REFERENCES
1. Lin X, Li X, Lin X. A review on applications of computational methods in drug screening and design. Molecules . 2020; 25(6):375.
2. Shoichet BK. Virtual screening of chemical libraries. Nature . 2004; 432(7019):862-5.
3. Forli S, Huey R, Pique ME, Sanner M.F, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc . 2016;11(5):905–919.
4. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589.
5. Shakibaie MR, Adeli S, Salehi MH. Antibiotic resistance patterns and extended-spectrum β-lactamase production among Acinetobacter spp. isolated from an intensive care unit of a hospital in Kerman, Iran.Antimicrob Resist Infect Control . 2012;1:1.
6. Tacconelli E, Carrara E, Savoldi A, et al. The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis . 2018;18(3):318-327.
7. Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii : pathogenesis, global resistance, mechanisms, treatment options, and alternative modalities. Infect Drug Resist . 2018;11:1249-1260.
8. Paulsen IT. Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol . 2003;6(5):446– 451.
9. Kakoullis L, Papachristodoulou E, Chra P, et al. Mechanisms of antibiotic resistance in important Gram-Positive and Gram-Negative pathogens and novel antibiotic solutions. Antibiotics . 2021;10(4):415.
10. Bastian-Tashkan B, Niakan M, et al. Antibiotic resistance assessment of Acinetobacter baumannii isolates from Tehran hospitals due to the presence of efflux pumps encoding genes (ade A and ade S genes) by molecular method. BMC Res Notes . 2020;13(1):543.
11. Abdi SN, Ghotaslou R, Ganbarov K, et al. Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect Drug Resist . 2020;13:423-434.
12. Coyne S, Courvalin P, Perichon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother . 2011; 55(3):947-53.
13. Du D, Wang-Kan X, Neuberger A, et al. Multidrug efflux pumps: structure, function, and regulation. Nat Rev Microbiol.2018;16(9):523-539.
14. Ornik-Cha A, Wilhelm J, Kobylka, J, et al. Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms. Nat Commun. 2021;12(1):6919. 15. Magnet S, Courvalin P, & Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance inAcinetobacter baumannii strain BM4454. Antimicrob Agents and Chemother. 2001;45(12): 3375–3380. 16. Alav I, Kobylka J, Kuth MS, et al. Structure, assembly, and function of tripartite efflux and type 1 secretion systems in Gram-Negative bacteria. Chem Rev. 2021;121(9):5479-5596. 17. Yoon EJ, Balloy V, Fiette L, Chignard M, et al. Contribution of the Ade resistance–nodulation–cell division–type efflux pumps to fitness and pathogenesis of Acinetobacter baumannii. MBio.2016;7 e00697-16. 18. Leus IV, Weeks JW, Bonifay V, et al. Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii. J Bacteriol. 2018; 200(13):e00049-18. 19. Yu EW, Aires JR, McDermott G, Nikaido H. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol. 2005;187(19):6804-15. 20. Su CC, Morgan CE, Kambakam S, et al. Cryo-Electron Microscopy structure of an Acinetobacter baumannii multidrug efflux pump.mBio. 2019;10(4):e01295-19. 21. Carpenter EP, Beis K, Cameron AD, et al. Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol.2008;18(5):581–586. 22. Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. JMB; 305(3): 567-580. 23. Käll L, Rogh A, Sonnhammer EL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004:338(5):1027-36. 24. Bernsel A, Viklund H, Hennerdal A, Elofsson A. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 2009; 37(2):W465–W468 25. Terreni, M, Taccani, M, & Pregnolato, M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules. 2021;26(9): 2671. 26. Lin CH, Cheng T, Lin Shyu C, et al. Structural and biological characterization of mastoparans in the venom of Vespa species in Taiwan.Peptides. 2011;32(10):2027-2036. 27. Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta. 1999;15;462(1-2):11-28. 28. Sato H, Feix JB. Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides.Biochimica et Biophysica Acta (BBA). 2006;1758(9):1245-56. 29. Wang Y, Venter H, Ma S. A novel approach to combat efflux-mediated drug resistance in bacteria. Curr Drug Targets. 2016;17(6):702-19. 30. Jamshidi S, Sutton JM, and Khondaker MR. Computational study reveals the molecular mechanism of the Interaction between the efflux inhibitor PAβN and the AdeB transporter from Acinetobacter baumannii.ACS Omega. 2017;2(6):3002-3016. 31. Skariyachan S, Manjunath M, Bachappanavar N. Screening of potential lead molecules again prioritized targets of multidrug-resistantAcinetobacter baumannii insights from molecular docking, molecular dynamic simulations, and in vitro assays. J Biomol Struct Dyn. 2019;37(5):1146-1169. 32. Modarresi F, Azizi O, Shakibaie MR, et al. Effect of iron on the expression of efflux pump (adeABC) and quorum sensing (luxI,luxR) genes in clinical isolates of Acinetobacter baumannii. APMIS 2015;123(11): 959–968. 33. CLSI. Clinical and laboratory standards institute. Document No M100S. Performance Standards for Antimicrobial Susceptibility Testing. 26. Wayne: CLSI; 2019. 34. Masoumi S, Shakibaie MR, Gholamrezazadeh M, Monirzadeh F. Evaluation Synergistic Effect of TiO2, ZnO nanoparticles and amphiphilic peptides (Mastoparan-b, Indolicidin) against drug-resistant Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Arch Pediatr Infect Dis. 2018;6(3):e57920.
35. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Methods . 2001; 25(4):402-8.
36. Azizi O, Shakibaie MR, Badmasti F, et al. Class 1 integrons in non-clonal multidrug-resistant Acinetobacter baumannii from Iran, description of the new blaIMP-55 allele in In1243. J Med Microbiol. 2016; 65(9):928-936. 37. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol. 2008;57(5):758-71.
38. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007; 35: W407-10.
39. Benkert P, Künzli M, Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 2009;37(Web Server issue):W510-4. 40. Hooft RW, Sander C, Vriend G. Objectively judging the quality of a protein structure from a Ramachandran plot. Comput Appl Biosci. 1997;13(4): 425-430. 41. Ganeshan S, Shakibaie MR, Rajagopal R. Insights from the molecular docking analysis of colistin with the PmrA protein model fromAcinetobacter baumannii. Bioinformation. 2022; 18:41-49. 42. Tripathi SK, Muttineni R, Singh SK. Extra precision docking, free energy calculation, and molecular dynamics simulation studies of CDK2 inhibitors. Theoretical Biol. 2013; 334:87-100. 43. Trott O, and Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. 44. Zheng W, Zhou X, Wuyun Q, Pearce R, Li Y, Zhang Y. FUpred: detecting protein domains through deep-learning-based contact map prediction.Bioinformatics. 2020; 36 (12):3749-3757. 45. Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol. 2015;6:660. 46. Subhadra B, Oh MN, and Choi CH. RND efflux pump systems in Acinetobacter, with special emphasis on their role in quorum sensing.J Bacteriol Virol. 2019;49:1-11. 47. Kunihiko N, Seiji Y, Ryosuke N, Martijn Z, Mitsuko HN. Function and inhibitory mechanisms of multidrug efflux pumps. Front in Microbiol. 2021;12: DOI. 10.3389/fmicb.2021.737288. 48. Liao, J.; Wang, Q.; Wu, F; Huang, Z. In Silico Methods for Identification of Potential Active Sites of Therapeutic Targets.Molecules. 2022, 27, 7103.