Running title: Benchmarking machine learning for genomic prediction when non-additive effects are important 

Core ideas:
1. Machine learning has been proposed to capture non-additive effects in genomic prediction.  
1. We compare extended GBLUP models with several machine learning methods for genomic prediction in sugarcane.
1. Optimized random forest was almost competitive with extended GBLUP for genomic predictions across traits.
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Abstract
Sugarcane has a complex, highly polyploid genome with multi-species ancestry. Additive models for genomic prediction of clonal performance might not capture interactions between genes and alleles from different ploidies and ancestral species.  As such genomic prediction in sugarcane presents an interesting case for machine learning methods, which are purportedly able to deal with high levels of complexity in prediction. Here we investigate deep learning networks (DL), including Multilayer networks (MLP) and convolution neural networks (CNN), and Random Forest (RF) for genomic prediction in sugarcane. The data set was 2912 sugarcane clones, scored for 26,086 genome wide SNP markers, with final assessment trial (FAT) data for total cane harvested (TCH), Commercial cane sugar (CCS) and Fibre content. The clones in the latest trial (2017) were used as a validation set.  We compared performance of these methods to GBLUP extended to include dominance and epistatic effects.  The prediction accuracies from GBLUPs were 0.37 for TCH, 0.37 for CCS and 0.48 for Fibre, while the DL models had accuracies of 0.33 for TCH prediction, 0.38 for CCS prediction and 0.43 for Fibre.  Optimised RF achieved a prediction accuracy of 0.35 for TCH, 0.38 for CCS and 0.48 for Fibre.  Both DL and RF predictions were more accurate additive GBLUP but generally lower than extended GBLUP.  Finally, we identified a partially shared distribution of SNP selections between RF and GBLUP models. We conclude RF may have some utility for genomic prediction for crops with highly complex genomes, particularly if non-additive interactions can be captured with clonal propagation.  
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1. Introduction
Sugarcane is a major global crop, with production of 2 billion tonnes of cane in 2019 (based on statistics from https://www.fao.org/faostat/en/#data/QCL).  Sugarcane accounted for 79% of total global sugar production in the same year (Sugar: World Markets and Trade, 2021). Due to the complex genome structure of sugarcane, with a high ploidy, and hybrid ancestry, breeding for increased yield has produced relatively slow gains compared to other crops. This is exacerbated by the long breeding cycle of sugarcane, which is typically 12-14 years (Wei & Jackson, 2017).
Genomic selection (GS) (M.E. Goddard & Hayes, 2007; Meuwissen, Hayes, & Goddard, 2001) has been proposed as an approach to increase genetic gains in crop and livestock breeding programs. GS proceeds in two steps: 1. A reference population of individuals genotyped for genome wide DNA markers and phenotyped for the target trait is used to derive a prediction equation, of the estimates effects of the markers on the trait; 2. The prediction equation can then be used to calculate genomic estimated breeding values (GEBV) for selecting candidates with or without phenotypes for the target trait. GS can predict breeding values of individuals before making crosses, for example at the seedling stage, which provides opportunities to decrease breeding cycle time (Jonas & de Koning, 2013; Voss-Fels et al., 2021). In crop breeding, GS in major crop species including rice (Xu et al., 2021), wheat (Juliana et al., 2020; Lozada & Carter, 2020), maize (Beyene et al., 2021; Krishnappa et al., 2021) has achieved remarkable improvements. In sugarcane, Gouy et al (2013) first demonstrated the potential of GS, followed by Deomano et al (2020) and Hayes et al (2021).  In Deomano et al (2020). and Hayes et al (2021). the accuracy of genomic prediction for traits including total cane harvested (TCH), commercial cane sugar (CCS) and fibre content was sufficient to almost double genetic gains when combined with rapid cycling (Voss-Fels et al., 2021).
Current genomic prediction models such as linear mixed models, including the GBLUP models and BayesR models assessed by Deomano et al. (2020) and Hayes et al. (2021) assume the effects of allele substitution are additive (Meuwissen et al., 2001; VanRaden, 2008).  Genomic prediction models have been extended to include dominance and epistatic components (Vitezica, Legarra, Toro, & Varona, 2017). Extended GBLUP models have improved accuracy of predicting future performance in some wheat and maize datasets (Jiang & Reif, 2015; Martini, Wimmer, Erbe, & Simianer, 2016). In sugarcane, Yadav et al. (2021) demonstrated improvement in accuracy of predicted clonal performance for TCH after including dominance and epistatic effects, modelled assuming diploidy.  However, as Yadav et al (2021) pointed out, given the highly polyploid and variable ploidy nature of the sugarcane genome, it is difficult to the appropriate models of dominance and epistatic effects for sugarcane (and even to attach meaning to these concepts), which are theoretically required for the extended GBLUP approach (Endelman et al., 2018).
Machine learning (ML) models could be attractive for application to genomic prediction in sugarcane, given the ability of these methods discover patterns from complex data.  ML approaches due not have strong genetic assumptions (in contrast to GBLUP for example), and this might be advantageous in cases where explicit models of dominance and epistasis are difficult to derive because of genome complexity.  ML structures and algorithms that might be applicable for genomic prediction include the convolutional layer, which has been used to capture abstract features such as image outlines in image classification tasks; and random forest, which can detect local predictive relationships (Azen & Budescu, 2003; Azen, Budescu, & Reiser, 2001).   Random forest models have been shown to improve predictive accuracy for dairy bull performance (Abdollahi-Arpanahi, Gianola, & Peñagaricano, 2020) and crops including sugarcane ratoon performance (Singla, Garg, & Dubey, 2021).  Deep learning approaches including convolutional neural networks (CNN) have been used in genomic prediction in crops, with some advantage demonstrated over GBLUP methods (assuming additive effects), though only when non-additive variance was sizable (Osval A Montesinos-López et al., 2018; Osval Antonio Montesinos-López et al., 2021). The complementarity between deep Learning and linear mixed prediction models has been explored with ensemble methods such as “DeepGS” (Ma et al., 2018) and these authors showed improved accuracy of genomic of selection of individuals in an empirical wheat data set. 
The objective of this study was to assess 3 widely used ML models; Random Forest (RF), Multilayer Perceptron (MLP) and Convolution Neural Network (CNN), for genomic prediction of clonal performance for sugarcane, and benchmark these methods against GBLUP and extended GBLUP.  We investigated the improvements in predictive accuracy of the ML methods from optimising hyper-parameters for the above models. Finally, we attempt to ascribe some biological relevance to the ML parameters, by comparing the distribution of SNP importance in RF models versus variance explained per locus in BLUP models. 
2. Materials and methods
2.1 Reference population genotyping and phenotyping 
The population of sugarcane samples used here includes 2,912 sugarcane clones genotyped with a 70K SC_Affymetrix Axiom cane SNP array. This array includes 58,028 approximately single-dose polymorphic SNPs and developed particularly for Australia germplasm (Aitken et al., 2016).  All heterozygous genotypes were measured as single-class genotype, from a pseudo-diploid model during the genotype calling process (Hayes et al., 2021). During the genotyping, the homozygous reference alleles are marked as “0”, the heterozygous genotypes are marked as “1”, and the homozygous alternate genotypes are measured as “2”. In the quality control step, a filtering threshold was used to exclude low-frequency genotypes (minor allele frequency less than 0.01 and Affymetrix QC score less than 0.6), and the individuals with locus call rate under 90%. After the above steps, there were 2,912 clonal records and 26,086 high-quality SNPs.
Phenotypes for the 2912 clones used in this study were taken from final assessment trials (FATs) of Sugar Research Australia’s breeding programs. These clones were tested across 4 growing regions: “Northern” (N), “Burdekin” (A), “Central” (C) and “Southern” (S). For each region, clones were tested in FATs in up to 5 sites per year or series from 2013 to 2017 (Table 1). There was considerable overlap in clones grown oversites for each series. Each site had 108 to 330 clones planted in 4 rows x 10m plot following a p-rep design. Only the plants from middle 2 rows were used for data collection to avoid competition effects. Each series was harvested over three years or seasons as plant crop, 1st ratoon crop and 2nd ratoon crop. At each harvest, three main agricultural traits were measured: total cane harvested (TCH), commercial cane sugar (CCS) and fibre content.  The data used in subsequent analysis were BLUPs corrected for spatial variation at each harvest and trial site within region following Smith et al. (2007), as described in Yadav et al. (2021).  Note that no pedigree was fitted in these BLUPs, and the degree of shrinkage in these BLUPs were modest as within regions varieties were reasonably well balanced across trial sites.  BLUPs did allow trait values to be predicted when there was a small amount of missing data.
Table 1.  Number of records for Final Assessment Trial (FAT) clones by regions.  Note the number of unique clones was 2,912, some clones were replicated across sites and years.  
	Year
	Northern
	Burdekin
	Central
	Southern
	Total

	2013
	152
	310
	184
	152
	798

	2014
	160
	330
	126
	175
	791

	2015
	151
	289
	108
	163
	711

	2016
	157
	312
	127
	183
	779

	2017
	147
	306
	187
	157
	797

	Total
	767
	1,547
	732
	830
	3,876


2.2 Statistical analysis
Firstly, best linear unbiased estimates (BLUE) phenotypes for each clone removing effects of years, trials and crops were estimated from the BLUPs described above, by including the effects of regions, years, trials and crops via the R package “Asreml” (Butler, Cullis, Gilmour, & Gogel, 2009). No pedigree information was incorporated when these BLUEs were derived. 
In order to evaluate the accuracy of clonal prediction from the different methods, and the effect of training set size on method performance, we split the data into two training sets: training set A including 2013-2015 FAT series (1693 unique clones), training set B including set A and additional 2016 FATs (2221 unique clones). The validation set (clones of 2017) contained 691 unique clones.  There were no overlapping clones between the training set and validation set. 
We used two BLUP genomic prediction methods: (1) GBLUP, using the estimated additive genomic relationship matrix among clones, with variance components estimated using program “GCTA” (Yang, Lee, Goddard, & Visscher, 2011), and (2) an extended GBLUP with added dominance effects and epistatic effects (AD, ADE) with variance components estimated MTG2 (Lee & van der Werf, 2016).  In this model the dominance relationship matrix was constructed following (Zhu et al., 2015) and the epistatic genomic relationship matrix was calculated as the Hadamard product of the additive genomic relationship matrix (Lee & van der Werf, 2016).  All methods were compared for their predictive ability for clonal performance of three traits: TCH, CCS and fibre content.
Optimisation of ML hyper-parameters for each ML method was done by ten-fold cross validation within the training set, the validation data was excluded for this process. 
2.3 Random Forest modelling (RF)
Random Forest is an example of a bootstrap aggregating machine learning algorithm and part of a subfield of ensemble methods. As a bagging method, the RF is formed by hundreds of decision trees and treats all the trees as independent. For each decision tree, the selected features would be constructed as tree leaves to form a decision. To create a RF model based on certain training data set which has M samples and N SNPs the following steps were taken: 
1. Randomly bootstrap M samples from the training set, then initialize the root of the regression decision tree (Breiman, 2001; Mienye, Sun, & Wang, 2019). 
2. From the selected subset, pick n (n << N) SNPs, and build up the decision tree by the Classification and Regression Trees (CART) technique (Breiman, Friedman, Olshen, & Stone, 2017). 
3. By setting the number of decision trees (), repeat step1-2 until the final forest is produced.
The size of merged RF model with the default hyper-parameters could described in a “Big O notation” complexity format: . Where the  is the individual population, the  is the number of trees in the forest. The overall prediction accuracy of model was calculated as the average of all decision tree estimates across the full model. We tested two hyper-parameters for RF, number of decision trees leaves and number of tree leaves (SNPs) considered as predictors.  The RF tree population tested were [50, 100, 200, 500], and the decision tree leaves considered were [50, 100, 500, 1000, 2000, 5000], for a total of 24 sets of hypermeters tested.  Mean Squared Error (MSE) was used as criteria during RF modelling, with error defined as distance between predictions and training set phenotypes in cross validation.  RF models were run in this study using scikit-learn (Pedregosa et al., 2011).
2.4 Multilayer perceptron modelling 
Multilayer perceptron (MLP) is a common form of an artificial neural network (ANN). The MLP has three main structural components: input layer, hidden layer and output layer.  The input layer is the first neural layer that used to incorporate SNP information. The hidden and output layers are formed with activatable and trainable neurons.  Normally a neuron has 3 primary attributes: weight, bias and activation function and receive all the featural information from the previous layer. The forward propagation in a single neuron  we used can be described by the following formula:


Where  is the output of single neuron,  is the weight vector of certain unit which contains updateable weights for received SNPs, and the length of vector is equal to number of features, the  is a vector of features in one sample, and the  is the bias.  is the activation function. This study used the Exponential Linear Unit (ELU) as the activation function inside hidden layers to speed up the learning, where  in ELU is normally a small constant (e.g. 0.1), if  is smaller than 0, the ELU function would return a small negative value rather than zero which could cause neural death. The output layer estimates the final prediction of traits by a linear function. During the model training (by cross validation), MSE was calculated between predicted and observed clonal performance within the training set. 
In our MLP, we also used backward propagation to self-optimize its neural primary attributes (weights and bias).  This was done as follows:




Where  are the changes in weights and biases between the previous and current iterations.  is the learning rate, which is used to control the size of weight updates in every iteration. E is the estimated error (MSE between predictions and observations), o is the output value of certain layer, the z is the weighted input () to the activation function. 
2.5 Convolutional neural networks 
Convolutional neural networks (CNNs) are an extended MLP with several convolutional kernels (and a form of Deep Learning).  A convolutional layer contains a convolutional kernel with solid attributes: an activation function, a kernel size and a step-length. The kernel size also defines a matrix of weights that can be updated by backward propagation. The convolutional layer usually followed by a pooling layer with 2 functional options: max-pooling and average-pooling.  We used a single-channel convolution kernel with a max pooling kernel:


Where  is the convolution output of position  in a final output vector ,  is the bias for the channel,  is the weight in kernel,  is the input signal at  position in overall length , and the size of kernel is  to ensure an odd kernel length and p is a positive integer, and k is the position inside the kernel. The second equation above summarises how the max pooling works:  is the output of each step defined by hyper-parameter,  is another hyper-parameter which defines the window size (n SNPs) of the pooling kernel. The gradient of weights inside the kernel was described with following formula where  is the value estimated by the MSE cost function (between predictors and actual phenotypes).

In this study, our CNN structure had two convolutional layers. The first convolutional layer had a 5 SNP kernel length, a 3 SNP step length for kernel move forward, 64 output channels, followed by a max-pooling layer with a 2 SNP length kernel used to select the maximum value. The second convolutional layer had a 3 SNP kernel length, 3 SNP step length and 128 output channels, followed by a 2 SNP width max-pooling layer.  All layers used the ELU activation function (Clevert, Unterthiner, & Hochreiter, 2015), as described above, which could return a slightly negative value rather than zero for “unimportant signals” to avoid neuron death. A flattening step was used to combine signals in all channels to a single vector. The dropout step, which randomly drop out neurons during each epoch to avoid overfitting, used a dropout rate of 0.2 (Figure 1).
At the end of the convolutional step, there was a fully connected network which was very similar to MLP, summarising the information and estimating quantitative values using a linear function. The depth (number of fully connected layers) and width (number of neural units per fully connected layer) was adjusted in this study to assess their effect on predictive accuracy (in cross validation in the training set). All the ANN models, and GPU acceleration were fitted using Tensorflow and Keras (Abadi et al., 2016; Chollet, 2015). 
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Figure 1 Structure of Convolutional Neural Network (CNN) used in this study. a.  An overview of the sequential convolutional layer and max-pooling function in the CNN. b.  Detailed structure of model layers and structural hyper-parameters in the CNN. ELU hidden layer: fully connected hidden layers with ELU activation function.

2.6 SNP parameterization
For the CNN models, a very small number of missing genotypes were replaced as a pseudo value 0.01. Following this, two signalization methods were assessed in this study: Binary encoding and Numeric encoding. The binary encoding treated genotypes as categorical classes according to their actual genotypes (reference homozygous, heterozygous and variant homozygous) and each label uses an independent binary panel. The numeric encoding treated genotyping data as numeric allele values, initialized as a linear scale.
2.7 Optimization of hyper-parameter values for Machine Learning methods
This study optimised hyper-parameters values for the three ML models prior to comparison of predictive ability with conventional genomic selection models. For CNN and MLP models, the learning rate was set as 0.0001 (alpha), 50 epochs in each training cycle, and also introduced RMSprop (Root Mean Squared Propagation) as the optimizer. Each set of hyper-parameters was tested by 10 repeats due to the random initializations, all within the training data set. All the ML models were trained following MSE criteria, using cross validation in the training set.
2.8 Comparison of predictive ability 
To assess the accuracy of clonal prediction for each model, predictions were performed for a validation set containing 691 clones and records collected in 2017. For each trait, the trained models were used to predict the clonal performance BLUEs. Prediction accuracy was measured as the Pearson’s correlation between predictions and the BLUEs.  In all we compared 7 models including 3 GBLUP models (A, AD, ADE), 2 CNNs with different encoding methods (Numeric CNN, Binary CNN), MLP and RF for accuracy of prediction in the validation set, with two training sets (2013-2015 clones and 2013-2016 clones).   
2.9 Estimation of proportion of phenotypic variance explained by SNPs 
To allow comparison between importance of the SNP effects used in the GBLUP predictions versus RF predictions, the SNP effects from GBLUP were fist estimated by back solving (e.g. Yang et al. (2011)).  Then the proportion of phenotypic variance explained by SNPs (PVE) (Shim et al., 2015) and ratio of PVEs and genetic variances was calculated.  The PVEs of GBLUP were compared to feature importance (impurity-based feature importance) exported from RF models (Scornet, 2020). 
3. Results
3.1 GBLUP models
For all traits, the proportion of additive effects was large than the dominance and epistatic effects (Figure 2). TCH contained the highest ratio of dominance effects to additive effects.  The epistatic variance was greatest for TCH, as observed by Yadav et al (2021).

Compared to the additive GBLUP model (A) the extended GBLUP models (AD, ADE) increased accuracy of predicting clonal performance for TCH by up to 0.05 for both training set 2013-2015 and training set 2013-2016 (Table 2). No improvement for extended GBLUP over GBLUP was observed for CCS or Fibre, consistent with Yadav et al (2021). 
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Figure 2 Proportions of genetic variances including additive, dominance, epistatic and residuals estimated by GBLUPs (A, AD and ADE). Subplots were separated by traits and training sets. Fibre = Fibre content.
Table 2 Accuracy of predicting clonal performance for additive and extended GBLUP models. 
	Model
	Trait
	R1a
	R2b

	Ac
	TCH
	0.28
	0.32

	ADd
	
	0.32
	0.37

	ADEe
	　
	0.33
	0.37

	A
	CCS
	0.39
	0.43

	AD
	
	0.39
	0.43

	ADE
	　
	0.39
	0.43

	A
	Fibre
	0.45
	0.48

	AD
	
	0.45
	0.48

	ADE
	　
	0.45
	0.48


aModel trained by 2013-2015 training set. Predict accuracy measured by Pearson’s correlation.
bModel trained by 2013-2016 training set. Predict accuracy measured by Pearson’s correlation. 
cAdditive GBLUP
dAdditive dominance GBLUP
eAdditive dominance additive-to-additive GBLUP.
3.2 MLP parameter optimization
For the MLP, there was an impact of adjusting the network attributes including number of hidden layers and neurons per layer on accuracy of predicting clonal performance within the training set (Figure 3). Although the changes in prediction accuracies were minor, we used a linear model to estimate the trend of accuracy changes while adjusting model structures. For TCH, the prediction accuracy was reduced with a growth of layer numbers (P-value=0.00024) and improved (P-value=0.0036) from increasing model width (neuron number per layer). CCS prediction accuracy has no association with either parameter optimizations. Fibre prediction accuracy was impaired by the increase of model width (P-value=0.00098). 
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Figure 3.  Multilayer perceptron prediction accuracy. a. Mean accuracy with different MLP depth (numbers of MLP hidden layers). b. Mean accuracy comparison with different MLP width (adjusting number of neurons per hidden layer). X axis related to the value of MLP attributes, Y axis showed accuracy (Pearson’s correlation) in 2017 validation set
3.3 Parameter optimization of Convolutional Neural Networks
The results of CNN models were separated into two groups by the methods of SNP parameterisation: Numeric encoding and Binary encoding.  Prediction accuracy was generally higher for Numeric CNNs than Binary CNNs for both training set and hyper-parameter settings (Figure 4).
Comparing by Mean Squared Error (MSE) between MLP and CNNs with the two types of SNP encoding methods, the CNN models generally had lower MSE than MLP models with similar complexities (number of layers, etc) (e.g. compare Fig 3 and Fig 4).  For fibre content prediction, the numeric CNN performed significantly better than the binary CNN with lower MSE. The MSE of TCH models showed larger variances than other traits (Fig 4).  It should be pointed out that CNNs and MLPs shared a same depth and width at their fully connected layers, and the overall differences between CNNs were the SNP encoding methods (Figure 5).
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Figure 4 Comparison of CNN subtypes based on SNP signalizations. The X axis is CNN categories (Binary CNN or Numeric CNN), The Y axis is the Pearson’s correlations between predicted and observed clonal performances.
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Figure 5 Comparison of Mean Squared Error (MSE) between MLPs Numeric CNNs and Binary CNNs. MSEs were from models with training set 2013-2016. MSEs of MLPs and CNNs are both from models with 8 hidden layers.
3.4 Performance of Random Forest models
RF models with training set 2013-2015 benefitted more from a RF tree population increase than training with data from 2013-2016 (Figure 6a). While comparing among traits, TCH model required a lower tree population than CCS and fibre content to reach its maximum prediction accuracy. 
The effect of leaves in single decision trees on the prediction accuracy was also assessed (Figure 6b).  A linear model was used to assess the effects of decision tree leaves. For all three traits, increasing leaves for decision trees significantly improved prediction accuracy, although TCH prediction accuracy had slightly less dependency on decision tree leaves compared to CCS and fibre content.
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Figure 6 a. Accuracy of prediction from RF with different forest populations (number of estimators). Star marks reflected to significant level of accuracy changes. Annotations above X axis are the significances of coefficients estimated by the formula: Accuracy ~ Tree population. Y axis presented predict accuracy calculated as Pearson’s correlation.  b. Accuracy of prediction with RF decision tree leaves across the three traits. (Default forest population: 200), P-values in the graph and stars on the X axis related to the significant of coefficients for decision tree leaves (<0.001). Y axis presented predict accuracy calculated as Pearson’s correlation. 
3.5 Comparison of performance from optimised methods in the validation set 
The extended GBLUPs (AD, ADE) often achieved the highest accuracy of clonal prediction, across the 3 traits. There was a benefit of the larger training set (2013-2016) for all traits and all methods (Figure 7).  The accuracy of prediction from ANNs (MLP, Binary CNN and Numeric CNN) were affected significantly by the training population. For TCH predictions, accuracies of CNN models were often slightly higher than the standard additive GBLUP models.  RF was a competitive model for TCH and fibre content predictions, with slightly higher or comparable accuracy of prediction to the GBLUP extended model for these traits.
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Figure 7 Comparison of accuracy of prediction from 7 methods (A-GBLUP, AD-GBLUP, ADE-GBLUP, RF, Numeric CNN, Binary CNN, MLP) when the methods were used to predict clonal performance in the 2017 validation set. The hyper-parameters in the machine learning methods were chosen based on performance from cross validations in the training set with two training sets (2013-2015 clones and 2013-2016 clones). Error bars on the calculations were calculated as standard error ( ), following Fischer.
3.6 Comparison of SNP used for prediction in RF and SNP BLUP 
In an attempt to at least start “unpacking the black box of ML methods”, we compared SNP importance in the RF models to the proportion of variance in phenotype explained by SNP effects (PVE) from AD-GBLUP (epistatic effects were difficult to compare on a SNP-by-SNP basis as the epistatic term is an interaction between 2 SNP).  The distribution of SNP PVEs (Figure 8A) and SNP importance demonstrates at least some overlap from the two models, particularly for TCH and CCS (which had large non-additive variance components).
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Figure 8 a. Distribution of SNP components within RF and GBLUP. The subplot a contained distributions of SNP Gini impurity importance from RF model, and SNP effect proportion of variances (PVE) in AD-GBLUP models from 2013-2016 training data. Where Y axis is the density, X axis was the SNP weight including SNP PVEs and importance, both the PVE and importance value were 10-logged. b. SNP weight based on SNP variance effects in AD-GBLUP and SNP importance in RF models. Weights and importance were calculated as the ratio of SNP effects. The X axis showed 10-logged weights and Y axis was the density.  c. SNP weights in GBLUP models and RF models. The SNP weights were calculated among additive, dominance and epistatic (additive by additive) effects. The X axis showed 10-logged SNP weights and the Y axis is density.

4. Discussion
Most previous studies comparing ML methods for genomic prediction to GBLUP models have used additive parametrisation of the GBLUP, although many of these studies suggest the advantage of the ML models is that they can capture non-additive effects.  Here we compare GBLUP models extended to capture dominance and epistatic effects to a number of ML models, for genomic prediction of clonal performance in sugarcane, a crop with substantial non-additive variation (e.g. Yadav et al. (2021)).  We find the extended GBLUP models generally outperform the ML methods, although random forest (RF) was competitive with extended GBLUP for two traits.  This finding is consistent with other studies – the performance of ML models compared with BLUP and Bayesian models was recently reviewed (across crops and livestock) by Gianola et al. (2022), and they concluded “It seems that some machine learning procedures are sometimes better but often worse than either BLUP or members of the Bayesian alphabet, as there is no universally best method. In genome-enabled prediction DL has not delivered clearly and consistently better results. However, ML and DL offer promise for targets derived from images, sounds, sensors and motion.”  One possible explanation for this is that the prior assumption in the BLUP and Bayesian methods, that is many mutations of small effect contribute to the variation in complex agricultural traits, approximates reality quite well, and these methods gain accuracy from invoking this assumption (which in the case of the BLUP methods is a very strong prior).  ML methods have no such assumptions, and may require extremely large data sets to “learn” the genetic architecture of complex traits.  Future advances in ML methods may benefit from including prior assumptions, for example in an integrated Bayesian ML approach.  
Sugarcane is an interesting test case for the ML models, as its ploidy is high and variable (Garsmeur et al., 2018; Thirugnanasambandam, Hoang, & Henry, 2018), so explicitly modelling non-additive interactions is difficult.  In Yadav et al (2021), dominance and epistatic effects were modelled assuming pseudo-diploidy.  We were interested to see if ML methods could give higher accuracies of prediction in genomic prediction on higher order polyploid genome with pseudo diploid genotypes. We found that the performance of the ML methods in genomic prediction was affected by the choice of hyper-parameters, and the tunning of ML models for every dataset (even for same species and traits) could be necessary.  In our study, ML methods (particularly the RF model) were most competitive for traits with greater non-additive variance (in TCH).  
We came to a similar conclusion as a previous ANN study, which tried to compare ANNs and other kernel methods including arc-cosine kernel (AK) and Gaussian kernel (GK) on wheat genomes, and their capacities to capture non-linear effects, namely that the tunning process of standard MLPs could be complex to optimize the model for genomic prediction, and the tunning process for a fully connected network could not guarantee a global optimum in genomic predictions (Crossa et al., 2019). We did observe that for TCH, a trait for which a greater extent of non-additive effects has been reported (Yadav et al., 2021), an RF model with more SNPs (e.g. decision trees with more leaves) improved prediction accuracy.
Some insights came from the ML model optimisation. Firstly, for ANN models, MLP models didn’t give significantly improvements in prediction accuracy while increasing the model depth and width although more calculating time and computing resources were required for these models. The CNN models we used, which could be described as “Convolutional section plus MLP section”, were competitive with additive GBLUP for TCH prediction, and the CNN model in which the SNPs were encoded as numeric signals (allele dose) generally performed than the binary encoded CNN, which encoded SNPs as categorical genotypes.
The convolutional section (layers with special convolutional kernels and pooling kernels) in CNN models played a role to provide multiple smaller signal maps (defined by kernel size, strips and output channels) which contained highlighted signals of genetic segments (several SNPs in length). This probably reduced the risk of both overfitting and “difficulty of fitting”, the primary goals of CNN design (Alzubaidi et al., 2021; Zhang & Gao, 2020). 
Another phenomenon was discovered during the tuning of RF models.  Accuracy of prediction from RF models for all traits benefited from the growth of RF tree population, but the advantage of the increase plateaued earlier in TCH models than CCS and fibre content. One explanation may be that TCH may be controlled by some QTL of moderate effect which means a TCH prediction model may only need to use a subset of SNP.  Hayes et al (2011) came to a similar conclusion when applying BayesR methods for genomic prediction in the same data set.  However, this hypothesis still needs further assessment. 
At present the black box phenomenon in ML fields is an obstacle for scientist to confidently use ML methods to solve real biological problems, especially when the training objects are genomic data (biologically interpretable) such as SNPs. In a previous GS study, the potential of a CNN for feature selection (Alzubaidi et al., 2021), was obscure because of the highly structured populations typical of livestock and crops (wheat and cattle in their case). The authors pointed out that in these cases, conventional linear mixed models such as GBLUPs could perform better because their strict assumptions better reflected the reality of genomic data (e.g. confounding with population structure). In our study we aimed to test if the changes between hyper-parameter modification and the model performance (mainly focus on the predict accuracy) could at least partly synchronize with assumptions in BLUP models. To make sure a standard ML model with relatively simple structures (without very deep DL structures) could make competitive predictions, we intentionally introduced a rarely used activation function ELU to reduce the risk of neuron death (whereby neural units stop learning). Additionally, ANN models using ELU as activation function could also reduce the minimum epochs for a model to be well trained (Clevert et al., 2015).  We also performed comparison of SNP importance for RF models with the distributions of SNP weights with GBLUPs, we could only identify a relatively small overlap – so although SNP with higher importance in RF, tend to be estimated as higher effect by GBLUP, this is not the only driver of SNP importance in RF.  We suggest that to improve the performance of DL methods in GS field, developers should optimize both usability and interpretability of these ML models rather than only concentrating on prediction accuracy.  To improve understanding of which biological features are actually being utilised in ML methods (if any), further study may need a “visualizing program”.  This could be similar to the “Deep Visualization Toolbox”, which was designed for monitoring convolutional process in image classification (Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015). 
5. Conclusion
This study tested and optimised several machine learning methods (MLP, CNN and RF) for clonal performance prediction in sugarcane, a crop with a highly polyploid and complex genome, and with large non-additive variation for some traits.  Using pseudo diploid genotype marker as SNP resource, the performance of the RF models, was competitive with extended GBLUP models that included additive, dominance and epistatic effects, at least for two traits. CNN models were competitive for accuracy of prediction for TCH but required large training populations, while RF methods were more competitive when the training population size was smaller. The encoding methods and model structures of the ML models had a substantial effect on their prediction accuracy, suggesting optimisation of hyper-parameters of these models is important when applied to genomic prediction.  The SNP set, which was selected for inclusion on the array we used to behave in a pseudo-diploid fashion, may have limited the ability of the ML methods to compete with the BLUP methods in our data set. 
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