References
Abramov A, Davydov S, Ivashchenko A, Karelin D, Kholodov A, Kraev G,
Lupachev A, Maslakov A, Ostroumov V, Rivkina E, Shmelev D, Sorokovikov
V, Tregubov O, Veremeeva A, Zamolodchikov D, Zimov S. 2021. Two decades
of active layer thickness monitoring in northeastern Asia. Polar
Geography 44 : 186–202. DOI: 10.1080/1088937X.2019.1648581
Berezin E V., Konovalov IB, Gromov SA, Beekmann M, Schulze E-D. 2013.
The model study of the wildfire impact on the spatial distribution of
deposition of sulfur and nitrogen compounds in Siberia. Russian
Meteorology and Hydrology 38 : 750–758. DOI:
10.3103/S1068373913110046
Bröder L, Davydova A, Davydov S, Zimov N, Haghipour N, Eglinton TI, Vonk
JE. 2020. Particulate Organic Matter Dynamics in a Permafrost Headwater
Stream and the Kolyma River Mainstem. Journal of Geophysical
Research: Biogeosciences 125 . DOI: 10.1029/2019JG005511
Brubaker M, Chavan P, Berner PEJ, Black M, Warren J. 2012. Climate
Change in Selawik, Alaska .
Campeau A, Eklöf K, Soerensen AL, Åkerblom S, Yuan S, Hintelmann H,
Bieroza M, Köhler S, Zdanowicz C. 2022. Sources of riverine mercury
across the Mackenzie River Basin; inferences from a combined Hg C
isotopes and optical properties approach. Science of The Total
Environment 806 : 150808. DOI: 10.1016/j.scitotenv.2021.150808
Chalov S, Moreido V, Ivanov V, Chalova A. 2022. Assessing suspended
sediment fluxes with acoustic Doppler current profilers: case study from
large rivers in Russia. Big Earth Data 1–23. DOI:
10.1080/20964471.2022.2116834
Chalov S, Prokopeva K, Habel M. 2021. North to South Variations in the
Suspended Sediment Transport Budget within Large Siberian River Deltas
Revealed by Remote Sensing Data. Remote Sensing 13 :
4549. DOI: 10.3390/rs13224549
Chalov SR, Liu S, Chalov RS, Chalova ER, Chernov A V., Promakhova E V.,
Berkovitch KM, Chalova AS, Zavadsky AS, Mikhailova N. 2018.
Environmental and human impacts on sediment transport of the largest
Asian rivers of Russia and China. Environmental Earth Sciences77 : 274. DOI: 10.1007/s12665-018-7448-9
Ci Z, Peng F, Xue X, Zhang X. 2020. Permafrost Thaw Dominates Mercury
Emission in Tibetan Thermokarst Ponds. Environmental Science &
Technology 54 : 5456–5466. DOI: 10.1021/acs.est.9b06712
Cochand M, Molson J, Lemieux J. 2019. Groundwater hydrogeochemistry in
permafrost regions. Permafrost and Periglacial Processes30 : 90–103. DOI: 10.1002/ppp.1998
Douglas TA, Blum JD, Guo L, Keller K, Gleason JD. 2013.
Hydrogeochemistry of seasonal flow regimes in the Chena River, a
subarctic watershed draining discontinuous permafrost in interior Alaska
(USA). Chemical Geology 335 : 48–62. DOI:
10.1016/j.chemgeo.2012.10.045
Dzhamalov RG, Safronova TI. 2018. Effect of Permafrost Rocks on Water
Resources Formation in Eastern Siberia: Case Study of Some Rivers in
Eastern Siberia. Water Resources 45 : 455–465. DOI:
10.1134/S0097807818040097
Edwards BA, Kushner DS, Outridge PM, Wang F. 2021. Fifty years of
volcanic mercury emission research: Knowledge gaps and future
directions. Science of The Total Environment 757 :
143800. DOI: 10.1016/j.scitotenv.2020.143800
Francisco López A, Heckenauer Barrón EG, Bello Bugallo PM. 2022.
Contribution to understanding the influence of fires on the mercury
cycle: Systematic review, dynamic modelling and application to
sustainable hypothetical scenarios. Environmental Monitoring and
Assessment 194 : 707. DOI: 10.1007/s10661-022-10208-3
Frey KE, Mcclelland JW. 2009. Impacts of permafrost degradation on
arctic river biogeochemistry. 182 : 169–182. DOI: 10.1002/hyp
Grigoriev MN, Kunitsky VV, Chzhan RV, Shepelev VV. 2009. On the
variation in geocryological, landscape and hydrological conditions in
the Arctic zone of East Siberia in connection with climate warming.Geography and Natural Resources 30 : 101–106. DOI:
10.1016/j.gnr.2009.06.002
Grosse G, Goetz S, McGuire AD, Romanovsky VE, Schuur EAG. 2016. Changing
permafrost in a warming world and feedbacks to the Earth system.Environmental Research Letters 11 : 040201. DOI:
10.1088/1748-9326/11/4/040201
Gunnarsdóttir MJ, Garðarsson SM, Andradóttir HÓ, Schiöth A. 2019. Áhrif
Loftlagsbreytinga Á Vatnsveitur Og Vatnsgæði Á Íslandi – Áhættuþættir
Og Aðgerðir. Icelandic Journal of Engineering 25 : 5–19.
DOI: 10.33112/ije.25.5
Günther F, Overduin PP, Yakshina IA, Opel T, Baranskaya A V., Grigoriev
MN. 2015. Observing Muostakh disappear: permafrost thaw subsidence and
erosion of a ground-ice-rich island in response to arctic summer warming
and sea ice reduction. The Cryosphere 9 : 151–178. DOI:
10.5194/tc-9-151-2015
Holmes RM, Mcclelland JW, Peterson BJ, Tank SE, Bulygina E, Eglinton TI,
Gordeev V V, Gurtovaya TY, Raymond PA, Repeta DJ, Staples R, Striegl RG,
Zhulidov A V, Zimov SA. 2012. Seasonal and Annual Fluxes of Nutrients
and Organic Matter from Large Rivers to the Arctic Ocean and Surrounding
Seas. 369–382. DOI: 10.1007/s12237-011-9386-6
in ’t Zandt MH, Liebner S, Welte CU. 2020. Roles of Thermokarst Lakes in
a Warming World. Trends in Microbiology 28 : 769–779.
DOI: 10.1016/j.tim.2020.04.002
Ji X, Abakumov E, Polyakov V, Xie X. 2021. Mobilization of Geochemical
Elements to Surface Water in the Active Layer of Permafrost in the
Russian Arctic. Water Resources Research 57 . DOI:
10.1029/2020WR028269
Jong D, Bröder L, Tesi T, Keskitalo K, Zimov N, Davydova A, Pika P,
Haghipour N, Eglinton T, Vonk J. 2022. Contrasts in dissolved,
particulate and sedimentary organic carbon from the Kolyma River to the
East Siberian Shelf. preprint (EGUsphere) . DOI:
10.5194/egusphere-2022-516
Karlsson JM, Lyon SW, Destouni G. 2012. Thermokarst lake, hydrological
flow and water balance indicators of permafrost change in Western
Siberia. Journal of Hydrology 464 –465 :
459–466. DOI: 10.1016/j.jhydrol.2012.07.037
Keskitalo KH, Bröder L, Jong D, Zimov N, Davydova A, Davydov S, Tesi T,
Mann PJ, Haghipour N, Eglinton TI, Vonk JE. 2022. Seasonal variability
in particulate organic carbon degradation in the Kolyma River, Siberia.Environmental Research Letters 17 : 034007. DOI:
10.1088/1748-9326/ac4f8d
Kokelj S V., Lacelle D, Lantz TC, Tunnicliffe J, Malone L, Clark ID,
Chin KS. 2013. Thawing of massive ground ice in mega slumps drives
increases in stream sediment and solute flux across a range of watershed
scales. Journal of Geophysical Research: Earth Surface118 : 681–692. DOI: 10.1002/jgrf.20063
Kosek K, Kozioł K, Luczkiewicz A, Jankowska K, Chmiel S, Polkowska Ż.
2019. Environmental characteristics of a tundra river system in
Svalbard. Part 2: Chemical stress factors. Science of the Total
Environment 653 . DOI: 10.1016/j.scitotenv.2018.11.012
Kuchmenko E V, Moloznikova Y V, Netsvetaeva OG, Kobeleva NA, Khodzher T
V. 2002. Comparison of Experimental and Calculated Data on Ion
Composition of Precipitation in the South of East Siberia. In: Barnes I
(ed) Global Atmospheric Change and its Impact on Regional Air
Quality . Springer Netherlands: Dordrecht, 223–228. DOI:
10.1007/978-94-010-0082-6_34
Lehmann-Konera S, Franczak Ł, Kociuba W, Szumińska D, Chmiel S,
Polkowska Ż. 2018. Comparison of hydrochemistry and organic compound
transport in two non-glaciated high Arctic catchments with a permafrost
regime (Bellsund Fjord, Spitsbergen). Science of The Total
Environment 613 –614 : 1037–1047. DOI:
10.1016/j.scitotenv.2017.09.064
Li Y, Zang S, Zhang K, Sun D, Sun L. 2020. Occurrence, sources and
potential risks of polycyclic aromatic hydrocarbons in a permafrost soil
core, northeast China. Ecotoxicology . DOI:
10.1007/s10646-020-02285-2
Lim AG, Sonke JE, Krickov I V, Manasypov RM, Loiko S V, Pokrovsky OS.
2019. Enhanced particulate Hg export at the permafrost boundary, western
Siberia. Environmental Pollution 254 : 113083. DOI:
https://doi.org/10.1016/j.envpol.2019.113083
Mann PJ, Davydova A, Zimov N, Spencer RGM, Davydov S, Bulygina E, Zimov
S, Holmes RM. 2012. Controls on the composition and lability of
dissolved organic matter in Siberia’s Kolyma River basin. Journal
of Geophysical Research: Biogeosciences 117 . DOI:
10.1029/2011JG001798
Mann PJ, Strauss J, Palmtag J, Dowdy K, Ogneva O, Fuchs M, Bedington M,
Torres R, Polimene L, Overduin P, Mollenhauer G, Grosse G, Rachold V,
Sobczak W V., Spencer RGM, Juhls B. 2022. Degrading permafrost river
catchments and their impact on Arctic Ocean nearshore processes.Ambio 51 : 439–455. DOI: 10.1007/s13280-021-01666-z
Monhonval A, Mauclet E, Pereira B, Vandeuren A, Strauss J, Grosse G,
Schirrmeister L, Fuchs M, Kuhry P, Opfergelt S. 2021. Mineral Element
Stocks in the Yedoma Domain: A Novel Method Applied to Ice-Rich
Permafrost Regions. Frontiers in Earth Science 9 . DOI:
10.3389/feart.2021.703304
Morgenstern A, Overduin PP, Günther F, Stettner S, Ramage J,
Schirrmeister L, Grigoriev MN, Grosse G. 2021. Thermo‐erosional valleys
in Siberian ice‐rich permafrost. Permafrost and Periglacial
Processes 32 : 59–75. DOI: 10.1002/ppp.2087
Mu C, Schuster PF, Abbott BW, Kang S, Guo J, Sun S, Wu Q, Zhang T. 2020.
Permafrost degradation enhances the risk of mercury release on
Qinghai-Tibetan Plateau. Science of The Total Environment708 : 135127. DOI: 10.1016/j.scitotenv.2019.135127
Nitzbon J, Westermann S, Langer M, Martin LCP, Strauss J, Laboor S,
Boike J. 2020. Fast response of cold ice-rich permafrost in northeast
Siberia to a warming climate. Nature Communications 11 :
2201. DOI: 10.1038/s41467-020-15725-8
Nitze I, Grosse G, Jones B, Arp C, Ulrich M, Fedorov A, Veremeeva A.
2017. Landsat-Based Trend Analysis of Lake Dynamics across Northern
Permafrost Regions. Remote Sensing 9 : 640. DOI:
10.3390/rs9070640
Overland J. WJ. K V. 2017. Trends and feedbacks. In: Symon C. (ed)Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 .
Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 9–24
Overland JE, Wang M, Walsh JE, Stroeve JC. 2014. Future Arctic climate
changes: Adaptation and mitigation time scales. Earth’s Future2 : 68–74. DOI: 10.1002/2013EF000162
Plug LJ, Walls C, Scott BM. 2008. Tundra lake changes from 1978 to 2001
on the Tuktoyaktuk Peninsula, western Canadian Arctic. Geophysical
Research Letters 35 : L03502. DOI: 10.1029/2007GL032303
Potapowicz J, Szumińska D, Szopińska M, Polkowska Ż. 2019. The influence
of global climate change on the environmental fate of anthropogenic
pollution released from the permafrost: Part I. Case study of
Antarctica. Science of the Total Environment . DOI:
10.1016/j.scitotenv.2018.09.168
Ran Y, Li X, Cheng G, Che J, Aalto J, Karjalainen O, Hjort J, Luoto M,
Jin H, Obu J, Hori M, Yu Q, Chang X. 2022. New high-resolution estimates
of the permafrost thermal state and hydrothermal conditions over the
Northern Hemisphere. Earth System Science Data 14 :
865–884. DOI: 10.5194/essd-14-865-2022
Rubino M, D’Onofrio A, Seki O, Bendle JA. 2016. Ice-core records of
biomass burning. The Anthropocene Review 3 : 140–162.
DOI: 10.1177/2053019615605117
Rudy ACA, Lamoureux SF, Kokelj S V., Smith IR, England JH. 2017.
Accelerating Thermokarst Transforms Ice-Cored Terrain Triggering a
Downstream Cascade to the Ocean. Geophysical Research Letters44 : 11,080-11,087. DOI: 10.1002/2017GL074912
Sakai T, Matsunaga T, Maksyutov S, Gotovtsev S, Gagarin L, Hiyama T,
Yamaguchi Y. 2016. Climate-Induced Extreme Hydrologic Events in the
Arctic. Remote Sensing 8 : 971. DOI: 10.3390/rs8110971
Schuster PF, Schaefer KM, Aiken GR, Antweiler RC, Dewild JF, Gryziec JD,
Gusmeroli A, Hugelius G, Jafarov E, Krabbenhoft DP, Liu L, Herman‐Mercer
N, Mu C, Roth DA, Schaefer T, Striegl RG, Wickland KP, Zhang T. 2018.
Permafrost Stores a Globally Significant Amount of Mercury.Geophysical Research Letters 45 : 1463–1471. DOI:
10.1002/2017GL075571
Smith SL, O’Neill HB, Isaksen K, Noetzli J, Romanovsky VE. 2022. The
changing thermal state of permafrost. Nature Reviews Earth &
Environment 3 : 10–23. DOI: 10.1038/s43017-021-00240-1
Stepanenko VM, Machul’skaya EE, Glagolev M V., Lykossov VN. 2011.
Numerical modeling of methane emissions from lakes in the permafrost
zone. Izvestiya, Atmospheric and Oceanic Physics 47 :
252–264. DOI: 10.1134/S0001433811020113
Strauss J, Laboor S, Schirrmeister L, Fedorov AN, Fortier D, Froese D,
Fuchs M, Günther F, Grigoriev M, Harden J, Hugelius G, Jongejans LL,
Kanevskiy M, Kholodov A, Kunitsky V, Kraev G, Lozhkin A, Rivkina E, Shur
Y, Siegert C, Spektor V, Streletskaya I, Ulrich M, Vartanyan S,
Veremeeva A, Anthony KW, Wetterich S, Zimov N, Grosse G. 2021.
Circum-Arctic Map of the Yedoma Permafrost Domain. Frontiers in
Earth Science 9 . DOI: 10.3389/feart.2021.758360
Streletskiy D. 2021. Permafrost degradation. Snow and Ice-Related
Hazards, Risks, and Disasters . Elsevier, 297–322. DOI:
10.1016/B978-0-12-817129-5.00021-4
Streletskiy DA, Maslakov AA, Streletskaya ID, Nelson FE. 2021.
Permafrost Regions In Transition: Introduction. GEOGRAPHY,
ENVIRONMENT, SUSTAINABILITY 14 : 6–8. DOI:
10.24057/2071-9388-2021-081
Streletskiy DA, Sherstiukov AB, Frauenfeld OW, Nelson FE. 2015. Changes
in the 1963–2013 shallow ground thermal regime in Russian permafrost
regions. Environmental Research Letters 10 : 125005. DOI:
10.1088/1748-9326/10/12/125005
Suzuki K, Park H, Makarieva O, Kanamori H, Hori M, Matsuo K, Matsumura
S, Nesterova N, Hiyama T. 2021. Effect of Permafrost Thawing on
Discharge of the Kolyma River, Northeastern Siberia. Remote
Sensing 13 : 4389. DOI: 10.3390/rs13214389
Szopińska M, Dymerski T, Polkowska Ż, Szumińska D, Wolska L. 2016. The
chemistry of river–lake systems in the context of permafrost occurrence
(Mongolia, Valley of the Lakes) Part II. Spatial trends and possible
sources of organic composition. Sedimentary Geology 340 :
84–95. DOI: 10.1016/j.sedgeo.2016.03.001
Tananaev N, Isaev V, Sergeev D, Kotov P, Komarov O. 2021. Hydrological
Connectivity in a Permafrost Tundra Landscape near Vorkuta,
North-European Arctic Russia. Hydrology 8 : 106. DOI:
10.3390/hydrology8030106
Tananaev N, Lotsari E. 2022. Defrosting northern catchments: Fluvial
effects of permafrost degradation. Earth-Science Reviews228 : 103996. DOI: 10.1016/j.earscirev.2022.103996
Taylor SR. 1964. Abundance of chemical elements in the continental
crust: a new table. Geochimica et Cosmochimica Acta 28 :
1273–1285. DOI: 10.1016/0016-7037(64)90129-2
Teufel B, Sushama L. 2019. Abrupt changes across the Arctic permafrost
region endanger northern development. Nature Climate Change9 : 858–862. DOI: 10.1038/s41558-019-0614-6
Toohey RC, Herman-Mercer NM, Schuster PF, Mutter EA, Koch JC. 2016.
Multidecadal increases in the Yukon River Basin of chemical fluxes as
indicators of changing flowpaths, groundwater, and permafrost.Geophysical Research Letters 43 : 12,120-12,130. DOI:
10.1002/2016GL070817
Veremeeva A, Nitze I, Günther F, Grosse G, Rivkina E. 2021.
Geomorphological and Climatic Drivers of Thermokarst Lake Area Increase
Trend (1999–2018) in the Kolyma Lowland Yedoma Region, North-Eastern
Siberia. Remote Sensing 13 : 178. DOI: 10.3390/rs13020178
Viers J, Dupré B, Gaillardet J. 2009. Chemical composition of suspended
sediments in World Rivers: New insights from a new database.Science of The Total Environment 407 : 853–868. DOI:
10.1016/j.scitotenv.2008.09.053
Vonk JE, Mann PJ, Davydov S, Davydova A, Spencer RGM, Schade J, Sobczak
W V., Zimov N, Zimov S, Bulygina E, Eglinton TI, Holmes RM. 2013. High
biolability of ancient permafrost carbon upon thaw. Geophysical
Research Letters 40 : 2689–2693. DOI: 10.1002/grl.50348
Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, Alekseychik P, Amyot
M, Billet MF, Canário J, Cory RM, Deshpande BN, Helbig M, Jammet M,
Karlsson J, Larouche J, MacMillan G, Rautio M, Walter Anthony KM,
Wickland KP. 2015. Reviews and syntheses: Effects of permafrost thaw on
Arctic aquatic ecosystems. Biogeosciences 12 :
7129–7167. DOI: 10.5194/bg-12-7129-2015
Walling DE, Fang D. 2003. Recent trends in the suspended sediment loads
of the world’s rivers. Global and Planetary Change 39 :
111–126. DOI: 10.1016/S0921-8181(03)00020-1
Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS. 2006. Methane
bubbling from Siberian thaw lakes as a positive feedback to climate
warming. Nature 443 : 71–75. DOI: 10.1038/nature05040
Wang W, Ji X, Abakumov E, Polyakov V, Li G, Wang D. 2022. Assessing
Sources and Distribution of Heavy Metals in Environmental Media of the
Tibetan Plateau: A Critical Review. Frontiers in Environmental
Science 10 . DOI: 10.3389/fenvs.2022.874635
Wild B, Andersson A, Bröder L, Vonk J, Hugelius G, McClelland JW, Song
W, Raymond PA, Gustafsson Ö. 2019. Rivers across the Siberian Arctic
unearth the patterns of carbon release from thawing permafrost.Proceedings of the National Academy of Sciences 116 :
10280–10285. DOI: 10.1073/pnas.1811797116
Yershov ED, Kondratyeva KA, Loginov IK, Sychev IK. 1991. Geocryological
map of Russia and neighbouring Republics, scale 1:2,500,000, 16 sheets
[in Russian]. English translation of map symbols and legends:
Williams, P.J., & Warren, I.M.T. (eds. 1999)
Zhang S, Yang G, Hou S, Zhang T, Li Z, Du W. 2021. Analysis of heavy
metal-related indices in the Eboling permafrost on the Tibetan Plateau.CATENA 196 : 104907. DOI: 10.1016/j.catena.2020.104907