Literature Cited
Aho, K., Derryberry, D. and Peterson, T. 2014. Model selection for
ecologists: the worldviews of AIC and BIC. Ecology 95 (3):
631-636.
Aitken, S.N., Yeaman, S., Holliday, J.A., Wang, T. and Curtis‐McLane, S.
2008. Adaptation, migration or extirpation: climate change outcomes for
tree populations. Evolutionary applications 1 (1): 95-111.
Akaike, H. 1973. Information theory and an extension of the maximum
likelihood principle. In 2nd International Symposium on
Information Theory. Akadémiai Kiadó, Budapest, Hungary. pp. 267-281.
Alexander, J.M., Diez, J.M. and Levine, J.M. 2015. Novel competitors
shape species’ responses to climate change. Nature 525 (7570):
515-518.
Anderson, R.P. 2013. A framework for using niche models to estimate
impacts of climate change on species distributions. Annals of the New
York Academy of Sciences 1297 (1): 8-28.
https://doi.org/10.1111/nyas.12264.
Anderson, S.C. and Ward, E.J. 2019. Black swans in space: modeling
spatiotemporal processes with extremes. Ecology 100 (1): e02403.
https://doi.org/10.1002/ecy.2403.
Anderson, S.C., Ward, E.J., English, P.A. and Barnett, L.A.K. 2022.
sdmTMB: an R package for fast, flexible, and user-friendly generalized
linear mixed effects models with spatial and spatiotemporal random
fields. bioRxiv: 2022.2003.2024.485545. 10.1101/2022.03.24.485545.
Anderson, S.C., Cooper, A.B., Jensen, O.P., Minto, C., Thorson, J.T.,
Walsh, J.C., Afflerbach, J., Dickey‐Collas, M., Kleisner, K.M. and
Longo, C. 2017. Improving estimates of population status and trend with
superensemble models. Fish and Fisheries 18 (4): 732-741.
Araújo, M. and Peterson, A. 2012. Uses and misuses of bioclimatic
envelope models. Ecology 93 : 1527-1539. 10.2307/23225219.
Araújo, M.B. and New, M. 2007. Ensemble forecasting of species
distributions. Trends in ecology & evolution 22 (1): 42-47.
Araújo, M.B., Anderson, R.P., Márcia Barbosa, A., Beale, C.M., Dormann,
C.F., Early, R., Garcia, R.A., Guisan, A., Maiorano, L., Naimi, B.,
O’Hara, R.B., Zimmermann, N.E. and Rahbek, C. 2019. Standards for
distribution models in biodiversity assessments. Science Advances5 (1): eaat4858. 10.1126/sciadv.aat4858.
Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E.A. and
De Clerck, O. 2018. Bio-ORACLE v2.0: Extending marine data layers for
bioclimatic modelling. Global Ecology and Biogeography 27 (3):
277-284. https://doi.org/10.1111/geb.12693.
Austin, M.P. and Van Niel, K.P. 2011. Improving species distribution
models for climate change studies: variable selection and scale. Journal
of Biogeography 38 (1): 1-8.
https://doi.org/10.1111/j.1365-2699.2010.02416.x.
Baker, D.J., Maclean, I.M.D., Goodall, M. and Gaston, K.J. 2021. Species
distribution modelling is needed to support ecological impact
assessments. Journal of Applied Ecology 58 (1): 21-26.
https://doi.org/10.1111/1365-2664.13782.
Barbet-Massin, M., Thuiller, W. and Jiguet, F. 2010. How much do we
overestimate future local extinction rates when restricting the range of
occurrence data in climate suitability models? Ecography 33 (5):
878-886. https://doi.org/10.1111/j.1600-0587.2010.06181.x.
Baron, N. 2010. Escape from the ivory tower : a guide to making your
science matter. Island Press.
Batalden, R.V., Oberhauser, K. and Peterson, A.T. 2007. Ecological
Niches in Sequential Generations of Eastern North American Monarch
Butterflies (Lepidoptera: Danaidae): The Ecology of Migration and Likely
Climate Change Implications. Environmental Entomology 36 (6):
1365-1373. 10.1603/0046-225X(2007)36[1365:ENISGO]2.0.CO;2.
Bateman, B., Vanderwal, J. and Johnson, C. 2012. Nice weather for
bettongs: Using weather events, not climate means, in species
distribution models. Ecography 35 : 306-314. 10.2307/41418669.
Beaumont, L., Hughes, L. and Poulsen, M. 2005. Predicting species
distributions: Use of climatic parameters in BIOCLIM and its impact on
predictions of species’ current and future distributions. Ecological
Modelling 186 : 251-270. 10.1016/j.ecolmodel.2005.01.030.
Beck, J., Böller, M., Erhardt, A. and Schwanghart, W. 2014. Spatial bias
in the GBIF database and its effect on modeling species’ geographic
distributions. Ecological Informatics 19 : 10-15.
https://doi.org/10.1016/j.ecoinf.2013.11.002.
Bell, D. and Schlaepfer, D. 2016. On the dangers of model complexity
without ecological justification in species distribution modeling.
Ecological Modelling 330 : 50-59.
10.1016/j.ecolmodel.2016.03.012.
Bell, G. and Gonzalez, A. 2009. Evolutionary rescue can prevent
extinction following environmental change. Ecology letters12 (9): 942-948.
Benito Garzón, M., Alía, R., Robson, T.M. and Zavala, M.A. 2011.
Intra-specific variability and plasticity influence potential tree
species distributions under climate change. Global Ecology and
Biogeography 20 (5): 766-778.
https://doi.org/10.1111/j.1466-8238.2010.00646.x.
Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F. and De Clerck, O.
2018. In search of relevant predictors for marine species distribution
modelling using the MarineSPEED benchmark dataset. Diversity and
Distributions 24 (2): 144-157.
https://doi.org/10.1111/ddi.12668.
Boyd, P.W., Rynearson, T.A., Armstrong, E.A., Fu, F., Hayashi, K., Hu,
Z., Hutchins, D.A., Kudela, R.M., Litchman, E., Mulholland, M.R.,
Passow, U., Strzepek, R.F., Whittaker, K.A., Yu, E. and Thomas, M.K.
2013. Marine Phytoplankton Temperature versus Growth Responses from
Polar to Tropical Waters – Outcome of a Scientific Community-Wide
Study. PLOS ONE 8 (5): e63091. 10.1371/journal.pone.0063091.
Bradie, J. and Leung, B. 2017. A quantitative synthesis of the
importance of variables used in MaxEnt species distribution models.
Journal of Biogeography 44 (6): 1344-1361.
https://doi.org/10.1111/jbi.12894.
Brodie, S., Smith, J.A., Muhling, B.A., Barnett, L.A.K., Carroll, G.,
Fiedler, P., Bograd, S.J., Hazen, E.L., Jacox, M.G., Andrews, K.S.,
Barnes, C.L., Crozier, L.G., Fiechter, J., Fredston, A., Haltuch, M.A.,
Harvey, C.J., Holmes, E., Karp, M.A., Liu, O.R., Malick, M.J., Pozo
Buil, M., Richerson, K., Rooper, C.N., Samhouri, J., Seary, R., Selden,
R.L., Thompson, A.R., Tommasi, D., Ward, E.J. and Kaplan, I.C. 2022.
Recommendations for quantifying and reducing uncertainty in climate
projections of species distributions. Global Change Biology28 (22): 6586– 6601. https://doi.org/10.1111/gcb.16371.
Brodie, S.J., Thorson, J.T., Carroll, G., Hazen, E.L., Bograd, S.,
Haltuch, M.A., Holsman, K.K., Kotwicki, S., Samhouri, J.F.,
Willis-Norton, E. and Selden, R.L. 2020. Trade-offs in covariate
selection for species distribution models: a methodological comparison.
Ecography 43 (1): 11-24.
https://doi.org/10.1111/ecog.04707.
Brown, C.D. and Vellend, M. 2014. Non-climatic constraints on upper
elevational plant range expansion under climate change. Proceedings of
the Royal Society B: Biological Sciences 281 (1794): 20141779.
Budescu, D.V., Por, H.-H. and Broomell, S.B. 2012. Effective
communication of uncertainty in the IPCC reports. Climatic Change113 (2): 181-200. 10.1007/s10584-011-0330-3.
Carlson, S.M., Cunningham, C.J. and Westley, P.A. 2014. Evolutionary
rescue in a changing world. Trends in Ecology & Evolution29 (9): 521-530.
Carr, M.H., Neigel, J.E., Estes, J.A., Andelman, S., Warner, R.R. and
Largier, J.L. 2003. Comparing Marine and Terrestrial Ecosystems:
Implications for the Design of Coastal Marine Reserves. Ecological
Applications 13 (1): S90-S107.
Charney, N.D., Record, S., Gerstner, B.E., Merow, C., Zarnetske, P.L.
and Enquist, B.J. 2021. A Test of Species Distribution Model
Transferability Across Environmental and Geographic Space for 108
Western North American Tree Species. Frontiers in Ecology and Evolution9 (393). 10.3389/fevo.2021.689295.
Christin, S., Hervet, É. and Lecomte, N. 2019. Applications for deep
learning in ecology. Methods in Ecology and Evolution 10 (10):
1632-1644.
Circles of Social Life. 1996. No Regrets: Circles of Climate Change
Adaptation. Available from https://www.circlesofclimate.org/
[accessed April 27, 2022].
Corner, A., Shaw, C. and Clarke, J. 2018. Principles for effective
communication and public engagement on climate change A Handbook for
IPCC authors outreach Project team Lead Authors Contributing Author
Editing & Production.
Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B. and Wood, S.
1998. Making mistakes when predicting shifts in species range in
response to global warming. Nature 391 (6669): 783-786.
Dietz, T. 2013. Bringing values and deliberation to science
communication. Proceedings of the National Academy of Sciences110 (Supplement 3): 14081. 10.1073/pnas.1212740110.
Dormann, C., Bobrowski, M., Dehling, M., Harris, D., Hartig, F.,
Lischke, H., Moretti, M., Pagel, J., Pinkert, S., Schleuning, M.,
Schmidt, S., Sheppard, C., Steinbauer, M., Zeuss, D. and Kraan, C. 2018.
Biotic interactions in species distribution modelling: 10 questions to
guide interpretation and avoid false conclusions. Global Ecology and
Biogeography 27 . 10.1111/geb.12759.
Duplisea, D.E., Roux, M.-J., Hunter, K.L. and Rice, J. 2021. Fish
harvesting advice under climate change: A risk-equivalent empirical
approach. PLOS ONE 16 (2): e0239503.
10.1371/journal.pone.0239503.
Elith, J. and Leathwick, J.R. 2009. Species Distribution Models:
Ecological Explanation and Prediction Across Space and Time. Annual
Review of Ecology, Evolution, and Systematics 40 (1): 677-697.
10.1146/annurev.ecolsys.110308.120159.
Elith, J., Burgman, M.A. and Regan, H.M. 2002. Mapping epistemic
uncertainties and vague concepts in predictions of species distribution.
Ecological Modelling 157 (2): 313-329.
https://doi.org/10.1016/S0304-3800(02)00202-8.
Elith, J., Leathwick, J.R. and Hastie, T. 2008. A working guide to
boosted regression trees. Journal of Animal Ecology 77 (4):
802-813. 10.1111/j.1365-2656.2008.01390.x.
English, P.A., Ward, E.J., Rooper, C.N., Forrest, R.E., Rogers, L.A.,
Hunter, K.L., Edwards, A.M., Connors, B.M. and Anderson, S.C. 2021.
Contrasting climate velocity impacts in warm and cool locations show
that effects of marine warming are worse in already warmer temperate
waters. Fish and Fisheries 23 (1): 239– 255.
https://doi.org/10.1111/faf.12613.
Essington, T.E., Anderson, S.C., Barnett, L.A.K., Berger, H.M.,
Siedlecki, S.A. and Ward, E.J. 2022. Advancing statistical models to
reveal the effect of dissolved oxygen on the spatial distribution of
marine taxa using thresholds and a physiologically based index.
Ecography 2022 (8): e06249.
https://doi.org/10.1111/ecog.06249.
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer,
R.J. and Taylor, K.E. 2016. Overview of the Coupled Model
Intercomparison Project Phase 6 (CMIP6) experimental design and
organization. Geosci. Model Dev. 9 (5): 1937-1958.
10.5194/gmd-9-1937-2016.
Falloon, P., Challinor, A., Dessai, S., Hoang, L., Johnson, J. and
Koehler, A.-K. 2014. Ensembles and uncertainty in climate change
impacts. Frontiers in Environmental Science 2 (33).
10.3389/fenvs.2014.00033.
Fernandes, R.F., Scherrer, D. and Guisan, A. 2019. Effects of simulated
observation errors on the performance of species distribution models.
Diversity and Distributions 25 (3): 400-413.
https://doi.org/10.1111/ddi.12868.
Flato, G.M. 2011. Earth system models: an overview. WIREs Climate Change2 (6): 783-800. https://doi.org/10.1002/wcc.148.
Fletcher, R.J., Hefley, T.J., Robertson, E.P., Zuckerberg, B., McCleery,
R.A. and Dorazio, R.M. 2019. A practical guide for combining data to
model species distributions. Ecology 100 (6): e02710.
https://doi.org/10.1002/ecy.2710.
Franco, J.N., Tuya, F., Bertocci, I., Rodríguez, L., Martínez, B.,
Sousa-Pinto, I. and Arenas, F. 2018. The ‘golden kelp’ Laminaria
ochroleuca under global change: Integrating multiple eco-physiological
responses with species distribution models. Journal of Ecology106 (1): 47-58. https://doi.org/10.1111/1365-2745.12810.
Franklin, J., Davis, F., Ikegami, M., Syphard, A., Flint, L., Flint, A.
and Hannah, L. 2013. Modeling plant species distributions under future
climates: How fine scale do climate projections need to be? Global
change biology 19 : 473-483. 10.1111/gcb.12051.
Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S.D. and Halpern,
B.S. 2020. Cold range edges of marine fishes track climate change better
than warm edges. Global Change Biology 26 (5): 2908-2922.
https://doi.org/10.1111/gcb.15035.
Freeman, E. and Moisen, G. 2008. A Comparison of the Performance of
Threshold Criteria for Binary Classification in Terms of Predicted
Prevalence and Kappa. Ecological Modelling 217 : 48-58.
10.1016/j.ecolmodel.2008.05.015.
Frölicher, T.L., Rodgers, K.B., Stock, C.A. and Cheung, W.W.L. 2016.
Sources of uncertainties in 21st century projections of potential ocean
ecosystem stressors. Global Biogeochemical Cycles 30 (8):
1224-1243. https://doi.org/10.1002/2015GB005338.
Gamliel, I., Buba, Y., Guy-Haim, T., Garval, T., Willette, D., Rilov, G.
and Belmaker, J. 2020. Incorporating physiology into species
distribution models moderates the projected impact of warming on
selected Mediterranean marine species. Ecography 43 (7):
1090-1106. https://doi.org/10.1111/ecog.04423.
Gardner, A.S., Maclean, I.M.D. and Gaston, K.J. 2019. Climatic
predictors of species distributions neglect biophysiologically
meaningful variables. Diversity and Distributions 25 (8):
1318-1333. https://doi.org/10.1111/ddi.12939.
Gelman, A., Meng, X.-L. and Stern, H. 1996. Posterior predictive
assessment of model fitness via realized discrepancies. Statistica
sinica: 733-760.
Giorgi, F. and Gutowski, W.J. 2015. Regional Dynamical Downscaling and
the CORDEX Initiative. Annual Review of Environment and Resources40 (1): 467-490. 10.1146/annurev-environ-102014-021217.
Gomez, C., Nephin, J., Lang, S., Feyrer, L., Keyser, F. and Lazin, G.
2021. Spatial Data, Analysis and Modelling Forums: An initiative to
broaden the collaborative research potential at DFO. Can. Tech. Rep.
Aquat. Sci. . 3416, pp. v + 36 p.
Gottschalk, T.K., Aue, B., Hotes, S. and Ekschmitt, K. 2011. Influence
of grain size on species–habitat models. Ecological Modelling222 (18): 3403-3412.
https://doi.org/10.1016/j.ecolmodel.2011.07.008.
Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A.,
Kujala, H., Lentini, P.E., McCarthy, M.A., Tingley, R. and Wintle, B.A.
2015. Is my species distribution model fit for purpose? Matching data
and models to applications. Global Ecology and Biogeography24 (3): 276-292. https://doi.org/10.1111/geb.12268.
Hao, T., Elith, J., Lahoz‐Monfort, J.J. and Guillera‐Arroita, G. 2020.
Testing whether ensemble modelling is advantageous for maximising
predictive performance of species distribution models. Ecography43 (4): 549-558.
Hausfather, Z. and Peters, G. 2020. Emissions – the ‘business as usual’
story is misleading. Nature 577 : 618-620.
Hawkins, E. and Sutton, R. 2009. The Potential to Narrow Uncertainty in
Regional Climate Predictions. Bulletin of the American Meteorological
Society 90 (8): 1095-1108. 10.1175/2009BAMS2607.1.
Heltberg, R., Siegel, P.B. and Jorgensen, S.L. 2009. Addressing human
vulnerability to climate change: Toward a ‘no-regrets’ approach. Global
Environmental Change 19 (1): 89-99.
https://doi.org/10.1016/j.gloenvcha.2008.11.003.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A.
2005. Very high resolution interpolated climate surfaces for global land
areas. International Journal of Climatology 25 (15): 1965-1978.
https://doi.org/10.1002/joc.1276.
Hilborn, R. 1987. Living with uncertainty in resource management. North
American Journal of Fisheries Management 7 (1): 1-5.
Hoegh-Guldberg, O. and Bruno John, F. 2010. The Impact of Climate Change
on the World’s Marine Ecosystems. Science 328 (5985): 1523-1528.
10.1126/science.1189930.
Hof, A., Jansson, R. and Nilsson, C. 2012. The usefulness of elevation
as a predictor variable in species distribution modelling. Ecological
Modelling 246 : 86-90. 10.1016/j.ecolmodel.2012.07.028.
Holdsworth, A.M., Zhai, L., Lu, Y. and Christian, J.R. 2021. Future
Changes in Oceanography and Biogeochemistry Along the Canadian Pacific
Continental Margin. Frontiers in Marine Science 8 .
Holt, R.D. 1990. The microevolutionary consequences of climate change.
Trends in Ecology & Evolution 5 (9): 311-315.
https://doi.org/10.1016/0169-5347(90)90088-U.
Homburg, K., Brandt, P., Drees, C. and Assmann, T. 2014. Evolutionarily
significant units in a flightless ground beetle show different climate
niches and high extinction risk due to climate change. Journal of Insect
Conservation 18 (5): 781-790. 10.1007/s10841-014-9685-x.
IPCC. 1996. A brief overview of the IPCC Second Assessment Report.
Climate Change Bulletin (10).
IPCC. 2021. Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change.
IPCC. 2022. Climate Change 2022 Impacts, Adaptation and Vulnerability:
Summary for Policymakers.
Iverson, L.R., Peters, M.P., Prasad, A.M. and Matthews, S.N. 2019.
Analysis of Climate Change Impacts on Tree Species of the Eastern US:
Results of DISTRIB-II Modeling. Forests 10 (4).
10.3390/f10040302.
Jarnevich, C.S., Stohlgren, T.J., Kumar, S., Morisette, J.T. and
Holcombe, T.R. 2015. Caveats for correlative species distribution
modeling. Ecological Informatics 29 : 6-15.
Johnson, K.F., Thorson, J.T. and Punt, A.E. 2019. Investigating the
value of including depth during spatiotemporal index standardization.
Fisheries Research 216 : 126-137.
https://doi.org/10.1016/j.fishres.2019.04.004.
Johnston, A., Moran, N., Musgrove, A., Fink, D. and Baillie, S.R. 2020.
Estimating species distributions from spatially biased citizen science
data. Ecological Modelling 422 : 108927.
https://doi.org/10.1016/j.ecolmodel.2019.108927.
Kearney, M. and Porter, W. 2009. Mechanistic niche modelling: combining
physiological and spatial data to predict species’ ranges. Ecology
letters 12 (4): 334-350.
Kingsolver, J.G., Arthur Woods, H., Buckley, L.B., Potter, K.A.,
MacLean, H.J. and Higgins, J.K. 2011. Complex life cycles and the
responses of insects to climate change. In Oxford University
Press.
Kordas, R.L., Harley, C.D.G. and O’Connor, M.I. 2011. Community ecology
in a warming world: The influence of temperature on interspecific
interactions in marine systems. Journal of Experimental Marine Biology
and Ecology 400 (1): 218-226.
https://doi.org/10.1016/j.jembe.2011.02.029.
Kujala, H., Burgman, M.A. and Moilanen, A. 2013a. Treatment of
uncertainty in conservation under climate change. Conservation Letters6 (2): 73-85.
https://doi.org/10.1111/j.1755-263X.2012.00299.x.
Kujala, H., Moilanen, A., Araújo, M.B. and Cabeza, M. 2013b.
Conservation Planning with Uncertain Climate Change Projections. PLOS
ONE 8 (2): e53315. 10.1371/journal.pone.0053315.
Legendre, P. and Fortin, M.J. 1989. Spatial pattern and ecological
analysis. Vegetatio 80 (2): 107-138.
Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T.,
Murienne, J. and Grenouillet, G. 2020. Species better track climate
warming in the oceans than on land. Nature Ecology & Evolution4 (8): 1044-1059. 10.1038/s41559-020-1198-2.
Liu, C., White, M. and Newell, G. 2011. Measuring and comparing the
accuracy of species distribution models with presence-absence data.
Ecography 34 (2): 232-243.
Lowen, J.B., Hart, D.R., Stanley, R.R.E., Lehnert, S.J., Bradbury, I.R.
and DiBacco, C. 2019. Assessing effects of genetic, environmental, and
biotic gradients in species distribution modelling. ICES Journal of
Marine Science 76 (6): 1762-1775. 10.1093/icesjms/fsz049.
Luoto, M. and Heikkinen, R.K. 2008. Disregarding topographical
heterogeneity biases species turnover assessments based on bioclimatic
models. Global Change Biology 14 (3): 483-494.
https://doi.org/10.1111/j.1365-2486.2007.01527.x.
Makino, A., Klein, C.J., Possingham, H.P., Yamano, H., Yara, Y., Ariga,
T., Matsuhasi, K. and Beger, M. 2015. The Effect of Applying Alternate
IPCC Climate Scenarios to Marine Reserve Design for Range Changing
Species. Conservation Letters 8 (5): 320-328.
https://doi.org/10.1111/conl.12147.
Maraun, D. 2016. Bias Correcting Climate Change Simulations - a Critical
Review. Current Climate Change Reports 2 (4): 211-220.
10.1007/s40641-016-0050-x.
Martínez, B., Arenas, F., Trilla, A., Viejo, R.M. and Carreño, F. 2015.
Combining physiological threshold knowledge to species distribution
models is key to improving forecasts of the future niche for macroalgae.
Global Change Biology 21 (4): 1422-1433.
https://doi.org/10.1111/gcb.12655.
Merow, C., Wilson, A.M. and Jetz, W. 2017. Integrating occurrence data
and expert maps for improved species range predictions. Global Ecology
and Biogeography 26 (2): 243-258.
https://doi.org/10.1111/geb.12539.
Monteiro, J.G., Jiménez, J.L., Gizzi, F., Přikryl, P., Lefcheck, J.S.,
Santos, R.S. and Canning-Clode, J. 2021. Novel approach to enhance
coastal habitat and biotope mapping with drone aerial imagery analysis.
Scientific Reports 11 (1): 574. 10.1038/s41598-020-80612-7.
Moreno-Amat, E., Mateo, R.G., Nieto-Lugilde, D., Morueta-Holme, N.,
Svenning, J.-C. and García-Amorena, I. 2015. Impact of model complexity
on cross-temporal transferability in Maxent species distribution models:
An assessment using paleobotanical data. Ecological Modelling312 : 308-317.
https://doi.org/10.1016/j.ecolmodel.2015.05.035.
Muha, T.P., Rodríguez-Rey, M., Rolla, M. and Tricarico, E. 2017. Using
Environmental DNA to Improve Species Distribution Models for Freshwater
Invaders. Frontiers in Ecology and Evolution 5 : 158.
Muhling, B.A., Brodie, S., Smith, J.A., Tommasi, D., Gaitan, C.F.,
Hazen, E.L., Jacox, M.G., Auth, T.D. and Brodeur, R.D. 2020.
Predictability of Species Distributions Deteriorates Under Novel
Environmental Conditions in the California Current System. Frontiers in
Marine Science 7 (589). 10.3389/fmars.2020.00589.
Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K. and Toxopeus, A.G.
2014. Where is positional uncertainty a problem for species distribution
modelling? Ecography 37 (2): 191-203.
https://doi.org/10.1111/j.1600-0587.2013.00205.x.
Nature Editorials. 2022. Time to recognize authorship of open data.
Nature 604 (8).
Nephin, J., Gregr, E.J., St. Germain, C., Fields, C. and Finney, J.L.
2020. Development of a Species Distribution Modelling Framework and its
Application to Twelve Species on Canada’s Pacific Coast. DFO Can. Sci.
Advis. Sec. Res. Doc. . 2020/004, pp. xii + 107 p.
O’Connor, M., Bruno, J., Gaines, S., Halpern, B., Lester, S., Kinlan, B.
and Weiss, J. 2007. Temperature control of larval dispersal and the
implications for marine ecology, evolution, and conservation.
Proceedings of the National Academy of Sciences of the United States of
America 104 : 1266-1271. 10.1073/pnas.0603422104.
Osborne, P.E. and Leitão, P.J. 2009. Effects of species and habitat
positional errors on the performance and interpretation of species
distribution models. Diversity and Distributions 15 (4):
671-681. https://doi.org/10.1111/j.1472-4642.2009.00572.x.
Pecl Gretta, T., Araújo Miguel, B., Bell Johann, D., Blanchard, J.,
Bonebrake Timothy, C., Chen, I.C., Clark Timothy, D., Colwell Robert,
K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S.,
Garcia Raquel, A., Griffis Roger, B., Hobday Alistair, J.,
Janion-Scheepers, C., Jarzyna Marta, A., Jennings, S., Lenoir, J.,
Linnetved Hlif, I., Martin Victoria, Y., McCormack Phillipa, C.,
McDonald, J., Mitchell Nicola, J., Mustonen, T., Pandolfi John, M.,
Pettorelli, N., Popova, E., Robinson Sharon, A., Scheffers Brett, R.,
Shaw Justine, D., Sorte Cascade, J.B., Strugnell Jan, M., Sunday
Jennifer, M., Tuanmu, M.-N., Vergés, A., Villanueva, C., Wernberg, T.,
Wapstra, E. and Williams Stephen, E. 2017. Biodiversity redistribution
under climate change: Impacts on ecosystems and human well-being.
Science 355 (6332): eaai9214. 10.1126/science.aai9214.
Peña, M.A., Fine, I. and Callendar, W. 2019. Interannual variability in
primary production and shelf-offshore transport of nutrients along the
northeast Pacific Ocean margin. Deep Sea Research Part II: Topical
Studies in Oceanography 169-170 : 104637.
https://doi.org/10.1016/j.dsr2.2019.104637.
Petitgas, P., Rijnsdorp, A.D., Dickey-Collas, M., Engelhard, G.H., Peck,
M.A., Pinnegar, J.K., Drinkwater, K., Huret, M. and Nash, R.D.M. 2013.
Impacts of climate change on the complex life cycles of fish. Fisheries
Oceanography 22 (2): 121-139.
https://doi.org/10.1111/fog.12010.
Phillips, S.J., Anderson, R.P. and Schapire, R.E. 2006. Maximum entropy
modeling of species geographic distributions. Ecological modelling190 (3-4): 231-259.
Piironen, J. and Vehtari, A. 2017. Comparison of Bayesian predictive
methods for model selection. Statistics and Computing 27 (3):
711-735.
Pinsky, M.L. and Fogarty, M. 2012. Lagged social-ecological responses to
climate and range shifts in fisheries. Climatic Change 115 (3):
883-891. 10.1007/s10584-012-0599-x.
Pollock, L.J., O’Connor, L.M.J., Mokany, K., Rosauer, D.F., Talluto,
M.V. and Thuiller, W. 2020. Protecting Biodiversity (in All Its
Complexity): New Models and Methods. Trends in Ecology & Evolution35 (12): 1119-1128.
https://doi.org/10.1016/j.tree.2020.08.015.
Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O’Hara, R.B.,
Parris, K.M., Vesk, P.A. and McCarthy, M.A. 2014. Understanding
co-occurrence by modelling species simultaneously with a Joint Species
Distribution Model (JSDM). Methods in Ecology and Evolution5 (5): 397-406. https://doi.org/10.1111/2041-210X.12180.
Pörtner, H.O. and Peck, M.A. 2010. Climate change effects on fishes and
fisheries: towards a cause-and-effect understanding. Journal of Fish
Biology 77 (8): 1745-1779.
https://doi.org/10.1111/j.1095-8649.2010.02783.x.
Raimi, K.T., Stern, P.C. and Maki, A. 2017. The Promise and Limitations
of Using Analogies to Improve Decision-Relevant Understanding of Climate
Change. PLOS ONE 12 (1): e0171130. 10.1371/journal.pone.0171130.
Randin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E.,
Pearman, P.B., Vittoz, P., Thuiller, W. and Guisan, A. 2009. Climate
change and plant distribution: local models predict high-elevation
persistence. Global Change Biology 15 (6): 1557-1569.
https://doi.org/10.1111/j.1365-2486.2008.01766.x.
Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J.,
Guillera‐Arroita, G., Hauenstein, S., Lahoz‐Monfort, J.J., Schröder, B.
and Thuiller, W. 2017. Cross‐validation strategies for data with
temporal, spatial, hierarchical, or phylogenetic structure. Ecography40 (8): 913-929.
Robinson, L.M., Elith, J., Hobday, A.J., Pearson, R.G., Kendall, B.E.,
Possingham, H.P. and Richardson, A.J. 2011. Pushing the limits in marine
species distribution modelling: lessons from the land present challenges
and opportunities. Global Ecology and Biogeography 20 (6):
789-802. https://doi.org/10.1111/j.1466-8238.2010.00636.x.
Roux, M.-J., Duplisea, D.E., Hunter, K.L. and Rice, J. 2022. Consistent
Risk Management in a Changing World: Risk Equivalence in Fisheries and
Other Human Activities Affecting Marine Resources and Ecosystems.
Frontiers in Climate 3 .
Rufener, M.C., Kristensen, K., Nielsen, J.R. and Bastardie, F. 2021.
Bridging the gap between commercial fisheries and survey data to model
the spatiotemporal dynamics of marine species. Ecological Applications:
e02453.
Schloss, C.A., Nuñez, T.A. and Lawler, J.J. 2012. Dispersal will limit
ability of mammals to track climate change in the Western Hemisphere.
Proceedings of the National Academy of Sciences 109 (22):
8606-8611.
Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein,
M., Sorteberg, A., Vera, C. and Zhang, X. 2012. Changes in climate
extremes and their impacts on the natural physical environment: An
overview of the IPCC SREX report. In p. 12566.
Seo, C., Thorne, J., Hannah, L. and Thuiller, W. 2008. Scale effects in
species distribution models: Implications for conservation planning
under climate change. Biology letters 5 : 39-43.
10.1098/rsbl.2008.0476.
Shelton, A.O., Thorson, J.T., Ward, E.J. and Feist, B.E. 2014. Spatial
semiparametric models improve estimates of species abundance and
distribution. Canadian Journal of Fisheries and Aquatic Sciences71 (11): 1655-1666.
Skroblin, A., Carboon, T., Bidu, G., Chapman, N., Miller, M., Taylor,
K., Taylor, W., Game, E.T. and Wintle, B.A. 2021. Including indigenous
knowledge in species distribution modeling for increased ecological
insights. Conservation Biology 35 (2): 587-597.
https://doi.org/10.1111/cobi.13373.
Sofaer, H.R., Jarnevich, C.S., Pearse, I.S., Smyth, R.L., Auer, S.,
Cook, G.L., Edwards Jr, T.C., Guala, G.F., Howard, T.G. and Morisette,
J.T. 2019. Development and delivery of species distribution models to
inform decision-making. BioScience 69 (7): 544-557.
Stammer, D., Engels, A., Marotzke, J., Gresse, E., Hedemann, C. and
Petzold, J. 2021. Hamburg Climate Futures Outlook 2021. Assessing the
plausibility of deep decarbonization by 2050. Hamburg, Germany.
Stoklosa, J., Daly, C., Foster, S.D., Ashcroft, M.B. and Warton, D.I.
2015. A climate of uncertainty: accounting for error in climate
variables for species distribution models. Methods in Ecology and
Evolution 6 (4): 412-423.
Sunday, J., Bates, A. and Dulvy, N. 2012. Thermal tolerance and the
global redistribution of animals. Nature Climate Change 2 :
686–690. 10.1038/nclimate1539.
Thompson, P.L. and Gonzalez, A. 2017. Dispersal governs the
reorganization of ecological networks under environmental change. Nature
Ecology & Evolution 1 (6): 1-8.
Thompson, P.L. and Fronhofer, E.A. 2019. The conflict between adaptation
and dispersal for maintaining biodiversity in changing environments.
Proceedings of the National Academy of Sciences 116 (42):
21061-21067.
Thompson, P.L., Guzman, L.M., De Meester, L., Horváth, Z., Ptacnik, R.,
Vanschoenwinkel, B., Viana, D.S. and Chase, J.M. 2020. A process-based
metacommunity framework linking local and regional scale community
ecology. bioRxiv: 832170. 10.1101/832170.
Thompson, P.L., Anderson, S.C., Nephin, J., Haggarty, D.R., Peña, M.A.,
English, P.A., Gale, K.S.P. and Rubidge, E. 2022a. Disentangling the
impacts of environmental change and commercial fishing on demersal fish
biodiversity in a northeast Pacific ecosystem. Marine Ecology Progress
Series 689 : 137-154.
Thompson, P.L., Nephin, J., Davies, S.C., Park, A.E., Lyons, D.A.,
Rooper, C.N., Peña, M.A., Christian, J.R., Hunter, K.L., Rubidge, E. and
Holdsworth, A.M. 2022b. Groundfish biodiversity change in northeastern
Pacific waters under projected warming and deoxygenation. bioRxiv:
2022.2005.2004.490690. 10.1101/2022.05.04.490690.
Thorson, J.T. and Minto, C. 2014. Mixed effects: a unifying framework
for statistical modelling in fisheries biology. ICES Journal of Marine
Science 72 (5): 1245-1256. 10.1093/icesjms/fsu213.
Thorson, J.T., Shelton, A.O., Ward, E.J. and Skaug, H.J. 2015.
Geostatistical delta-generalized linear mixed models improve precision
for estimated abundance indices for West Coast groundfishes. ICES
Journal of Marine Science 72 (5): 1297-1310.
10.1093/icesjms/fsu243.
Thorson, J.T., Barbeaux, S.J., Goethel, D.R., Kearney, K.A., Laman,
E.A., Nielsen, J.K., Siskey, M.R., Siwicke, K. and Thompson, G.G. 2021.
Estimating fine-scale movement rates and habitat preferences using
multiple data sources. Fish and Fisheries 22 (6): 1359-1376.
https://doi.org/10.1111/faf.12592.
Thuiller, W., Brotons, L., Araújo, M. and Lavorel, S. 2004. Effects of
restricting range of data to project current and future species
distributions. Ecography 27 : 165-172.
10.1111/j.0906-7590.2004.03673.x.
Thuiller, W., Guéguen, M., Renaud, J., Karger, D.N. and Zimmermann, N.E.
2019. Uncertainty in ensembles of global biodiversity scenarios. Nature
Communications 10 (1): 1-9.
Tittensor, D., Blanchard, J., Fulton, E., Cheung, W., Novaglio, C.,
Harrison, C., Heneghan, R., Barrier, N., Bianchi, D., Bopp, L.,
Bryndum-Buchholz, A., Britten, G., Büchner, M., Christensen, V., Coll,
M., Dunne, J., Eddy, T., Everett, J., Fernandes, J. and Stock, C. 2021.
Next-generation ensemble projections reveal higher climate risks for
marine ecosystems. Nature Climate Change. 10.1038/s41558-021-01173-9.
Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F. and
De Clerck, O. 2012. Bio-ORACLE: a global environmental dataset for
marine species distribution modelling. Global Ecology and Biogeography21 (2): 272-281.
https://doi.org/10.1111/j.1466-8238.2011.00656.x.
Urban, M.C. 2019. Projecting biological impacts from climate change like
a climate scientist. WIREs Climate Change 10 (4): e585.
https://doi.org/10.1002/wcc.585.
Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.B., Pe’er, G., Singer,
A., Bridle, J.R., Crozier, L.G., De Meester, L., Godsoe, W., Gonzalez,
A., Hellmann, J.J., Holt, R.D., Huth, A., Johst, K., Krug, C.B.,
Leadley, P.W., Palmer, S.C.F., Pantel, J.H., Schmitz, A., Zollner, P.A.
and Travis, J.M.J. 2016. Improving the forecast for biodiversity under
climate change. Science 353 (6304): aad8466.
10.1126/science.aad8466.
Urli, M., Brown, C.D., Narvaez Perez, R., Chagnon, P.L. and Vellend, M.
2016. Increased seedling establishment via enemy release at the upper
elevational range limit of sugar maple. Ecology 97 (11):
3058-3069.
US National Research Council. 2008. Public participation in
environmental assessment and decision making. National Academy Press,
Washington, USA.
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M.B., Balaguer,
L., Benito-Garzón, M., Cornwell, W., Gianoli, E., van Kleunen, M., Naya,
D.E., Nicotra, A.B., Poorter, H. and Zavala, M.A. 2014. The effects of
phenotypic plasticity and local adaptation on forecasts of species range
shifts under climate change. Ecology Letters 17 (11): 1351-1364.
https://doi.org/10.1111/ele.12348.
Vehtari, A., Gelman, A. and Gabry, J. 2017. Practical Bayesian model
evaluation using leave-one-out cross-validation and WAIC. Statistics and
computing 27 (5): 1413-1432.
Vellend, M. 2016. The theory of ecological communities (MPB-57).
Princeton University Press.
Villero, D., Pla, M., Camps, D., Ruiz-Olmo, J. and Brotons, L. 2017.
Integrating species distribution modelling into decision-making to
inform conservation actions. Biodiversity and Conservation 26 .
10.1007/s10531-016-1243-2.
Virkkala, R., Marmion, M., Heikkinen, R., Thuiller, W. and Luoto, M.
2010. Predicting range shifts of northern bird species: Influence of
modelling technique and topography. Acta Oecologica 36 :
269-281. 10.1016/j.actao.2010.01.006.
Wallingford, P.D. and Sorte, C.J.B. 2022. Dynamic species interactions
associated with the range-shifting marine gastropod Mexacanthina
lugubris. Oecologia. 10.1007/s00442-022-05128-5.
Warton, D.I., Blanchet, F.G., O’Hara, R.B., Ovaskainen, O., Taskinen,
S., Walker, S.C. and Hui, F.K.C. 2015. So many variables: Joint modeling
in community ecology. Trends in Ecology & Evolution 30 (12):
766-779. https://doi.org/10.1016/j.tree.2015.09.007.
Watson, J., Joy, R., Tollit, D.J., Thornton, S.J. and Auger Méthé, M.
2019. Estimating animal utilization distributions from multiple data
types: a joint spatio-temporal point process framework. arXiv:
Methodology. https://doi.org/10.48550/arXiv.1911.00151.
Weiskopf, S.R., Rubenstein, M.A., Crozier, L.G., Gaichas, S., Griffis,
R., Halofsky, J.E., Hyde, K.J.W., Morelli, T.L., Morisette, J.T., Muñoz,
R.C., Pershing, A.J., Peterson, D.L., Poudel, R., Staudinger, M.D.,
Sutton-Grier, A.E., Thompson, L., Vose, J., Weltzin, J.F. and Whyte,
K.P. 2020. Climate change effects on biodiversity, ecosystems, ecosystem
services, and natural resource management in the United States. Science
of The Total Environment 733 : 137782.
https://doi.org/10.1016/j.scitotenv.2020.137782.
Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A. and Snyder,
M.A. 2009. Niches, models, and climate change: Assessing the assumptions
and uncertainties. Proceedings of the National Academy of Sciences106 (Supplement 2): 19729. 10.1073/pnas.0901639106.
Wiens, J.J. 2016. Climate-Related Local Extinctions Are Already
Widespread among Plant and Animal Species. PLOS Biology 14 (12):
e2001104. 10.1371/journal.pbio.2001104.
Willis, K. and Bhagwat, S. 2009. Biodiversity and Climate Change.
Science (New York, N.Y.) 326 : 806-807. 10.1126/science.1178838.
Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L. and Fu, C. 2021. Bias-corrected
CMIP6 global dataset for dynamical downscaling of the historical and
future climate (1979–2100). Scientific Data 8 (1): 293.
10.1038/s41597-021-01079-3.
Young, M. and Carr, M.H. 2015. Application of species distribution
models to explain and predict the distribution, abundance and assemblage
structure of nearshore temperate reef fishes. Diversity and
Distributions 21 (12): 1428-1440.
https://doi.org/10.1111/ddi.12378.
Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H. and Ranjbar,
H. 2021. Using climatic variables alone overestimate climate change
impacts on predicting distribution of an endemic species. PLOS ONE16 (9): e0256918. 10.1371/journal.pone.0256918.
Zarnetske, P.L., Skelly, D.K. and Urban, M.C. 2012. Biotic multipliers
of climate change. Science 336 (6088): 1516-1518.
Zurell, D., Franklin, J., König, C., Bouchet, P.J., Dormann, C.F.,
Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A.,
Lahoz-Monfort, J.J., Leitão, P.J., Park, D.S., Peterson, A.T.,
Rapacciuolo, G., Schmatz, D.R., Schröder, B., Serra-Diaz, J.M.,
Thuiller, W., Yates, K.L., Zimmermann, N.E. and Merow, C. 2020. A
standard protocol for reporting species distribution models. Ecography43 (9): 1261-1277. https://doi.org/10.1111/ecog.04960.