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Abstract—Seismological data can provide timely information for
slope failure hazard assessments, among which rockfall waveform
identification is challenging for its high waveform variations across
different events and stations. A rockfall waveform does not have
typical body waves as earthquakes do, so researchers have made
enormous efforts to explore characteristic function parameters
for automatic rockfall waveform detection. With recent advances
in deep learning, algorithms can learn to automatically map
the input data to target functions. We develop RockNet via
multitask and transfer learning; the network consists of a single-
station detection model and an association model. The former
discriminates rockfall and earthquake waveforms. The latter
determines the local occurrences of rockfall and earthquake events
by assembling the single-station detection model representations
with multiple station recordings. RockNet achieves macro F1
scores of 0.990 and 0.981 in terms of discriminating earthquakes
and rockfalls from other events with the single-station detection
and association models, respectively.

Index Terms—multitask learning, transfer learning, rockfall
seismic monitoring.

I. INTRODUCTION

ROCKFALL is one of the socioeconomic exposure risks in
mountainous areas that correlates with other slope failures

(e.g., landslides and debris flow). Rockfall studies usually
consider meteorological factors [1]–[4] and geomorphological
evolution via instruments like airborne LiDAR and terrestrial
laser scanning (TLS) that generates high-resolution topographic
data [5]–[9]. Time-lapse imaging of rockfalls obtained from
stereographic pairs of sequential photographs and cameras is
also intuitive for rockfalls identification [4], [10]. Although
these methods have facilitated rockfall studies in various
aspects, none are almighty and exist deficiencies. LiDAR
and TLS are expensive when applied to vast areas and are
ineffective during heavy rains that cause much light refraction.
Photo monitoring is susceptible to environmental visibility,
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such as foggy and rainy weather, and poor performance at
night. Seismogram recorded by seismometers is emerging as
regular monitoring data for providing timely dynamic process of
mass movements. Seismic monitoring is relatively cost-effective
and free from weather impacts compared to other methods.
Furthermore, the seismological analysis conducted in the time
and time-frequency domains could provide physical parameters
like source-receiver distance, magnitude, and source location
[11]–[13]; in which the seismic energy attenuates with distances
and is correlated with rockfall volume and mechanisms.

The challenge of rockfall seismic monitoring is identifying
rockfall-induced signals on continuous seismic recordings. A
general technique to achieve automatic rockfall waveform
detection is to apply an amplitude-sensitive algorithm in the
time or frequency domain to find potential events and confirm
these events based on a self-designed criterion [2]. Advanced
methods depend on machine learning algorithms and self-
defined seismic attributes to distinguish various seismic sources
[14], [15]. However, rockfall waveforms differ according
to the source mechanisms coupled with their propagation
media, numbers of blocks, volumes, and movements, causing
generalization problems of the detection algorithm [11], [16]–
[18]. In this study, we train a deep-learning model that
automatically extracts features from the input waveforms and
the spectrograms of all stations in the seismic network, which
can further gain model generalizability by including waveforms
of various source mechanisms.

Figure 1 provides an overview of this study. We collected
and labeled four types of seismic events recorded by a local
seismic network, with a station spacing of less than 1 km, and
deployed them near a slope failure site. The geometry of the
deployed seismic network could impose physical constraints
on seismic event confirmation according to the physics of
the observed signals. For example, due to the short spacing,
an earthquake waveform’s appearance and arrival time would
be coherent across the stations. In contrast, the arrival of a
rockfall waveform would have little time delay among all
stations, and the ground motion recordings would become
increasingly unclear as the wave propagation distance increased.
Therefore, one could confirm a local seismic network’s rockfall
and earthquake events by associating the interpretation results
of all single-station recordings. Following this logic, we develop
RockNet, which consists of two models. A single-station
detection model learns to identify earthquake and rockfall
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Fig. 1. Overview of the collected seismic signals and the model outputs. (a) Seismic signals recorded over the local network: rockfalls, earthquakes, engineering
signals, and car-induced vibrations. For simplicity, we only plot the vertical-component data. The missing data are substituted with random values. (b) Local
seismic network geometry. (c) A detection example including rockfall and earthquake events recorded at close time points. For each station, the single-station
detection model generates earthquake P and S phase-time functions (blue and red lines, respectively), earthquake waveform masking functions (green lines),
and rockfall waveform masking functions (black lines). The association model aggregates the encoded features of all station recordings from the single-station
detection model and generates the local occurrence time functions of rockfall and earthquake events. The model inputs are three-component waveforms and the
vertical-component spectrograms of all stations.

waveforms on single-station recordings. An association model
assigns the local occurrence times of earthquake and rockfall
events based on the waveform interpretations made by the
single-station detection model.

II. DATA

From 2019/02/26 to 2020/12/31, we deployed a local seismic
network with four three-component-geophone produced by
DiGOS sampled at 100 Hz in the Luhu tribe, Miaoli, Taiwan,
where rockfall events have been frequent since a slope failure
event occurred in April 2018 (Figure 1 (b)). The main traffic
artery of the monitoring site was closed due to the presence
of unstable slopes. We assumed that the main seismic events

in this area were earthquakes, rockfalls, slope stabilization
engineering events, and car-induced vibrations (Figure 1 (a)).
In this study, we include additional datasets to develop our
models: the Taiwan earthquake dataset and the STEAD dataset
[19] for the single-station detection model, the INSTANCE
dataset [20] for the association model, and the artificial rockfall
experiment waveforms [18] for both models. We further apply
data augmentation and oversampling strategies to alleviate
imbalanced data issues during model training.

A. Luhu dataset

To compile the database from almost two years of continuous
recordings, we applied STA/LTA algorithms [21] to detect pulse-
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Fig. 2. Templates of the model input waveforms and corresponding target
functions for (a)(b) the single-station detection model and (c)(d) the association
model. RF and EQ are abbreviations of rockfall and earthquake events,
respectively. We transform the time labels (i.e., the P and S arrival times
and the local occurrences of earthquake and rockfall waveforms) into truncated
Gaussian functions. (a)(b) Marching mosaic waveforms are generated by
randomly superimposing the earthquake and rockfall waveforms and shifting
them back and forth. (c) The earthquake-rockfall mosaic waveforms generated
for the single-station detection model are replicated four times as the
augmentation data for the association model. (d) An earthquake event from
the Luhu dataset with a random station order. We replace the waveform data
with random values for the stations with missing data or ground-truth labels.

like signals and then manually labeled the events according to
our experiences of encountered rockfalls during field works.
Unlike the earthquake signal with highly similar waveforms
and coherent time-frequency patterns over all stations, the
rockfall signals of all stations are highly variable in the time
and frequency domains. High-frequency (larger than 10 Hz)
energy dominates rockfall waveforms at near-field stations. The
relative low-frequency energy dominates the far-field stations’
rockfall recordings since the high-frequency portion attenuates
significantly with dissemination distances. We identify the engi-
neering signals according to our experiences during fieldwork
and determine the car-induced signals by inspecting the order
and the speed of signal appearances across the stations. For
the earthquake waveform recorded in situ, we detected and
manually checked the P and S arrivals using the RED-PAN

model [22]. Finally, we identified 348 rockfall events recorded
by more than two stations with 750 sets of waveforms; 1,399
sets of rockfall waveforms labeled with only one station; 193
car-induced events with 495 sets of waveforms; 280 sets of
engineering signals with 455 waveforms; and 1,834 earthquake
events with 5,324 waveforms. The Luhu dataset is partitioned
into the training and testing sets in a 70%-30% ratio. All the
potential rockfall waveforms labeled with only one station are
not included in the test set.

B. Additional training dataset and data augmentation

The lack of sufficient samples has always been problematic
when training rockfall detection algorithms. This study includes
hundreds of thousands of earthquake and nonearthquake sam-
ples for model training. Under the multitask learning framework,
the additional large dataset of nonrockfall samples can facilitate
the model’s interpretation capability on seismograms and help
develop a rockfall waveforms pattern recognition capability
by sharing information among different tasks. The marching
mosaic waveform augmentation (MMWA) and earthquake
early warning augmentation (EEWA) approaches are applied
to enhance the model’s generalizability. The MMWA superim-
poses multiple earthquake samples on each other and shifts
semisynthetic waveforms back and forth. The EEWA allows for
time-clipped earthquake waveforms in which only P waves are
visible under the receptive field of the model [22]. We collected
and generated the earthquake and nonearthquake samples from
the Taiwan earthquake dataset and the STEAD dataset for the
single-station model. To develop the association model, the
earthquake and nonearthquake samples were generated from
the INSTANCE dataset, with each consisting of four station
recordings with a random station order. Both models’ training
and validation data ratio are 80%-20%.

When addressing large additional earthquake training sam-
ples, imbalanced learning with severely skewed class distribu-
tions is another challenge to overcome; we apply the MMWA
strategy to superimpose and randomly shift the rockfall and
earthquake waveforms (Figure 2) to extend the datasets. The
MMWA is applied to the training sets of both the single-station
model and the association model, where we replicate the single-
station mosaic waveforms four times as the inputs of the latter
model. For the association model inputs of the four stations,
we randomly set the station order of the input tensor to prevent
the model from memorizing specific orders of recorded stations
and waveforms. On the other hand, not all events have four
station recordings among all the samples in the Luhu dataset;
some might be missing data, or the target waveforms may
not be sufficiently distinct for labeling. We complement or
substitute these samples with random values for the association
model.

III. METHODS

Considering the data scarcity of rockfall events, we frame
the rockfall detection task under multitask learning and transfer
learning schema. Multitask learning enables knowledge transfer
among different tasks and helps develop the task of learning
with insufficient training data. Moreover, a multitask model is
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Fig. 3. Model architecture. (a) Three-component seismograms and vertical-component spectrograms are the inputs of the waveform encoder and the spectrogram
encoder of the single-station detection model, respectively. The bottleneck layer is where the waveform encoder and the spectrogram encoder fuse, which also
connects the model decoder and the waveform encoder. The outputs are the earthquake phase-time functions, the earthquake waveform masking functions, and
the rockfall waveform masking functions. (b) The association model concatenates and merges the waveform encoder tensors of all station recordings, which are
produced by the trained single-station detection model. The merged encoder is then skip-connected to the new trainable decoder to produce network outputs,
the local occurrence time functions of earthquake and rockfall events.

more advantageous in terms of computational efficiency than
deploying multiple models for various tasks. Transfer learning
focuses on applying knowledge gained from pretrained tasks to
other related but different problems. The association of rockfall
events relies on assembling the a priori cognition of single-
station waveforms. Transfer learning is applied here to inherit
and assemble single-station detection model representations of
all station recordings for event identification.

A. Single-station detection model

An earthquake signal typically includes P and S phases and is
prone to waveform pattern recognition. In comparison, rockfall
signals are induced by rock impacts with various sizes on the
weight-bearing medium with rolling, free-falling, or bouncing
movements. Thus, a rockfall waveform can appear as successive
or discrete pulse-like signals with broad energy frequency
ranges and is usually more easily identified in the time-
frequency domain. We take the waveforms and spectrogram as
the inputs of the single-station detection model based on our
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experiences, which provides more confidence when confirming
a target signal (Figure 3 (a)). Note that the spectrogram is
obtained by using a short-time Fourier transform with a 0.2-
second Hanning window and a 50% overlap rate.

The single-station detection model consists of a waveform
encoder, a spectrogram encoder, a feature fusion block, and a
decoder (Figure 3 (a)). The two encoders separately map the Z
score standardized input data (i.e., three-component waveforms
for the waveform encoder and the vertical-component spec-
trogram for the spectrogram encoder) to a high-dimensional
feature space with a series of recurrent-residual convolution
blocks [22]–[24]. The subsequent feature fusion block merges
the two encoder features as the input of the decoder, which
is also composed of a series of recurrent-residual convolution
blocks and is skip-connected with the waveform encoder. Let
α be outputs of the last layer of the waveform encoder. We
apply an additional convolution operation to the outputs of
the last layer of the spectrogram encoder to match the shape
of α, where the resulting output is denoted as β. The feature
fusion block first merges α and β with a convolution operation
via concatenation: γ = conv([α;β]), where AG denotes an
attention gate [24], and the feature fusion block output ν is
defined as ν = AG(target : γ; gate : α) + α. The decoder
finally outputs three sets of vectors associated with the assigned
tasks of earthquake phase arrival time picking, earthquake
waveform masking, and rockfall waveform masking.

B. Association model

The encoders of the single-station detection model learn to
extract informative features from the input data to accomplish
the assigned tasks. The core idea of the association model is
to assemble the encoder representations of the single-station
detection model for all station recordings and determine the
seismic event occurrence times, which are highly related to the
tasks of the single-station model. Let τni be the encoder outputs
of the single-station detection model at a depth of n with the
data of input station i. We perform a 1x1 convolution on the
concatenation of τn (i.e., [τn1 ; τ

n
2 ; τ

n
3 ; τ

n
4 ] in this study) to form

the association model encoder at various depths (Figure 3 (b)).
The encoder is then skip-connected to a series of recurrent-
residual convolution blocks to produce the local network
outputs, i.e., the occurrence time functions of earthquake and
rockfall events. During the training process, we freeze the
trained weights of the single-station detection model. In this
way, the transfer of knowledge from the single-station detection
model can help develop the association model without causing
it to collapse.

Generally, the single-station detection model is independent
but included in the association model, and the prediction
results of the two models do not interfere with each other.
Rather than training a single model that can produce the same
outputs, we build RockNet with two related but independent
models. The reason for this is that many more computing
resources are needed to train a new model that optimizes both
the single-station detection and association tasks from scratch.
Additionally, it is difficult to apply data augmentation methods
such as MMWA and EEWA [22] to network-based data, where

the waveform amplitude and the source-receiver distance should
be considered.

C. Target function prototypes and model optimization

RockNet optimizes two types of target functions: mask func-
tions that wrap the target waveforms and truncated Gaussian
functions that are transformed from the ground-truth time labels
of the P and S phase arrivals of earthquakes and seismic event
occurrences with standard deviations of 0.2, 0.3 and 0.5 seconds.
Overall, the two models of RockNet are built under a multitask
learning framework. The single-station model optimizes three
tasks: seismic phase arrival time picking, earthquake waveform
masking, and rockfall waveform masking (Figure 3 (a)). The
association model optimizes two functions for estimating the
local occurrences of earthquake and rockfall events, in which
the truncated Gaussian functions are centered at the sample
0.5 seconds before the first label of all stations (Figure 3
(b)). For every task, we add an "others" class to meet the
softmax normalization criterion of the model output layer,
which squeezes the model outputs to [0, 1] and sums them up
to 1 for every sample along the time axis. During model
training, cross-entropy is applied as a loss function H to
estimate the differences between the current predictions p
(i.e., the softmax-normalized outputs) and the target functions
q for model optimization purposes; the optimizer is Adam [25]
with a learning rate of 1e-4 in this study:

H(p,q) = −
6000∑
x

N∑
1

pN (x) logqN (x) (1)

In equation 1, x refers to the number of samples along
the time axis (a total of 6,000 samples in this study), and
N refers to the number of target function vectors (3 for the
earthquake phase arrival time picking functions and 2 for the
other functions). The total loss L of training epoch I is defined
as the weighted sum of the cross-entropy values computed for
each task k:

L(I) =

N∑
k

λk(I)H(p(I),q(I))k (2)

where the task weightings λ are estimated using the dynamic
weight averaging (DWA) strategy [22], [26].

IV. RESULTS

A. Benchmark test on the Luhu dataset

Table I lists the detection performance achieved by RockNet
on the Luhu dataset, with 0.5 set as the positive detection
threshold. For instance, a rockfall sample detected with a
mean rockfall mask value that is larger than 0.5 is a true-
positive prediction for the rockfall class of the single-station
detection model. A rockfall event sample detected with a peak
rockfall occurrence value that is larger than 0.5 is a true-
positive prediction for the association model. Considering the
single-station detection model, we compare the performances
achieved by the model with and without the vertical-component
spectrogram serving as the model input. With the additional
time-frequency information, the model improves its rockfall
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TABLE I
MODEL PERFORMANCE ACHIEVED ON THE LUHU TESTING DATASET a .

- Single-station detection model Association model
Description Compare the effect of input data Compare the effect of training size

Model
Waveform +

Vertical-component
spectrogram

Waveform Luhu dataset +
INSTANCE Luhu dataset

Training size 393K 393K 440K 47K
Class EQ RF Nz EQ RF Nz EQ RF Nz EQ RF Nz

Test size 1581 218 980 1581 218 980 551 100 346 551 100 346
Precision 0.990 0.981 0.991 0.989 0.995 0.967 0.993 1.000 0.986 0.996 0.986 0.920

Recall 1.000 0.959 0.980 0.999 0.853 0.982 1.000 0.930 0.994 0.998 0.710 0.991
F1-score 0.995 0.970 0.985 0.994 0.919 0.974 0.996 0.964 0.990 0.997 0.826 0.954

Macro F1-score 0.983 0.962 0.983 0.926
aEQ, RF, and Nz refer to earthquakes, rockfalls, and local noise, respectively.

recall rate by 10.6%, indicating fewer false-negative detections
(i.e., misidentifying rockfalls as earthquakes and noise). For the
association model, we explore the training data quantity factor
under the transfer learning framework. The association model
that trains with only the Luhu dataset achieves a macro F1
score of 0.926 under the transfer learning framework. With the
additional training dataset of INSTANCE, we obtain a macro
F1 score of 0.983, in which the rockfall recall rate improves by
22%, and the precision rate of local noise improves by 6.6%.
Figure 4 shows prediction examples in which the rockfall
waveform amplitude, signal-to-noise ratio (SNR), and high-
frequency energy attenuate with increasing distance.

B. Examination on the Super-Sauze unstable slope dataset

We also examined the generalization of our trained model
using an independent dataset collected at the Super-Sauze
unstable slope [14], which includes labeled events of anthro-
pogenic/environmental noises (351 events), earthquakes (355
events with SNR >2), rockfalls (357 events with SNR>2).
The labeled dataset was acquired from three time periods:
from 11 October to 19 November 2013, from 10 to 30
November 2014, and from 9 June to 15 August 2015; and
recorded by six one-component short-period-seismometers
(Noemax and Sercel L4C) and two three-component broadband-
seismometers (RefTek 130S-01). The eight seismometers are
arranged as two equilateral triangular arrays that a three-
component seismometers placed at center surrounded by three
vertical one-component seismometers, installed at the east and
west sides of the Super-Sauze unstable slope. To formulate
the input of four three-component seismograms for our model,
we treat the three vertical one-component seismograms as a
three-channel vector and thus meet the input criterion. The
association model achieves a macro F1 score of 0.940, with
F1 scores of 0.916, 0.973, and 0.930 for noises, earthquakes,
and rockfalls, respectively (table II).

V. DISCUSSIONS

In this study, we identify rockfall events by emulating
the decision-making process of human experts. That is, we
characterize potential rockfall waveforms based on both time
series data and the time-frequency representations of each
station and confirm an event according to the waveform
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Fig. 4. Detection examples of rockfall events that occur between stations
LH01 and LH02. These examples are not included in the training data. (a)(b)
The overall rockfall waveform amplitudes, SNRs, and high-frequency energy
attenuation processes from stations LH01 and LH02 to stations LH03 and
LH04 are conspicuous. (b) The P wave of the earthquake strongly interferes
with the rockfall waveform, and the single-station model does not detect the
arrival of the phase at station LH02. The rockfall waveform amplitude and
SNR discrepancies are more evident than the earthquake waveforms with
same-scale amplitudes over all stations. Nevertheless, the association model
still identifies the earthquake and rockfall occurrences with high prediction
values.

TABLE II
ASSOCIATION MODEL PERFORMANCE ON THE SUPER-SAUZE DATASET.

Class EQ RF Nz
Test size 355 357 351
Precision 0.967 0.950 0.903
Recall 0.980 0.910 0.929
F1-score 0.973 0.930 0.916
Macro F1-score 0.940

appearances and energy decay statuses of other stations. For
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example, in Figure 4(b), the rockfall waveform is unclear at
stations LH03 and LH04, and the P wave of the earthquake
interferes with the rockfall waveform. Other station recordings
can confirm the coherency of the rockfall and earthquake
occurrences. In the experiments comparing different inputs
for the single-station detection model (table I), we achieve
substantial improvements in the rockfall recall rate. The
performance improvement conforms to our experiences in
distinguishing between different seismic sources, in which
time-frequency representations help when time series features
are not highly typical. On the other hand, the association model
benefits from training with the additional INSTANCE dataset,
which makes the total dataset more imbalanced. However, the
association model performs better (table I), and we infer that its
advances are derived from the positive transfer of knowledge
from the well-trained single-station detection model. The test
results of the independent Super-Sauze dataset show that our
trained model generalizes well. This may be because the
physical mechanisms behind the events in different regions are
similar, as reflected in the seismic recordings [27]. Therefore,
the trained model has the potential to be used in other areas
for rockfall and earthquake monitoring.

VI. CONCLUSIONS

We develop a deep learning-based rockfall and earthquake
detection model for a local seismic network, RockNet, which
performs joint detection with each station and determines the
local occurrences of seismic events by associating the model
responses of all station recordings. We address the imbalanced
learning problem by adopting multitask learning and transfer
learning strategies and by utilizing a data augmentation
technique that superimposes and shifts rockfall and earthquake
waveforms. RockNet exhibits the potential to perform onsite
rockfall seismic monitoring. Additionally, RockNet can serve
as a template for training a deep learning model to detect the
seismic sources of insufficient training data, such as landslides
and volcanic signals.

VII. OPEN RESEARCH

The labeled data [28] are available in Dryad (https://doi.
org/10.5061/dryad.tx95x6b2f). The code and model are open
source at GitHub (https://github.com/tso1257771/RockNet) and
Zenodo (https://doi.org/10.5281/zenodo.7458571, [29]).
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