REFERENCES
1. Lin X, Li X, Lin X. A review on applications of computational methods
in drug screening and design. Molecules . 2020; 25(6):375.
2. Shoichet BK. Virtual screening of chemical libraries. Nature .
2004; 432(7019):862-5.
3. Forli S, Huey R, Pique ME, Sanner M.F, Goodsell DS, Olson AJ.
Computational protein-ligand docking and virtual drug screening with the
AutoDock suite. Nat Protoc . 2016;11(5):905–919.
4. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein
structure prediction with AlphaFold. Nature. 2021; 596:583–589.
5. Shakibaie MR, Adeli S, Salehi MH. Antibiotic resistance patterns and
extended-spectrum β-lactamase production among Acinetobacter spp.
isolated from an intensive care unit of a hospital in Kerman, Iran.Antimicrob Resist Infect Control . 2012;1:1.
6. Tacconelli E, Carrara E, Savoldi A, et al. The WHO priority list of
antibiotic-resistant bacteria and tuberculosis. Lancet Infect
Dis . 2018;18(3):318-327.
7. Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter
baumannii : pathogenesis, global resistance, mechanisms, treatment
options, and alternative modalities. Infect Drug Resist .
2018;11:1249-1260.
8. Paulsen IT. Multidrug efflux pumps and resistance: regulation and
evolution. Curr Opin Microbiol . 2003;6(5):446– 451.
9. Kakoullis L, Papachristodoulou E, Chra P, et al. Mechanisms of
antibiotic resistance in important Gram-Positive and Gram-Negative
pathogens and novel antibiotic solutions. Antibiotics .
2021;10(4):415.
10. Bastian-Tashkan B, Niakan M, et al. Antibiotic resistance assessment
of Acinetobacter baumannii isolates from Tehran hospitals due to
the presence of efflux pumps encoding genes (ade A and ade S
genes) by molecular method. BMC Res Notes . 2020;13(1):543.
11. Abdi SN, Ghotaslou R, Ganbarov K, et al. Acinetobacter
baumannii efflux pumps and antibiotic resistance. Infect Drug
Resist . 2020;13:423-434.
12. Coyne S, Courvalin P, Perichon B. Efflux-mediated antibiotic
resistance in Acinetobacter spp. Antimicrob Agents Chemother .
2011; 55(3):947-53.
13. Du D, Wang-Kan X, Neuberger A, et al. Multidrug efflux pumps:
structure, function, and regulation. Nat Rev Microbiol.2018;16(9):523-539.
14. Ornik-Cha A, Wilhelm J, Kobylka, J, et al. Structural and functional
analysis of the promiscuous AcrB and AdeB efflux pumps suggests
different drug binding mechanisms. Nat Commun. 2021;12(1):6919.
15. Magnet S, Courvalin P, & Lambert T. Resistance-nodulation-cell
division-type efflux pump involved in aminoglycoside resistance inAcinetobacter baumannii strain BM4454. Antimicrob Agents
and Chemother. 2001;45(12): 3375–3380.
16. Alav I, Kobylka J, Kuth MS, et al. Structure, assembly, and function
of tripartite efflux and type 1 secretion systems in Gram-Negative
bacteria. Chem Rev. 2021;121(9):5479-5596.
17. Yoon EJ, Balloy V, Fiette L, Chignard M, et al. Contribution of the
Ade resistance–nodulation–cell division–type efflux pumps to fitness
and pathogenesis of Acinetobacter baumannii. MBio.2016;7
e00697-16.
18. Leus IV, Weeks JW, Bonifay V, et al. Substrate specificities and
efflux efficiencies of RND efflux pumps of Acinetobacter
baumannii. J Bacteriol. 2018; 200(13):e00049-18.
19. Yu EW, Aires JR, McDermott G, Nikaido H. A periplasmic drug-binding
site of the AcrB multidrug efflux pump: a crystallographic and
site-directed mutagenesis study. J Bacteriol.
2005;187(19):6804-15.
20. Su CC, Morgan CE, Kambakam S, et al. Cryo-Electron Microscopy
structure of an Acinetobacter baumannii multidrug efflux pump.mBio. 2019;10(4):e01295-19.
21. Carpenter EP, Beis K, Cameron AD, et al. Overcoming the challenges
of membrane protein crystallography. Curr Opin Struct Biol.2008;18(5):581–586.
22. Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane
protein topology with a hidden markov model: application to complete
genomes. JMB; 305(3): 567-580.
23. Käll L, Rogh A, Sonnhammer
EL. A combined transmembrane topology and signal peptide prediction
method. J Mol Biol. 2004:338(5):1027-36.
24. Bernsel A, Viklund H, Hennerdal A, Elofsson A. TOPCONS: consensus
prediction of membrane protein topology. Nucleic Acids Res. 2009;
37(2):W465–W468
25. Terreni, M, Taccani, M, & Pregnolato, M. New antibiotics for
multidrug-resistant bacterial strains: latest research developments and
future perspectives. Molecules. 2021;26(9): 2671.
26. Lin CH, Cheng T, Lin Shyu C, et al. Structural and biological
characterization of mastoparans in the venom of Vespa species in Taiwan.Peptides. 2011;32(10):2027-2036.
27. Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their
mechanisms of action. Biochim Biophys Acta.
1999;15;462(1-2):11-28.
28. Sato H, Feix JB. Peptide–membrane interactions and mechanisms of
membrane destruction by amphipathic α-helical antimicrobial peptides.Biochimica et Biophysica Acta (BBA). 2006;1758(9):1245-56.
29. Wang Y, Venter H, Ma S. A novel approach to combat efflux-mediated
drug resistance in bacteria. Curr Drug Targets.
2016;17(6):702-19.
30. Jamshidi S, Sutton JM, and Khondaker MR. Computational study reveals
the molecular mechanism of the Interaction between the efflux inhibitor
PAβN and the AdeB transporter from Acinetobacter baumannii.ACS Omega. 2017;2(6):3002-3016.
31. Skariyachan S, Manjunath M, Bachappanavar N. Screening of potential
lead molecules again prioritized targets of multidrug-resistantAcinetobacter baumannii insights from molecular docking,
molecular dynamic simulations, and in vitro assays. J Biomol
Struct Dyn. 2019;37(5):1146-1169.
32. Modarresi F, Azizi O, Shakibaie MR, et al. Effect of iron on the
expression of efflux pump (adeABC) and quorum sensing (luxI,luxR) genes in clinical isolates of Acinetobacter
baumannii. APMIS 2015;123(11): 959–968.
33. CLSI. Clinical and laboratory standards institute. Document No
M100S. Performance Standards for Antimicrobial Susceptibility Testing.
26. Wayne: CLSI; 2019.
34. Masoumi S, Shakibaie MR, Gholamrezazadeh M, Monirzadeh F. Evaluation
Synergistic Effect of TiO2, ZnO nanoparticles and amphiphilic peptides
(Mastoparan-b, Indolicidin) against drug-resistant Pseudomonas
aeruginosa, Klebsiella pneumoniae and Acinetobacter
baumannii. Arch Pediatr Infect Dis. 2018;6(3):e57920.
35. Livak KJ, Schmittgen TD. Analysis of relative gene expression data
using real-time quantitative PCR and the 2(-Delta Delta C(T)).Methods . 2001; 25(4):402-8.
36. Azizi O, Shakibaie MR, Badmasti F, et al. Class 1 integrons in
non-clonal multidrug-resistant Acinetobacter baumannii from Iran,
description of the new blaIMP-55 allele in In1243. J Med Microbiol.
2016; 65(9):928-936.
37. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for
the RAxML Web servers. Syst Biol. 2008;57(5):758-71.
38. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the
recognition of errors in three-dimensional structures of proteins.
Nucleic Acids Res. 2007; 35: W407-10.
39. Benkert P, Künzli M, Schwede T. QMEAN server for protein model
quality estimation. Nucleic Acids Res. 2009;37(Web Server
issue):W510-4.
40. Hooft RW, Sander C, Vriend G. Objectively judging the quality of a
protein structure from a Ramachandran plot. Comput Appl Biosci.
1997;13(4): 425-430.
41. Ganeshan S, Shakibaie MR, Rajagopal R. Insights from the molecular
docking analysis of colistin with the PmrA protein model fromAcinetobacter baumannii. Bioinformation. 2022; 18:41-49. 42. Tripathi SK, Muttineni R, Singh SK. Extra precision docking, free
energy calculation, and molecular dynamics simulation studies of CDK2
inhibitors. Theoretical Biol. 2013; 334:87-100.
43. Trott O, and Olson, AJ. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimization,
and multithreading. J Comput Chem. 2010;31(2):455–461.
44. Zheng W, Zhou X, Wuyun Q, Pearce R, Li Y, Zhang Y. FUpred: detecting
protein domains through deep-learning-based contact map prediction.Bioinformatics. 2020; 36 (12):3749-3757.
45. Dreier J, Ruggerone P. Interaction of antibacterial compounds with
RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol.
2015;6:660.
46. Subhadra B, Oh MN, and Choi CH. RND efflux pump systems in
Acinetobacter, with special emphasis on their role in quorum sensing.J Bacteriol Virol. 2019;49:1-11.
47. Kunihiko N, Seiji Y, Ryosuke N, Martijn Z, Mitsuko HN. Function and
inhibitory mechanisms of multidrug efflux pumps. Front in
Microbiol. 2021;12: DOI. 10.3389/fmicb.2021.737288.
48. Liao, J.; Wang, Q.; Wu, F; Huang, Z. In Silico Methods for
Identification of Potential Active Sites of Therapeutic Targets.Molecules. 2022, 27, 7103.