Acknowledgements
This study was supported by the Natural Science Foundation of Hubei Province of China (2020CFB750), the National Natural Science Foundation of China (41602246) and Science and Technology Project of Hubei Geological Bureau (KJ2021-8). The authors would like to thank all the members of the project group for their help with field and laboratory work.
References
A.-R. Shurbaji ARC. 1997. Study of evaporation and recharge in desert soil using environmental tracers, New Mexico, USA. Environmental Geology, 29: 147-151. DOI: 10.1007/s002540050112
Annelie E, Jannis G, H. GH. 2021. Wavelet Analysis of Soil Water State Variables for Identification of Lateral Subsurface Flow: Lysimeter versus Field Data. Vadose Zone Journal, 20. DOI: 10.5194/ismc2021-3
Barnes CJ, Allison GB. 1983. The distribution of deuterium and 18O in dry soils. Journal of Hydrology, 60: 141-156. DOI: 10.1016/0022-1694(83)90018-5
Bennett KE, Gibson JJ, McEachern PM. 2008. Water-yield estimates for critical loadings assessment: comparisons of gauging methods versus an isotopic approach. Canadian Journal of Fisheries and Aquatic Sciences, 65: 83-99. DOI: 10.1139/f07-155.
Brent D Newman ARC, Bradford P Wilcox. 1997. Tracer-based studies of soil water movement in semi-arid forests of New Mexico. Journal of Hydrology, 196: 251-270. DOI: 10.1016/s0022-1694(96)03320-3
C.J. Barnes GBA. 1988. Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. Journal of Hydrology, 100: 143-176. DOI: 10.1016/0022-1694(88)90184-9
C.J. Barnes GBA, M.W. Hughes. 1989. Temperature gradient effects on stable isotope and chloride profiles in dry soils. Journal of Hydrology, 112: 69-87. DOI: 10.1016/0022-1694(89)90181-9
C.J. Barnes GRW. 1989. The distribution of deuterium and oxygen-18 during unsteady evaporation from a dry soil. Journal of Hydrology, 112: 55-67. DOI: 10.1016/0022-1694(89)90180-7
Chen Y, Du W, Chen J, Xu L. 2016. Composition of hydrogen and oxygen isotopic of precipitation and source apportionment of water vapor in Xiamen Area. Acta Scientiae Circumstantiae, 36: 667-674. DOI: 10.13671/j.hjkxxb.2015.0464.
Deng Z, Zhang X, Pan G. 2016. Variations of Hydrogen and Oxygen Isotopes in Meteoric Precipitation in Wuhan,China. Journal of Yangtze River Scientific Research Institute, 33: 12-17+22.
Figuerola PI, Rousseaux MC, Searles PS. 2013. Soil evaporation beneath and between olive trees in a non-Mediterranean climate under two contrasting irrigation regimes. J Arid Environ, 97: 182-189. DOI: 10.1016/j.jaridenv.2013.07.002.
G.B. Allison FWL. 1982. Estimation of isotopic exchange parameters, using constant-feed pans. Journal of Hydrology, 55: 151-161. DOI: 10.1016/0022-1694(82)90126-3
G.R. Walker MWH, G.B. Allison, C.J. Barnes. 1988. The movement of isotopes of water during evaporation from a bare soil surface. Journal of Hydrology, 97: 181-197. DOI: 10.1016/0022-1694(88)90114-x
Gaines KP, Stanley JW, Meinzer FC, McCulloh KA, Woodruff DR, Chen W, Adams TS, Lin H, Eissenstat DM. 2016. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania. Tree Physiol, 36: 444-458. DOI: 10.1093/treephys/tpv113.
Gat.J.R LA, Imboden. Dieter M. 1995. Stable Isotopes of Fresh and Saline Lakes. Physics and Chemistry of Lakes, Springer,pp: 139-165. DOI: 10.1007/978-3-642-85132-2_5
Gazis C, Feng X. 2004. A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma, 119: 97-111. DOI: 10.1016/s0016-7061(03)00243-x.
Gibson JJ, Reid R. 2014. Water balance along a chain of tundra lakes: A 20-year isotopic perspective. Journal of Hydrology, 519: 2148-2164. DOI: 10.1016/j.jhydrol.2014.10.011.
GONFIANTINI R. 1986. ENVIRONMENTAL ISOTOPES IN LAKE STUDIES. The Terrestrial Environment, B: 113-168. DOI: 10.1016/b978-0-444-42225-5.50008-5
Gonfiantini R. 1986. Environmental isotopes in lake studies. DOI: 10.1016/b978-0-444-42225-5.50008-5
Gonfiantini R, Wassenaar LI, Araguas-Araguas L, Aggarwal PK. 2018. A unified Craig-Gordon isotope model of stable hydrogen and oxygen isotope fractionation during fresh or saltwater evaporation. Geochim Cosmochim Ac, 235: 224-236. DOI: 10.1016/j.gca.2018.05.020.
Grimaldi S, Orellana F, Daly E. 2015. Modelling the effects of soil type and root distribution on shallow groundwater resources. Hydrol Process, 29: 4457-4469. DOI: 10.1002/hyp.10503.
He J, Den QJ, Ma XJ, Su XS, Ma XM. 2021. Soil salinization affected by hydrogeochemical processes of shallow groundwater in Cangzhou City, a coastal region in North China. Hydrol Res, 52: 1116-1131. DOI: 10.2166/nh.2021.183.
Horita J, Rozanski K, Cohen S. 2008. Isotope effects in the evaporation of water: a status report of the Craig-Gordon model. Isotopes Environ Health Stud, 44: 23-49. DOI: 10.1080/10256010801887174.
Hou GR, Bi HX, Wei X, Kong LX, Wang N, Zhou QZ. 2018. Response of Soil Moisture to Single-Rainfall Events under Three Vegetation Types in the Gully Region of the Loess Plateau. Sustainability, 10. DOI: ARTN 3793
10.3390/su10103793.
J. R. Gat JRG. 1978. Isotope hydrology of inland sabkhas in the Bardawil area, Sinai. Limnology and Oceanography, 23: 841-850. DOI: 10.4319/lo.1978.23.5.0841
Jean C.C Hsieh OAC, Eugene F Kelly, Samuel M Savin. 1998. Oxygen isotopic composition of soil water: Quantifying evaporation and transpiration. Geoderma 82: 269-293. DOI: 10.1016/s0016-7061(97)00105-5
Jiang C, Guo H, Wei Y, Yang Z, Wang X, Wen M, Yang L, Zhao L, Zhang H, Zhou P. 2021. Ecological restoration is not sufficient for reconciling the trade-off between soil retention and water yield: A contrasting study from catchment governance perspective. Sci Total Environ, 754: 142139. DOI: 10.1016/j.scitotenv.2020.142139.
John Crusius JT. 2000. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments. Geochim Cosmochim Ac, 64: 2233-2242. DOI: 10.1016/s0016-7037(99)00433-0
Juske Horita DJW. 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochimica et Cosmochimica Acta, 58: 3425-3437. DOI: 10.1016/0016-7037(94)90096-5
Koeniger P, Gaj M, Beyer M, Himmelsbach T. 2016. Review on soil water isotope-based groundwater recharge estimations. Hydrological Processes, 30: 2817-2834. DOI: 10.1002/hyp.10775.
Koeniger P, Leibundgut C, Link T, Marshall JD. 2010. Stable isotopes applied as water tracers in column and field studies. Org Geochem, 41: 31-40. DOI: 10.1016/j.orggeochem.2009.07.006.
Laura Á, Manuel S, Francisco BC, Julián G, Enrique JH, Octavio RRC, Miguel MJ. 2021. A Compact Weighing Lysimeter to Estimate the Water Infiltration Rate in Agricultural Soils Agronomy, 11: 1-180. DOI: 10.3390/agronomy11010180
Lehmann P, Berli M, Koonce JE, Or D. 2019. Surface Evaporation in Arid Regions: Insights From Lysimeter Decadal Record and Global Application of a Surface Evaporation Capacitor (SEC) Model. Geophys Res Lett, 46: 9648-9657. DOI: 10.1029/2019gl083932.
Li XH, Shi FZ. 2021. Effects of evolving salt precipitation on the evaporation and temperature of sandy soil with a fixed groundwater table. Vadose Zone Journal, 20. DOI: ARTN e20122
10.1002/vzj2.20122.
Li YQ, Meng YC, Song S, Du CH, Xiang QY. 2021. [Distribution of hydrogen and oxygen stable isotope of water in soil-plant-atmosphere continuum (SPAC)system of a typical forest area]. Ying Yong Sheng Tai Xue Bao, 32: 1928-1934. DOI: 10.13287/j.1001-9332.202106.020.
Lichner L, Alagna V, Iovino M, Laudicina VA, Novak V. 2020. Evaporation from soils of different texture covered by layers of water repellent and wettable soils. Biologia, 75: 865-872. DOI: 10.2478/s11756-020-00471-5.
Liu D, She D, Mu X. 2019. Water flow and salt transport in bare saline‐sodic soils subjected to evaporation and intermittent irrigation with saline/distilled water. Land Degradation & Development, 30: 1204-1218. DOI: 10.1002/ldr.3306.
Liu PG, Xia Y, Shang MT. 2020. A bench-scale assessment of the effect of soil temperature on bare soil evaporation in winter. Hydrol Res, 51: 1349-1357. DOI: 10.2166/nh.2020.044.
Ma Z, Wang W, Zhang Z, Brunner P, Wang Z, Chen L, Zhao M, Gong C. 2019. Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China. Hydrogeology Journal, 27: 2707-2718. DOI: 10.1007/s10040-019-02012-0.
McDonnell CKJJ. 1998. Isotope Tracers in Catchment Hydrology. Advances in Water Resources, 23: 441-442. DOI: 10.1016/s0309-1708(99)00033-0
Padilla IY, Yeh TCJ, Conklin MH. 1999. The effect of water content on solute transport in unsaturated porous media. Water Resour Res, 35: 3303-3313. DOI: 10.1029/1999wr900171.
Skrzypek G, Mydlowski A, Dogramaci S, Hedley P, Gibson JJ, Grierson PF. 2015. Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. Journal of Hydrology, 523: 781-789. DOI: 10.1016/j.jhydrol.2015.02.010.
Stephen K. Hamilton SEB, Martin C. Thoms, Jonathan C. Marshall. 2005. Persistence of aquatic refugia between flow pulses in a dryland river system (Cooper Creek, Australia). Limnology and Oceanography, 50: 743-754. DOI: 10.4319/lo.2005.50.3.0743
Stewart MK, Friedman I. 1975. Deuterium fractionation between aqueous salt solutions and water vapor. Journal of Geophysical Research, 80: 3812-3818. DOI: 10.1029/JC080i027p03812.
Stumpp C, Maloszewski P. 2010. Quantification of preferential flow and flow heterogeneities in an unsaturated soil planted with different crops using the environmental isotope δ18O. Journal of Hydrology, 394: 407-415. DOI: 10.1016/j.jhydrol.2010.09.014.
Tingting Y, Musa A, Dexin G, Anzhi W. 2021. The Effects of Groundwater Depth on the Soil Evaporation in Horqin Sandy Land, China %J Chinese Geographical Science. Chinese Geographical Science 31: 727-734. DOI: 10.1007/s11769-021-1220-x
Vincent Marc J-FD-L, Couren Michael. 2001. Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge. Journal of Hydrology, 247: 215-229. DOI: 10.1016/s0022-1694(01)00386-9
Wei ZW, Yoshimura K, Okazaki A, Kim W, Liu ZF, Yokoi M. 2015. Partitioning of evapotranspiration using high-frequency water vapor isotopic measurement over a rice paddy field. Water Resour Res, 51: 3716-3729. DOI: 10.1002/2014wr016737.
Xing XG, Li XW, Ma XY. 2019. Capillary rise and saliferous groundwater evaporation: effects of various solutes and concentrations. Hydrol Res, 50: 517-525. DOI: 10.2166/nh.2019.057.
Yang QC, Mu HK, Wang H, Ye XY, Ma HY, Martin JD. 2018. Quantitative evaluation of groundwater recharge and evaporation intensity with stable oxygen and hydrogen isotopes in a semi-arid region, Northwest China. Hydrological Processes, 32: 1130-1136. DOI: 10.1002/hyp.11474.
Yong LL, Zhu GF, Wan QZ, Xu YX, Zhang ZX, Sun ZG, Ma HY, Sang LY, Liu YW, Guo HW, Zhang Y. 2020. The Soil Water Evaporation Process from Mountains Based on the Stable Isotope Composition in a Headwater Basin and Northwest China. Water-Sui, 12. DOI: ARTN 2711
10.3390/w12102711.
Z. Sofer JRG. 1975. The isotope composition of evaporating brines: Effect of the isotopic activity ratio in saline solutions. Earth and Planetary Science Letters, 26: 179-186. DOI: 10.1016/0012-821x(75)90085-0
Zhao P, Tang XY, Zhao P, Wang C, Tang JL. 2013. Identifying the water source for subsurface flow with deuterium and oxygen-18 isotopes of soil water collected from tension lysimeters and cores. Journal of Hydrology, 503: 1-10. DOI: 10.1016/j.jhydrol.2013.08.033.