Literature Cited
Aho, K., Derryberry, D. and Peterson, T. 2014. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95 (3): 631-636.
Aitken, S.N., Yeaman, S., Holliday, J.A., Wang, T. and Curtis‐McLane, S. 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary applications 1 (1): 95-111.
Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory. Akadémiai Kiadó, Budapest, Hungary. pp. 267-281.
Alexander, J.M., Diez, J.M. and Levine, J.M. 2015. Novel competitors shape species’ responses to climate change. Nature 525 (7570): 515-518.
Anderson, R.P. 2013. A framework for using niche models to estimate impacts of climate change on species distributions. Annals of the New York Academy of Sciences 1297 (1): 8-28. https://doi.org/10.1111/nyas.12264.
Anderson, S.C. and Ward, E.J. 2019. Black swans in space: modeling spatiotemporal processes with extremes. Ecology 100 (1): e02403. https://doi.org/10.1002/ecy.2403.
Anderson, S.C., Ward, E.J., English, P.A. and Barnett, L.A.K. 2022. sdmTMB: an R package for fast, flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotemporal random fields. bioRxiv: 2022.2003.2024.485545. 10.1101/2022.03.24.485545.
Anderson, S.C., Cooper, A.B., Jensen, O.P., Minto, C., Thorson, J.T., Walsh, J.C., Afflerbach, J., Dickey‐Collas, M., Kleisner, K.M. and Longo, C. 2017. Improving estimates of population status and trend with superensemble models. Fish and Fisheries 18 (4): 732-741.
Araújo, M. and Peterson, A. 2012. Uses and misuses of bioclimatic envelope models. Ecology 93 : 1527-1539. 10.2307/23225219.
Araújo, M.B. and New, M. 2007. Ensemble forecasting of species distributions. Trends in ecology & evolution 22 (1): 42-47.
Araújo, M.B., Anderson, R.P., Márcia Barbosa, A., Beale, C.M., Dormann, C.F., Early, R., Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R.B., Zimmermann, N.E. and Rahbek, C. 2019. Standards for distribution models in biodiversity assessments. Science Advances5 (1): eaat4858. 10.1126/sciadv.aat4858.
Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E.A. and De Clerck, O. 2018. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography 27 (3): 277-284. https://doi.org/10.1111/geb.12693.
Austin, M.P. and Van Niel, K.P. 2011. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography 38 (1): 1-8. https://doi.org/10.1111/j.1365-2699.2010.02416.x.
Baker, D.J., Maclean, I.M.D., Goodall, M. and Gaston, K.J. 2021. Species distribution modelling is needed to support ecological impact assessments. Journal of Applied Ecology 58 (1): 21-26. https://doi.org/10.1111/1365-2664.13782.
Barbet-Massin, M., Thuiller, W. and Jiguet, F. 2010. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33 (5): 878-886. https://doi.org/10.1111/j.1600-0587.2010.06181.x.
Baron, N. 2010. Escape from the ivory tower : a guide to making your science matter. Island Press.
Batalden, R.V., Oberhauser, K. and Peterson, A.T. 2007. Ecological Niches in Sequential Generations of Eastern North American Monarch Butterflies (Lepidoptera: Danaidae): The Ecology of Migration and Likely Climate Change Implications. Environmental Entomology 36 (6): 1365-1373. 10.1603/0046-225X(2007)36[1365:ENISGO]2.0.CO;2.
Bateman, B., Vanderwal, J. and Johnson, C. 2012. Nice weather for bettongs: Using weather events, not climate means, in species distribution models. Ecography 35 : 306-314. 10.2307/41418669.
Beaumont, L., Hughes, L. and Poulsen, M. 2005. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling 186 : 251-270. 10.1016/j.ecolmodel.2005.01.030.
Beck, J., Böller, M., Erhardt, A. and Schwanghart, W. 2014. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics 19 : 10-15. https://doi.org/10.1016/j.ecoinf.2013.11.002.
Bell, D. and Schlaepfer, D. 2016. On the dangers of model complexity without ecological justification in species distribution modeling. Ecological Modelling 330 : 50-59. 10.1016/j.ecolmodel.2016.03.012.
Bell, G. and Gonzalez, A. 2009. Evolutionary rescue can prevent extinction following environmental change. Ecology letters12 (9): 942-948.
Benito Garzón, M., Alía, R., Robson, T.M. and Zavala, M.A. 2011. Intra-specific variability and plasticity influence potential tree species distributions under climate change. Global Ecology and Biogeography 20 (5): 766-778. https://doi.org/10.1111/j.1466-8238.2010.00646.x.
Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F. and De Clerck, O. 2018. In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. Diversity and Distributions 24 (2): 144-157. https://doi.org/10.1111/ddi.12668.
Boyd, P.W., Rynearson, T.A., Armstrong, E.A., Fu, F., Hayashi, K., Hu, Z., Hutchins, D.A., Kudela, R.M., Litchman, E., Mulholland, M.R., Passow, U., Strzepek, R.F., Whittaker, K.A., Yu, E. and Thomas, M.K. 2013. Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters – Outcome of a Scientific Community-Wide Study. PLOS ONE 8 (5): e63091. 10.1371/journal.pone.0063091.
Bradie, J. and Leung, B. 2017. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. Journal of Biogeography 44 (6): 1344-1361. https://doi.org/10.1111/jbi.12894.
Brodie, S., Smith, J.A., Muhling, B.A., Barnett, L.A.K., Carroll, G., Fiedler, P., Bograd, S.J., Hazen, E.L., Jacox, M.G., Andrews, K.S., Barnes, C.L., Crozier, L.G., Fiechter, J., Fredston, A., Haltuch, M.A., Harvey, C.J., Holmes, E., Karp, M.A., Liu, O.R., Malick, M.J., Pozo Buil, M., Richerson, K., Rooper, C.N., Samhouri, J., Seary, R., Selden, R.L., Thompson, A.R., Tommasi, D., Ward, E.J. and Kaplan, I.C. 2022. Recommendations for quantifying and reducing uncertainty in climate projections of species distributions. Global Change Biology28 (22): 6586– 6601. https://doi.org/10.1111/gcb.16371.
Brodie, S.J., Thorson, J.T., Carroll, G., Hazen, E.L., Bograd, S., Haltuch, M.A., Holsman, K.K., Kotwicki, S., Samhouri, J.F., Willis-Norton, E. and Selden, R.L. 2020. Trade-offs in covariate selection for species distribution models: a methodological comparison. Ecography 43 (1): 11-24. https://doi.org/10.1111/ecog.04707.
Brown, C.D. and Vellend, M. 2014. Non-climatic constraints on upper elevational plant range expansion under climate change. Proceedings of the Royal Society B: Biological Sciences 281 (1794): 20141779.
Budescu, D.V., Por, H.-H. and Broomell, S.B. 2012. Effective communication of uncertainty in the IPCC reports. Climatic Change113 (2): 181-200. 10.1007/s10584-011-0330-3.
Carlson, S.M., Cunningham, C.J. and Westley, P.A. 2014. Evolutionary rescue in a changing world. Trends in Ecology & Evolution29 (9): 521-530.
Carr, M.H., Neigel, J.E., Estes, J.A., Andelman, S., Warner, R.R. and Largier, J.L. 2003. Comparing Marine and Terrestrial Ecosystems: Implications for the Design of Coastal Marine Reserves. Ecological Applications 13 (1): S90-S107.
Charney, N.D., Record, S., Gerstner, B.E., Merow, C., Zarnetske, P.L. and Enquist, B.J. 2021. A Test of Species Distribution Model Transferability Across Environmental and Geographic Space for 108 Western North American Tree Species. Frontiers in Ecology and Evolution9 (393). 10.3389/fevo.2021.689295.
Christin, S., Hervet, É. and Lecomte, N. 2019. Applications for deep learning in ecology. Methods in Ecology and Evolution 10 (10): 1632-1644.
Circles of Social Life. 1996. No Regrets: Circles of Climate Change Adaptation. Available from https://www.circlesofclimate.org/ [accessed April 27, 2022].
Corner, A., Shaw, C. and Clarke, J. 2018. Principles for effective communication and public engagement on climate change A Handbook for IPCC authors outreach Project team Lead Authors Contributing Author Editing & Production.
Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B. and Wood, S. 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391 (6669): 783-786.
Dietz, T. 2013. Bringing values and deliberation to science communication. Proceedings of the National Academy of Sciences110 (Supplement 3): 14081. 10.1073/pnas.1212740110.
Dormann, C., Bobrowski, M., Dehling, M., Harris, D., Hartig, F., Lischke, H., Moretti, M., Pagel, J., Pinkert, S., Schleuning, M., Schmidt, S., Sheppard, C., Steinbauer, M., Zeuss, D. and Kraan, C. 2018. Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography 27 . 10.1111/geb.12759.
Duplisea, D.E., Roux, M.-J., Hunter, K.L. and Rice, J. 2021. Fish harvesting advice under climate change: A risk-equivalent empirical approach. PLOS ONE 16 (2): e0239503. 10.1371/journal.pone.0239503.
Elith, J. and Leathwick, J.R. 2009. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics 40 (1): 677-697. 10.1146/annurev.ecolsys.110308.120159.
Elith, J., Burgman, M.A. and Regan, H.M. 2002. Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecological Modelling 157 (2): 313-329. https://doi.org/10.1016/S0304-3800(02)00202-8.
Elith, J., Leathwick, J.R. and Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77 (4): 802-813. 10.1111/j.1365-2656.2008.01390.x.
English, P.A., Ward, E.J., Rooper, C.N., Forrest, R.E., Rogers, L.A., Hunter, K.L., Edwards, A.M., Connors, B.M. and Anderson, S.C. 2021. Contrasting climate velocity impacts in warm and cool locations show that effects of marine warming are worse in already warmer temperate waters. Fish and Fisheries 23 (1): 239– 255. https://doi.org/10.1111/faf.12613.
Essington, T.E., Anderson, S.C., Barnett, L.A.K., Berger, H.M., Siedlecki, S.A. and Ward, E.J. 2022. Advancing statistical models to reveal the effect of dissolved oxygen on the spatial distribution of marine taxa using thresholds and a physiologically based index. Ecography 2022 (8): e06249. https://doi.org/10.1111/ecog.06249.
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J. and Taylor, K.E. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9 (5): 1937-1958. 10.5194/gmd-9-1937-2016.
Falloon, P., Challinor, A., Dessai, S., Hoang, L., Johnson, J. and Koehler, A.-K. 2014. Ensembles and uncertainty in climate change impacts. Frontiers in Environmental Science 2 (33). 10.3389/fenvs.2014.00033.
Fernandes, R.F., Scherrer, D. and Guisan, A. 2019. Effects of simulated observation errors on the performance of species distribution models. Diversity and Distributions 25 (3): 400-413. https://doi.org/10.1111/ddi.12868.
Flato, G.M. 2011. Earth system models: an overview. WIREs Climate Change2 (6): 783-800. https://doi.org/10.1002/wcc.148.
Fletcher, R.J., Hefley, T.J., Robertson, E.P., Zuckerberg, B., McCleery, R.A. and Dorazio, R.M. 2019. A practical guide for combining data to model species distributions. Ecology 100 (6): e02710. https://doi.org/10.1002/ecy.2710.
Franco, J.N., Tuya, F., Bertocci, I., Rodríguez, L., Martínez, B., Sousa-Pinto, I. and Arenas, F. 2018. The ‘golden kelp’ Laminaria ochroleuca under global change: Integrating multiple eco-physiological responses with species distribution models. Journal of Ecology106 (1): 47-58. https://doi.org/10.1111/1365-2745.12810.
Franklin, J., Davis, F., Ikegami, M., Syphard, A., Flint, L., Flint, A. and Hannah, L. 2013. Modeling plant species distributions under future climates: How fine scale do climate projections need to be? Global change biology 19 : 473-483. 10.1111/gcb.12051.
Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S.D. and Halpern, B.S. 2020. Cold range edges of marine fishes track climate change better than warm edges. Global Change Biology 26 (5): 2908-2922. https://doi.org/10.1111/gcb.15035.
Freeman, E. and Moisen, G. 2008. A Comparison of the Performance of Threshold Criteria for Binary Classification in Terms of Predicted Prevalence and Kappa. Ecological Modelling 217 : 48-58. 10.1016/j.ecolmodel.2008.05.015.
Frölicher, T.L., Rodgers, K.B., Stock, C.A. and Cheung, W.W.L. 2016. Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Global Biogeochemical Cycles 30 (8): 1224-1243. https://doi.org/10.1002/2015GB005338.
Gamliel, I., Buba, Y., Guy-Haim, T., Garval, T., Willette, D., Rilov, G. and Belmaker, J. 2020. Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography 43 (7): 1090-1106. https://doi.org/10.1111/ecog.04423.
Gardner, A.S., Maclean, I.M.D. and Gaston, K.J. 2019. Climatic predictors of species distributions neglect biophysiologically meaningful variables. Diversity and Distributions 25 (8): 1318-1333. https://doi.org/10.1111/ddi.12939.
Gelman, A., Meng, X.-L. and Stern, H. 1996. Posterior predictive assessment of model fitness via realized discrepancies. Statistica sinica: 733-760.
Giorgi, F. and Gutowski, W.J. 2015. Regional Dynamical Downscaling and the CORDEX Initiative. Annual Review of Environment and Resources40 (1): 467-490. 10.1146/annurev-environ-102014-021217.
Gomez, C., Nephin, J., Lang, S., Feyrer, L., Keyser, F. and Lazin, G. 2021. Spatial Data, Analysis and Modelling Forums: An initiative to broaden the collaborative research potential at DFO. Can. Tech. Rep. Aquat. Sci. . 3416, pp. v + 36 p.
Gottschalk, T.K., Aue, B., Hotes, S. and Ekschmitt, K. 2011. Influence of grain size on species–habitat models. Ecological Modelling222 (18): 3403-3412. https://doi.org/10.1016/j.ecolmodel.2011.07.008.
Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy, M.A., Tingley, R. and Wintle, B.A. 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography24 (3): 276-292. https://doi.org/10.1111/geb.12268.
Hao, T., Elith, J., Lahoz‐Monfort, J.J. and Guillera‐Arroita, G. 2020. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography43 (4): 549-558.
Hausfather, Z. and Peters, G. 2020. Emissions – the ‘business as usual’ story is misleading. Nature 577 : 618-620.
Hawkins, E. and Sutton, R. 2009. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society 90 (8): 1095-1108. 10.1175/2009BAMS2607.1.
Heltberg, R., Siegel, P.B. and Jorgensen, S.L. 2009. Addressing human vulnerability to climate change: Toward a ‘no-regrets’ approach. Global Environmental Change 19 (1): 89-99. https://doi.org/10.1016/j.gloenvcha.2008.11.003.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25 (15): 1965-1978. https://doi.org/10.1002/joc.1276.
Hilborn, R. 1987. Living with uncertainty in resource management. North American Journal of Fisheries Management 7 (1): 1-5.
Hoegh-Guldberg, O. and Bruno John, F. 2010. The Impact of Climate Change on the World’s Marine Ecosystems. Science 328 (5985): 1523-1528. 10.1126/science.1189930.
Hof, A., Jansson, R. and Nilsson, C. 2012. The usefulness of elevation as a predictor variable in species distribution modelling. Ecological Modelling 246 : 86-90. 10.1016/j.ecolmodel.2012.07.028.
Holdsworth, A.M., Zhai, L., Lu, Y. and Christian, J.R. 2021. Future Changes in Oceanography and Biogeochemistry Along the Canadian Pacific Continental Margin. Frontiers in Marine Science 8 .
Holt, R.D. 1990. The microevolutionary consequences of climate change. Trends in Ecology & Evolution 5 (9): 311-315. https://doi.org/10.1016/0169-5347(90)90088-U.
Homburg, K., Brandt, P., Drees, C. and Assmann, T. 2014. Evolutionarily significant units in a flightless ground beetle show different climate niches and high extinction risk due to climate change. Journal of Insect Conservation 18 (5): 781-790. 10.1007/s10841-014-9685-x.
IPCC. 1996. A brief overview of the IPCC Second Assessment Report. Climate Change Bulletin (10).
IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
IPCC. 2022. Climate Change 2022 Impacts, Adaptation and Vulnerability: Summary for Policymakers.
Iverson, L.R., Peters, M.P., Prasad, A.M. and Matthews, S.N. 2019. Analysis of Climate Change Impacts on Tree Species of the Eastern US: Results of DISTRIB-II Modeling. Forests 10 (4). 10.3390/f10040302.
Jarnevich, C.S., Stohlgren, T.J., Kumar, S., Morisette, J.T. and Holcombe, T.R. 2015. Caveats for correlative species distribution modeling. Ecological Informatics 29 : 6-15.
Johnson, K.F., Thorson, J.T. and Punt, A.E. 2019. Investigating the value of including depth during spatiotemporal index standardization. Fisheries Research 216 : 126-137. https://doi.org/10.1016/j.fishres.2019.04.004.
Johnston, A., Moran, N., Musgrove, A., Fink, D. and Baillie, S.R. 2020. Estimating species distributions from spatially biased citizen science data. Ecological Modelling 422 : 108927. https://doi.org/10.1016/j.ecolmodel.2019.108927.
Kearney, M. and Porter, W. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology letters 12 (4): 334-350.
Kingsolver, J.G., Arthur Woods, H., Buckley, L.B., Potter, K.A., MacLean, H.J. and Higgins, J.K. 2011. Complex life cycles and the responses of insects to climate change. In Oxford University Press.
Kordas, R.L., Harley, C.D.G. and O’Connor, M.I. 2011. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology 400 (1): 218-226. https://doi.org/10.1016/j.jembe.2011.02.029.
Kujala, H., Burgman, M.A. and Moilanen, A. 2013a. Treatment of uncertainty in conservation under climate change. Conservation Letters6 (2): 73-85. https://doi.org/10.1111/j.1755-263X.2012.00299.x.
Kujala, H., Moilanen, A., Araújo, M.B. and Cabeza, M. 2013b. Conservation Planning with Uncertain Climate Change Projections. PLOS ONE 8 (2): e53315. 10.1371/journal.pone.0053315.
Legendre, P. and Fortin, M.J. 1989. Spatial pattern and ecological analysis. Vegetatio 80 (2): 107-138.
Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne, J. and Grenouillet, G. 2020. Species better track climate warming in the oceans than on land. Nature Ecology & Evolution4 (8): 1044-1059. 10.1038/s41559-020-1198-2.
Liu, C., White, M. and Newell, G. 2011. Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 34 (2): 232-243.
Lowen, J.B., Hart, D.R., Stanley, R.R.E., Lehnert, S.J., Bradbury, I.R. and DiBacco, C. 2019. Assessing effects of genetic, environmental, and biotic gradients in species distribution modelling. ICES Journal of Marine Science 76 (6): 1762-1775. 10.1093/icesjms/fsz049.
Luoto, M. and Heikkinen, R.K. 2008. Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Global Change Biology 14 (3): 483-494. https://doi.org/10.1111/j.1365-2486.2007.01527.x.
Makino, A., Klein, C.J., Possingham, H.P., Yamano, H., Yara, Y., Ariga, T., Matsuhasi, K. and Beger, M. 2015. The Effect of Applying Alternate IPCC Climate Scenarios to Marine Reserve Design for Range Changing Species. Conservation Letters 8 (5): 320-328. https://doi.org/10.1111/conl.12147.
Maraun, D. 2016. Bias Correcting Climate Change Simulations - a Critical Review. Current Climate Change Reports 2 (4): 211-220. 10.1007/s40641-016-0050-x.
Martínez, B., Arenas, F., Trilla, A., Viejo, R.M. and Carreño, F. 2015. Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Global Change Biology 21 (4): 1422-1433. https://doi.org/10.1111/gcb.12655.
Merow, C., Wilson, A.M. and Jetz, W. 2017. Integrating occurrence data and expert maps for improved species range predictions. Global Ecology and Biogeography 26 (2): 243-258. https://doi.org/10.1111/geb.12539.
Monteiro, J.G., Jiménez, J.L., Gizzi, F., Přikryl, P., Lefcheck, J.S., Santos, R.S. and Canning-Clode, J. 2021. Novel approach to enhance coastal habitat and biotope mapping with drone aerial imagery analysis. Scientific Reports 11 (1): 574. 10.1038/s41598-020-80612-7.
Moreno-Amat, E., Mateo, R.G., Nieto-Lugilde, D., Morueta-Holme, N., Svenning, J.-C. and García-Amorena, I. 2015. Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecological Modelling312 : 308-317. https://doi.org/10.1016/j.ecolmodel.2015.05.035.
Muha, T.P., Rodríguez-Rey, M., Rolla, M. and Tricarico, E. 2017. Using Environmental DNA to Improve Species Distribution Models for Freshwater Invaders. Frontiers in Ecology and Evolution 5 : 158.
Muhling, B.A., Brodie, S., Smith, J.A., Tommasi, D., Gaitan, C.F., Hazen, E.L., Jacox, M.G., Auth, T.D. and Brodeur, R.D. 2020. Predictability of Species Distributions Deteriorates Under Novel Environmental Conditions in the California Current System. Frontiers in Marine Science 7 (589). 10.3389/fmars.2020.00589.
Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K. and Toxopeus, A.G. 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography 37 (2): 191-203. https://doi.org/10.1111/j.1600-0587.2013.00205.x.
Nature Editorials. 2022. Time to recognize authorship of open data. Nature 604 (8).
Nephin, J., Gregr, E.J., St. Germain, C., Fields, C. and Finney, J.L. 2020. Development of a Species Distribution Modelling Framework and its Application to Twelve Species on Canada’s Pacific Coast. DFO Can. Sci. Advis. Sec. Res. Doc. . 2020/004, pp. xii + 107 p.
O’Connor, M., Bruno, J., Gaines, S., Halpern, B., Lester, S., Kinlan, B. and Weiss, J. 2007. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences of the United States of America 104 : 1266-1271. 10.1073/pnas.0603422104.
Osborne, P.E. and Leitão, P.J. 2009. Effects of species and habitat positional errors on the performance and interpretation of species distribution models. Diversity and Distributions 15 (4): 671-681. https://doi.org/10.1111/j.1472-4642.2009.00572.x.
Pecl Gretta, T., Araújo Miguel, B., Bell Johann, D., Blanchard, J., Bonebrake Timothy, C., Chen, I.C., Clark Timothy, D., Colwell Robert, K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S., Garcia Raquel, A., Griffis Roger, B., Hobday Alistair, J., Janion-Scheepers, C., Jarzyna Marta, A., Jennings, S., Lenoir, J., Linnetved Hlif, I., Martin Victoria, Y., McCormack Phillipa, C., McDonald, J., Mitchell Nicola, J., Mustonen, T., Pandolfi John, M., Pettorelli, N., Popova, E., Robinson Sharon, A., Scheffers Brett, R., Shaw Justine, D., Sorte Cascade, J.B., Strugnell Jan, M., Sunday Jennifer, M., Tuanmu, M.-N., Vergés, A., Villanueva, C., Wernberg, T., Wapstra, E. and Williams Stephen, E. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355 (6332): eaai9214. 10.1126/science.aai9214.
Peña, M.A., Fine, I. and Callendar, W. 2019. Interannual variability in primary production and shelf-offshore transport of nutrients along the northeast Pacific Ocean margin. Deep Sea Research Part II: Topical Studies in Oceanography 169-170 : 104637. https://doi.org/10.1016/j.dsr2.2019.104637.
Petitgas, P., Rijnsdorp, A.D., Dickey-Collas, M., Engelhard, G.H., Peck, M.A., Pinnegar, J.K., Drinkwater, K., Huret, M. and Nash, R.D.M. 2013. Impacts of climate change on the complex life cycles of fish. Fisheries Oceanography 22 (2): 121-139. https://doi.org/10.1111/fog.12010.
Phillips, S.J., Anderson, R.P. and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling190 (3-4): 231-259.
Piironen, J. and Vehtari, A. 2017. Comparison of Bayesian predictive methods for model selection. Statistics and Computing 27 (3): 711-735.
Pinsky, M.L. and Fogarty, M. 2012. Lagged social-ecological responses to climate and range shifts in fisheries. Climatic Change 115 (3): 883-891. 10.1007/s10584-012-0599-x.
Pollock, L.J., O’Connor, L.M.J., Mokany, K., Rosauer, D.F., Talluto, M.V. and Thuiller, W. 2020. Protecting Biodiversity (in All Its Complexity): New Models and Methods. Trends in Ecology & Evolution35 (12): 1119-1128. https://doi.org/10.1016/j.tree.2020.08.015.
Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O’Hara, R.B., Parris, K.M., Vesk, P.A. and McCarthy, M.A. 2014. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution5 (5): 397-406. https://doi.org/10.1111/2041-210X.12180.
Pörtner, H.O. and Peck, M.A. 2010. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. Journal of Fish Biology 77 (8): 1745-1779. https://doi.org/10.1111/j.1095-8649.2010.02783.x.
Raimi, K.T., Stern, P.C. and Maki, A. 2017. The Promise and Limitations of Using Analogies to Improve Decision-Relevant Understanding of Climate Change. PLOS ONE 12 (1): e0171130. 10.1371/journal.pone.0171130.
Randin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E., Pearman, P.B., Vittoz, P., Thuiller, W. and Guisan, A. 2009. Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology 15 (6): 1557-1569. https://doi.org/10.1111/j.1365-2486.2008.01766.x.
Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera‐Arroita, G., Hauenstein, S., Lahoz‐Monfort, J.J., Schröder, B. and Thuiller, W. 2017. Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography40 (8): 913-929.
Robinson, L.M., Elith, J., Hobday, A.J., Pearson, R.G., Kendall, B.E., Possingham, H.P. and Richardson, A.J. 2011. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography 20 (6): 789-802. https://doi.org/10.1111/j.1466-8238.2010.00636.x.
Roux, M.-J., Duplisea, D.E., Hunter, K.L. and Rice, J. 2022. Consistent Risk Management in a Changing World: Risk Equivalence in Fisheries and Other Human Activities Affecting Marine Resources and Ecosystems. Frontiers in Climate 3 .
Rufener, M.C., Kristensen, K., Nielsen, J.R. and Bastardie, F. 2021. Bridging the gap between commercial fisheries and survey data to model the spatiotemporal dynamics of marine species. Ecological Applications: e02453.
Schloss, C.A., Nuñez, T.A. and Lawler, J.J. 2012. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proceedings of the National Academy of Sciences 109 (22): 8606-8611.
Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C. and Zhang, X. 2012. Changes in climate extremes and their impacts on the natural physical environment: An overview of the IPCC SREX report. In p. 12566.
Seo, C., Thorne, J., Hannah, L. and Thuiller, W. 2008. Scale effects in species distribution models: Implications for conservation planning under climate change. Biology letters 5 : 39-43. 10.1098/rsbl.2008.0476.
Shelton, A.O., Thorson, J.T., Ward, E.J. and Feist, B.E. 2014. Spatial semiparametric models improve estimates of species abundance and distribution. Canadian Journal of Fisheries and Aquatic Sciences71 (11): 1655-1666.
Skroblin, A., Carboon, T., Bidu, G., Chapman, N., Miller, M., Taylor, K., Taylor, W., Game, E.T. and Wintle, B.A. 2021. Including indigenous knowledge in species distribution modeling for increased ecological insights. Conservation Biology 35 (2): 587-597. https://doi.org/10.1111/cobi.13373.
Sofaer, H.R., Jarnevich, C.S., Pearse, I.S., Smyth, R.L., Auer, S., Cook, G.L., Edwards Jr, T.C., Guala, G.F., Howard, T.G. and Morisette, J.T. 2019. Development and delivery of species distribution models to inform decision-making. BioScience 69 (7): 544-557.
Stammer, D., Engels, A., Marotzke, J., Gresse, E., Hedemann, C. and Petzold, J. 2021. Hamburg Climate Futures Outlook 2021. Assessing the plausibility of deep decarbonization by 2050. Hamburg, Germany.
Stoklosa, J., Daly, C., Foster, S.D., Ashcroft, M.B. and Warton, D.I. 2015. A climate of uncertainty: accounting for error in climate variables for species distribution models. Methods in Ecology and Evolution 6 (4): 412-423.
Sunday, J., Bates, A. and Dulvy, N. 2012. Thermal tolerance and the global redistribution of animals. Nature Climate Change 2 : 686–690. 10.1038/nclimate1539.
Thompson, P.L. and Gonzalez, A. 2017. Dispersal governs the reorganization of ecological networks under environmental change. Nature Ecology & Evolution 1 (6): 1-8.
Thompson, P.L. and Fronhofer, E.A. 2019. The conflict between adaptation and dispersal for maintaining biodiversity in changing environments. Proceedings of the National Academy of Sciences 116 (42): 21061-21067.
Thompson, P.L., Guzman, L.M., De Meester, L., Horváth, Z., Ptacnik, R., Vanschoenwinkel, B., Viana, D.S. and Chase, J.M. 2020. A process-based metacommunity framework linking local and regional scale community ecology. bioRxiv: 832170. 10.1101/832170.
Thompson, P.L., Anderson, S.C., Nephin, J., Haggarty, D.R., Peña, M.A., English, P.A., Gale, K.S.P. and Rubidge, E. 2022a. Disentangling the impacts of environmental change and commercial fishing on demersal fish biodiversity in a northeast Pacific ecosystem. Marine Ecology Progress Series 689 : 137-154.
Thompson, P.L., Nephin, J., Davies, S.C., Park, A.E., Lyons, D.A., Rooper, C.N., Peña, M.A., Christian, J.R., Hunter, K.L., Rubidge, E. and Holdsworth, A.M. 2022b. Groundfish biodiversity change in northeastern Pacific waters under projected warming and deoxygenation. bioRxiv: 2022.2005.2004.490690. 10.1101/2022.05.04.490690.
Thorson, J.T. and Minto, C. 2014. Mixed effects: a unifying framework for statistical modelling in fisheries biology. ICES Journal of Marine Science 72 (5): 1245-1256. 10.1093/icesjms/fsu213.
Thorson, J.T., Shelton, A.O., Ward, E.J. and Skaug, H.J. 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES Journal of Marine Science 72 (5): 1297-1310. 10.1093/icesjms/fsu243.
Thorson, J.T., Barbeaux, S.J., Goethel, D.R., Kearney, K.A., Laman, E.A., Nielsen, J.K., Siskey, M.R., Siwicke, K. and Thompson, G.G. 2021. Estimating fine-scale movement rates and habitat preferences using multiple data sources. Fish and Fisheries 22 (6): 1359-1376. https://doi.org/10.1111/faf.12592.
Thuiller, W., Brotons, L., Araújo, M. and Lavorel, S. 2004. Effects of restricting range of data to project current and future species distributions. Ecography 27 : 165-172. 10.1111/j.0906-7590.2004.03673.x.
Thuiller, W., Guéguen, M., Renaud, J., Karger, D.N. and Zimmermann, N.E. 2019. Uncertainty in ensembles of global biodiversity scenarios. Nature Communications 10 (1): 1-9.
Tittensor, D., Blanchard, J., Fulton, E., Cheung, W., Novaglio, C., Harrison, C., Heneghan, R., Barrier, N., Bianchi, D., Bopp, L., Bryndum-Buchholz, A., Britten, G., Büchner, M., Christensen, V., Coll, M., Dunne, J., Eddy, T., Everett, J., Fernandes, J. and Stock, C. 2021. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change. 10.1038/s41558-021-01173-9.
Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F. and De Clerck, O. 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography21 (2): 272-281. https://doi.org/10.1111/j.1466-8238.2011.00656.x.
Urban, M.C. 2019. Projecting biological impacts from climate change like a climate scientist. WIREs Climate Change 10 (4): e585. https://doi.org/10.1002/wcc.585.
Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.B., Pe’er, G., Singer, A., Bridle, J.R., Crozier, L.G., De Meester, L., Godsoe, W., Gonzalez, A., Hellmann, J.J., Holt, R.D., Huth, A., Johst, K., Krug, C.B., Leadley, P.W., Palmer, S.C.F., Pantel, J.H., Schmitz, A., Zollner, P.A. and Travis, J.M.J. 2016. Improving the forecast for biodiversity under climate change. Science 353 (6304): aad8466. 10.1126/science.aad8466.
Urli, M., Brown, C.D., Narvaez Perez, R., Chagnon, P.L. and Vellend, M. 2016. Increased seedling establishment via enemy release at the upper elevational range limit of sugar maple. Ecology 97 (11): 3058-3069.
US National Research Council. 2008. Public participation in environmental assessment and decision making. National Academy Press, Washington, USA.
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M.B., Balaguer, L., Benito-Garzón, M., Cornwell, W., Gianoli, E., van Kleunen, M., Naya, D.E., Nicotra, A.B., Poorter, H. and Zavala, M.A. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters 17 (11): 1351-1364. https://doi.org/10.1111/ele.12348.
Vehtari, A., Gelman, A. and Gabry, J. 2017. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and computing 27 (5): 1413-1432.
Vellend, M. 2016. The theory of ecological communities (MPB-57). Princeton University Press.
Villero, D., Pla, M., Camps, D., Ruiz-Olmo, J. and Brotons, L. 2017. Integrating species distribution modelling into decision-making to inform conservation actions. Biodiversity and Conservation 26 . 10.1007/s10531-016-1243-2.
Virkkala, R., Marmion, M., Heikkinen, R., Thuiller, W. and Luoto, M. 2010. Predicting range shifts of northern bird species: Influence of modelling technique and topography. Acta Oecologica 36 : 269-281. 10.1016/j.actao.2010.01.006.
Wallingford, P.D. and Sorte, C.J.B. 2022. Dynamic species interactions associated with the range-shifting marine gastropod Mexacanthina lugubris. Oecologia. 10.1007/s00442-022-05128-5.
Warton, D.I., Blanchet, F.G., O’Hara, R.B., Ovaskainen, O., Taskinen, S., Walker, S.C. and Hui, F.K.C. 2015. So many variables: Joint modeling in community ecology. Trends in Ecology & Evolution 30 (12): 766-779. https://doi.org/10.1016/j.tree.2015.09.007.
Watson, J., Joy, R., Tollit, D.J., Thornton, S.J. and Auger Méthé, M. 2019. Estimating animal utilization distributions from multiple data types: a joint spatio-temporal point process framework. arXiv: Methodology. https://doi.org/10.48550/arXiv.1911.00151.
Weiskopf, S.R., Rubenstein, M.A., Crozier, L.G., Gaichas, S., Griffis, R., Halofsky, J.E., Hyde, K.J.W., Morelli, T.L., Morisette, J.T., Muñoz, R.C., Pershing, A.J., Peterson, D.L., Poudel, R., Staudinger, M.D., Sutton-Grier, A.E., Thompson, L., Vose, J., Weltzin, J.F. and Whyte, K.P. 2020. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of The Total Environment 733 : 137782. https://doi.org/10.1016/j.scitotenv.2020.137782.
Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. and Snyder, M.A. 2009. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences106 (Supplement 2): 19729. 10.1073/pnas.0901639106.
Wiens, J.J. 2016. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLOS Biology 14 (12): e2001104. 10.1371/journal.pbio.2001104.
Willis, K. and Bhagwat, S. 2009. Biodiversity and Climate Change. Science (New York, N.Y.) 326 : 806-807. 10.1126/science.1178838.
Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L. and Fu, C. 2021. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Scientific Data 8 (1): 293. 10.1038/s41597-021-01079-3.
Young, M. and Carr, M.H. 2015. Application of species distribution models to explain and predict the distribution, abundance and assemblage structure of nearshore temperate reef fishes. Diversity and Distributions 21 (12): 1428-1440. https://doi.org/10.1111/ddi.12378.
Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H. and Ranjbar, H. 2021. Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. PLOS ONE16 (9): e0256918. 10.1371/journal.pone.0256918.
Zarnetske, P.L., Skelly, D.K. and Urban, M.C. 2012. Biotic multipliers of climate change. Science 336 (6088): 1516-1518.
Zurell, D., Franklin, J., König, C., Bouchet, P.J., Dormann, C.F., Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J.J., Leitão, P.J., Park, D.S., Peterson, A.T., Rapacciuolo, G., Schmatz, D.R., Schröder, B., Serra-Diaz, J.M., Thuiller, W., Yates, K.L., Zimmermann, N.E. and Merow, C. 2020. A standard protocol for reporting species distribution models. Ecography43 (9): 1261-1277. https://doi.org/10.1111/ecog.04960.