saturated at the ocean surface209

(strongly dependent on SST) and of the air. The invoked parameterization influences210

LHF through the resolved variables for the oceans and the atmosphere used in the bulk211

formula.212

In this paper, we focus only on local air-sea interactions and study the changes pro-213

duced therein by the stochastic SGS density parameterization. As discussed in Section214

1, at ocean mesoscales, the LHF variability is driven by intrinsic SST variability, led by215

the mesoscale eddies. We call this SST variability intrinsic because it is not forced by216

air-sea heat flux anomalies unlike in the case of slow SST variations over large spatial217

scales. As a result of ocean-driven LHF variability, large outgoing heat flux is noticed218

over warm SST anomalies, and less heat flux is seen departing over the colder SST anoma-219

lies (Small et al., 2008, 2019). This suggests a positive instantaneous correlation between220

SST and LHF, where the sign convention is that the outgoing heat flux from the oceans221

is considered positive and incoming is negative. In contrast, at large scales (e.g., ocean222

basin size), the air is more in equilibrium with the slow-varying SST beneath it and leads223

to situations where significant outgoing heat flux from the oceans, driven by atmospheric224

forcing, is seen to cool the oceans. This refers to lagged SST (or, ocean) response to air-225

sea heat flux variations, i.e., small instantaneous SST-LHF correlation but large ∂(SST)/∂t-226

LHF correlation (Wu et al., 2006; Bishop et al., 2017; Small et al., 2019). Throughout227

this paper, we will use the term ‘instantaneous correlation’ to refer to the simultaneous228

SST-LHF correlation and ‘tendency correlation’ to refer to the ∂(SST)/∂t-LHF corre-229

lations. We use these two types of correlations to infer the dominant forcing in the ocean-230

atmosphere feedback mechanism, i.e., (1) if the instantaneous correlation is large, it sug-231

gests ocean (precisely, SST) forcing the atmosphere (or, latent heat flux variability), whereas232

(2) if ∂(SST)/∂t-LHF is large, it means the atmosphere driving the oceans. While (1)233

is believed to hold true at small scales, (2) is supposed to be the case at large scales. Be-234
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cause the SGS density parameterization corrects the ocean density on ocean mesoscales,235

it is expected to have a more significant impact on instantaneous correlations than ten-236

dency correlations, as synoptic-scale atmospheric processes are already well resolved in237

climate models. It bears noting that the 2/3◦ ocean model resolution does not resolve238

the mesoscale, so the direct impact of ocean mesoscales on LHF variability must be ab-239

sent from the model. But ocean mesoscales induce ocean-intrinsic variability at larger240

scales that are resolved, a process that is represented in part using the stochastic param-241

eterization.242

Because we intend to study the scale dependence of local correlations, we use a spa-243

tial filter on the original fields to separate the eddying part from their large-scale coun-244

terpart. We use a fast, efficient python package named GCM-Filters (Loose et al., 2022),245

which achieves filtering using an iterative application of a discrete Laplacian, resembling246

diffusion (Grooms et al., 2021). We use the Taper filter shape described by Grooms et247

al. (2021), which makes a sharper separation between large and small scales than Gaus-248

sian or boxcar filters. We used filtering length scales from 200 km up to 800 km with a249

spacing of 100 km. Although the term ‘eddy’ is frequently used to describe the small-250

scale part of a field produced by a high-pass spatial filter, we use the term sub-filter scale251

(SFS) to avoid confusion, since our model does not resolve mesoscale eddies. A monthly252

climatology (for both SST and LHF) is then computed and subtracted from the monthly-253

mean values to provide the monthly anomalies, followed by the removal of linear trend.254

3 Results255

In this section, we diagnose the impact of the SGS stochastic density corrections256

on the variability and co-variability of SST and LHF and pinpoint the gains/losses by257

comparing against the J-OFURO3 observational outputs. We also make efforts to ex-258

plain the identified parameterization impacts from a physical perspective. Furthermore,259

because the parameterization is mostly active near the regions of strong temperature fronts260

(see Figure 1a), from here onward we only focus on four regions: the GS and Kuroshio261

in the northern hemisphere, and the Agulhas and Brazil-Malvinas Confluence (BMC)262

in the southern hemisphere.263

3.1 Sub Filter Scale Variability264

To elucidate the modifications produced by the SGS density parameterization across265

scales, maps of the ratio of the standard deviations of the SFS SST from Stoch and Con-266

trol runs are shown in Figure 2. Here, the SFS fields are obtained using a filter size of267

500 km. It is evident that the density corrections produced by the parameterization sig-268

nificantly affect the SFS SST variability – as much as 30% shift in their standard devi-269

ation – in all four regions. While Agulhas is predominantly characterized by a net in-270

crease in their SFS variability, GS, Kuroshio, and BMC display a mixed response, i.e.,271

both increase (red) and decrease (blue). An increase/decrease in variability in the form272

of a red/blue dipole suggests that the parameterization is making dynamical adjustments273

by changing the positions of the mean currents (cf. Kenigson et al., 2022).274

In case of the GS, an increase in SFS variability is clear in the eastward extension275

portion of the jet between 35◦−45◦ N and 30◦−60◦W. This is a prominent feature of276

the parameterization, as several previous idealized studies have shown that mesoscale277

eddying features are paramount to producing eastward extension of jets (Shevchenko &278

Berloff, 2015; Agarwal et al., 2021). However, either minimal increase or a decrease in279

the variability is seen around the far-east extension of the jet. It is also intriguing to spot280

a region of significantly reduced SFS SST variability in the Irminger Sea and partly in281

the Labrador Sea between 50◦−60◦N and 30◦−50W. This is related to an increase in282

mixed-layer depth in this region (not shown), which increases the heat capacity of the283

mixed-layer column and, therefore, a decrease in the variation of the surface tempera-284
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Figure 2. Manifestation of the influence of the stochastic parameterization on variability

across different scales. Ratio of the standard deviation of SFS SST from Stoch and Control sim-

ulations in four most eminent frontal regions: GS, Kuroshio, Agulhas, and BMC. The filter size

used here is 500 km. The ratio is taken as Stoch over Control, so the red/blue indicates an in-

crease/decrease in the SFS SST variability due to the induced parameterization. The contour

lines belong to the standard deviations of the SFS SST from the Control experiment. The stars

denote the locations picked for the analysis in section 3.2 (in BMC, the star is at 42◦S, 56◦W).

The color scale is in dimensionless units.
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ture (more heat is now required to change the surface temperature by 1◦C). The Kuroshio285

extension mostly witnesses a decrease in the SFS SST variability, especially around the286

continental boundaries. A clear dipole is visible around the separation location, which287

hints at shift in the course of the jet. The physical correctness of this shift is discussed288

in section 3.2 using a more local analysis. The Agulhas return current is an eddy-rich289

region, and we see an increase in the SFS SST variability in a large swath of this region.290

The same is also true for the South Atlantic current, where a large number of locations291

possess 10− 30% increase in the SST variability. However, a region of decreased SST292

variability is seen around the Brazil-Malvinas confluence between 30◦−60◦W and 35◦−293

45◦S. The exact reason for this dip is not known, but may be related to the seasonal south-294

ward shift of the South Atlantic Current that Kenigson et al. (2022) found when ana-295

lyzing the effects of this parameterization in a forced-ocean simulation. We also analyzed296

the ratio of the standard deviations of SFS LHF but found them qualitatively similar297

and they are therefore not discussed here.298

3.2 Correlations299

Here we discuss the instantaneous and tendency correlations (as described in sec-300

tion 2.3) for the low-pass fields obtained using spatial filtering with filter sizes between301

200−800 km. We compute the correlations for both Control and Stoch simulations and302

compare them against OBS. We aim to establish physical significance of the parameter-303

ized density perturbations by studying their influence on large-scale patterns’ correla-304

tions and the associated transition length scale at which the THF variability changes from305

ocean-driven to atmospheric-driven. The transition length scale is computed as the fil-306

ter width cutoff at which the instantaneous and tendency correlation magnitudes inter-307

sect (Bishop et al., 2017). The correlation relationships discussed here are local in na-308

ture and belong to the locations marked by a star in Figure 2 in each of the four frontal309

regions. These locations have two important properties: (i) they possess high SFS SST310

variability (cf. the SFS SST standard deviation contours in Figure 2), and (ii) the pa-311

rameterization made a significant change in SFS variability at these locations, e.g., here312

all locations exhibit more than 15% change in their SFS SST standard deviation.313

The GS, Kuroshio, and Agulhas locations show higher instantaneous correlations314

for Stoch than Control for all filter lengths (Fig. 3, right column); the opposite is true315

for the tendency correlations. Physically this means that the parameterization is boost-316

ing the ocean-intrinsic THF variability and diminishing the fraction of THF that is atmospheric-317

forced across all scales at these locations. The augmentation of ocean-forced THF vari-318

ability by the parameterization is consistent with OBS (Fig. 3, left column), as the Con-319

trol instantaneous correlations are much smaller than OBS for nearly all filter sizes at320

these mesoscale-eddy-rich locations. Only in Kuroshio, Stoch THF variability goes too321

strongly ocean-forced compared to OBS beyond 500 km filter width. Modifications in322

the correlations by the stochastic parameterization are most pronounced near the small-323

est filter size (200 km), where the Control instantaneous correlations are too low and the324

tendency correlations are too high compared to OBS – especially for the GS and Kuroshio325

locations. However, despite the reinforcement, the Stoch instantaneous correlations are326

generally lower than the corresponding OBS values. A perfect match between Stoch and327

OBS is nevertheless not expected because the stochastic parameterization used here only328

accounts for one process (density variations), whereby ocean mesoscales induce variabil-329

ity at larger scales.330

The results for the BMC location are different from the other three locations, as331

it experiences a decrease in the instantaneous correlation and an increase in the tendency332

correlations across all filter sizes when subjected to the parameterization. The reason333

behind this is the seasonal southward shift in the Brazil current, and, therefore, the BMC334

location, as a response to the intense parameterized density correction in this region (Kenigson335

et al., 2022). Owing to this shift, the THF variability at the BMC location is more atmospheric-336
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Figure 3. Comparison of local correlations around major WBCs and their scale dependence.

Solid lines denote the instantaneous correlations and tendency correlations are depicted in dotted

lines. The left column belongs to OBS and the right one corresponds to CESM-MOM6 results.

In the right panels, blue/red curves belong to Stoch/Control runs. The rows correspond to the

chosen locations marked by stars in Figure 2. The filter length around which the instantaneous

and tendency correlation curves intersect is the transition length scale.
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driven in the Stoch outputs. This is consistent with OBS for 200−300 km filter sizes;337

outside this filter limit, Stoch’s instantaneous correlations are much smaller than OBS’s.338

Little difference exists between Stoch and Control tendency correlations in this region,339

and both are close to the OBS magnitudes for all filter sizes.340

Finally, we analyze the transition length scale, i.e., the length scale at which LHF341

variability switches from ocean-driven to atmospheric-driven. The induced stochastic pa-342

rameterization revises the transition lengths at all chosen locations and pushes them closer343

to the reference truth – the OBS values. This is clearer in the GS case, where the ad-344

dition of the stochastic parameterization increases the transition scale from ≈ 70 km345

(not shown) to ≈ 350 km, which is closer to but still below the OBS value of ≈ 550 km.346

At the BMC location, Stoch offers a smaller transition scale (≈ 380 km) than Control347

(≈ 440 km), yet slightly closer to the OBS value (≈ 400 km). At the Kuroshio and Ag-348

ulhas locations, the Control and Stoch THF outputs are atmospherically driven at the349

grid scale, and, therefore, the transition length scale is not defined. However, Stoch is350

less atmospheric-dominated and more ocean-dominated than Control, implying a big-351

ger transition length scale than Control.352

4 Conclusions and Discussion353

We implemented a physics-based stochastic subgrid-scale (SGS) parameterization354

for ocean density in a CESM-MOM6 coupled climate model and studied its impact on355

air-sea turbulent heat flux (THF) variability, primarily latent heat flux (LHF). Past stud-356

ies have shown that the air-sea flux variability is driven by oceanic-intrinsic variability357

at ocean mesoscales and by synoptic-scale atmospheric processes at larger scales, e.g.,358

O(1000) km. But, due to the spatial resolution of non-eddying ocean climate models,359

the air-sea flux variability due to intrinsic oceanic turbulence is not well represented. Here,360

we show that a SGS density parameterization successfully restores a significant portion361

of the missing ocean-intrinsic air-sea THF variability across turbulent, eddy-rich regions,362

such as western boundary currents and the adjacent re-circulation zones. This study is363

the first in its kind which shows the revival of intrinsic ocean-driven THF variability in364

a comprehensive coupled climate model using a systematic physics-based SGS param-365

eterization.366

The results presented in this paper are based on a localized study around four WBC367

regions – Gulf Stream (GS), Kuroshio, Agulhas, and Brazil-Malvinas Confluence (BMC)368

– and involves subfilter-scale (SFS) fields obtained using a highly scale-selective spatial369

filter. The parameterization significantly influences SFS SST and LHF variability around370

the western boundary current regions, as several locations display more than 30% increase371

in their standard deviation (figure 2). Instantaneous SST-LHF correlations and ∂SST/∂t372

- LHF tendency correlations as a function of the filter scale revealed the impact of the373

parameterization on large-scale SST-LHF covariability and the associated transition scales.374

We established that the changes in the SFS SST and LHF variances produced by the pa-375

rameterization are physically significant as they cascade to larger scales and yield sub-376

stantial modifications in the mean fields’ correlations, which were found consistent with377

the high-resolution J-OFURO3 observations. Although the high-/low-pass fields used378

in this paper are obtained using the Taper filtering kernel following Grooms et al. (2021),379

a Gaussian filtering kernel was also tested. The latter resulted in qualitatively similar380

results with a slight drop in the instantaneous SST-LHF correlations and an increase in381

the ∂SST/∂t - LHF tendency correlations; therefore, our results are robust to filtering382

kernels. The comparison of a pre-industrial climate simulation to modern observations383

is a limitation of this study. Nevertheless, the conclusion that the stochastic parameter-384

ization leads to increases in ocean-intrinsic air-sea heat flux variability is not likely to385

be sensitive to climate changes.386
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This work has significant potential for further advancements. One possible line of387

extension is a systematic study of seasonal dependence of the correlations and the tran-388

sition length scales while focusing on their physical mechanisms. Another possible re-389

finement is to make the whole study more consistent by considering a CESM-MOM6 sim-390

ulation with a spatial resolution similar to the observations (1/4◦ here). Presently the391

observations have more spatial scales resolved and higher variance across scales than the392

model output. It may also be valuable to develop a physics-based stochastic parameter-393

ization for small-scale air-sea flux variability by directly manipulating bulk flux formu-394

las, which possess significant covariability among its constituent variables – all interact-395

ing in a nonlinear fashion.396
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