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ABSTRACT
Tree training systems for temperate fruit have been developed throughout history by pomologists to improve light interception, fruit yield, and fruit quality. These training systems direct crown and branch growth to specific configurations. Quantifying crown architecture could aid the selection of trees that require less pruning or that naturally excel in specific growing/training system conditions. Regarding peaches [Prunus persica (L.) Batsch], access tools such as branching indices (BIs) have been developed to characterize tree crown architecture. However, the required branching data to develop these indices are difficult to collect. Traditionally, branching data have been collected manually, but this process is tedious, time-consuming, and prone to human error. These barriers can be circumnavigated by utilizing terrestrial LiDAR (TLS) to obtain a digital twin of the real tree. TLS generates three-dimensional (3D) point clouds of the tree crown, wherein every point contains 3D coordinates (x, y, z). To facilitate the use of these tools for peach, we selected four young peach trees scanned in 2021 and 2022. These four young trees were then modeled and quantified using the open-source software TreeQSM. As a result, “in silico” branching and biometric data for the young peach trees were calculated to demonstrate the capabilities of TLS phenotyping of peach tree-crown architecture. The comparison and analysis of field measurements (in situ) and in silico branching data (BD), biometric data, and residual ground truth data were utilized to determine the reconstructive model’s reliability as a source substitute for field measurements. Mean average deviation (MAD) when comparing young tree height was approx. = 8.2%, with crown volume (crV) was approx. = 7.6% across both 2021 and 2022. All point clouds of the young trees in 2022 showed residuals < 10mm to cylinders fitted to all branches, and mean surface coverage > 50% across all branching orders.
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1. [bookmark: _svrh2ao173o5]INTRODUCTION
Nearly all fruit tree breeding programs focus on traditional complex traits, such as fruit yield, fruit quality, disease resistance, and freezing prevention/chilling requirements. However, tree crown architectural traits that could be used to optimize physiological processes and tree training are less understood [1]. This point is especially true for deciduous fruit trees, such as peach [Prunus persica (L.) Batsch]. 
Tree crown architecture (here referred to simply as tree architecture) can be used as a term that encompasses the dynamic changes in morphology and growth exhibited by a tree throughout its lifespan (Hallé et al., 1978; Tomlinson, 1983). Being a dynamic process, tree architecture is inherently a highly adaptive and plastic trait, influenced greatly by resource availability (e.g., phytonutrients, water, light). This results in a wide-variety of architectural forms which occur in nature, as these architectures are optimized around their respective environmental pressures (Farnsworth et al., 1995). However, many of these architectural forms are not conducive to planned agriculture and orchard management. 
Tree training systems have been developed to control the innate architecture of trees. Training systems have proven effective and are utilized in nearly all commercial orchard settings. Nevertheless, these systems are not without their limitations. Establishing a successful training system is laborious and requires the trees to undergo regular pruning. Research that prioritizes an improved understanding of tree architecture, leading to a reduction of pruning costs, has become a priority (Carrillo-Mendoza et al., 2010; Rosati et al., 2013). Unfortunately, conducting research into tree architecture has been challenging due to the physical limits regarding collecting branching data (BD; Bucksch, 2014). New technologies may provide solutions for this area of research.
Algorithms to compute and quantify BD have been constantly improved over the past decade (Bucksch et al., 2010; Paturkar, 2021). Recording BD (for our study, the number of branching orders in a tree, and the number of branches per branching order) via manual methods is prone to human error and is exceedingly time-consuming. Therefore, developing a novel way to record BD without the difficulties of manual collection could lead to breakthroughs in fruit tree physiology and breeding. Studies with access to reliable and readily available BD could focus on quantifying specific traits associated with tree architecture (Barthélémy, 2007). The main focus of this present study is to evaluate the use of terrestrial laser scanning (TLS; terrestrial LiDAR), to collect BD from peach trees (Shihua et al., 2016; Lau et al., 2018). This data-retrieval approach is then assessed by analyzing ground truth residuals against the original point cloud to validate the in silico results. Finally, the in silico results are compared with the in situ field measurements. 
TLS technology was utilized to generate three-dimensional (3D) point cloud data of peach trees (e.g. point clouds). The utilization of TLS paired with 3D modeling in orchard settings has been receiving increased attention, due to their potential to assist in the parameterization of plants and to reduce the human labor required (Nielsen et al., 2012; Nguyen et al., 2016; Méndez et al., 2016; Escolà et al., 2017). Point clouds can be used in modeling software to characterize specific phenotypic characteristics of tree structure and architecture (Burt et al., 2013; Li et al., 2017). 
TreeQSM v2.4.0 software was used to reconstruct tree architecture as quantitative structural models (QSMs) from digitized peach trees (Åkerblom, 2017; Raumonen, 2020). These QSMs provide biometric data and BD (Lau et al., 2018), which are vital for BIs or any other method used to quantify tree architecture (Carrillo-Mendoza et al., 2010). TreeQSM employs the given TLS-derived point clouds of individual trees, to generate quantifiable cylinder approximations of the branches forming the tree architecture. These quantifications can then be used as traits characterizing the phenotype of the tree architecture.
[bookmark: _bn10e3cyh3f4][bookmark: _8t6onci7yuly][bookmark: _sdtot34cy4sa][bookmark: _z4z3hygq1c86]The goal of this study was to optimize TreeQSM input parameters for use in peach and validate in silico TreeQSM data against a manually collected ground truth. Parameters in TreeQSM are often optimized for each input point cloud. However, as our young trees are grown under the same training system design, parameters were optimized specifically for young peach trees grown in an open-vase training system. Therefore, our study demonstrates the impact TLS has as a quick, relatively cost-effective method for employing high-throughput plant phenotyping (HTPP) in horticultural research and breeding (Bohn Reckziegel et al., 2021). Eventually, we hope to use the results from TreeQSM to help supplement future research in genomics, agrobotics, and HTPP (Raumonen, 2020). While evaluating the uses of TreeQSM as a potential HTPP tool for peaches, this study also investigates potential differences in tree architecture among peach trees planted on two commercial rootstocks ‘Guardian’ (Gd) and ‘MP-29’. These rootstocks have different effects on peach tree vigor, as well as a possible effect on tree architecture (Beckman et al., 2012).


2. METHODS

2.1 Field location and plant material
[bookmark: _Hlk118666994]Our experiment was conducted at UGA Griffin Campus, Peach Research and Extension Orchard, located at Dempsey Farm, University of Georgia, Griffin, GA (33°24’85” N, 84°30’06” W). The peach trees in our study are of the cultivar ‘Julyprince’ grafted onto rootstocks ‘MP-29’ and Gd. These young trees were produced by growing the rootstocks in a greenhouse setting and budding them on June-July 2019. Plants were grown in one-gallon containers for a season and then transplanted to the orchard in April 2020. The soil at the Peach Research and Extension Orchard is a Cecil sandy loam. Eighty young trees were planted, with a spacing of 4.5 m between individual trees and 6 m between rows (Magar et al., 2020). These were equally divided between the Gd and ‘MP-29’ rootstocks (40/rootstock) across five rows containing 16 trees each in a split-plot randomized complete block design (Magar et al., 2020). The trees were pruned into an open-vase training system after planting, following the recommended guidelines (Smith et al., 2016). The resulting trees primarily consisted of a short trunk with approximately four or five main leaders or “scaffolds” per tree. For our study, four young trees were selected for scanning in both 2021 and 2022: t19, t20, t29, and t30. Of these four trees, t19 and t20 were grafted on ‘MP-29’ rootstock, whereas t29 and t30 were grafted on Gd rootstock. 

2.2 Biometric data collection and 3D trait measurements  
2.2.1 In situ field collection
Since the trees were planted, biometric field measurements have been collected at multiple time points every year. These measurements included tree height, crown width (within and across row), and trunk diameter. From the in situ crown width measurements, crown volume (crV) was calculated. In situ BD were also collected for the trees in February 2021. Tree height, trunk diameter, and crown width were measured in 2021 and 2022, and were compared with the in silico data. The in situ BD collected in 2021 were compared with the data obtained in silico via TreeQSM.
	Tree height was collected in the field by using a long-pole measuring stick, with a minimum unit of measure of 1cm. The crV was calculated as described by Magar et al. (2020), wherein other biometric measurements, such as crown diameter (both in- and across row) and tree height, were employed. Furthermore, the methods for collecting the various other biometric measurements are defined in Magar et al. (2020). 
Collecting in situ BD was conducted by counting the number of respective branching orders (BOs) per tree, as well the as the number of branches per BO. The determination and counting of BOs were conducted in a fashion consistent with TreeQSM, with the first BO of every tree being the trunk. As our trees are trained in an open-vase configuration, each individual scaffold can be considered a primary branch (i.e., first-order branch). Subsequent bifurcations from these primary branches resulted in secondary branches, with the process repeating until no further bifurcations were observed. The number of branches recorded as first-, second-, or another BO were then totaled to provide a measurement of branches per BO. This process of denoting BOs is also utilized by TreeQSM and is illustrated in Figure 1. 

2.2.2 3D data acquisition and processing
The young trees were first scanned in February 2021, when they were dormant (under leaf-off conditions and before winter pruning). Subsequent scans were taken in February 2022. The terrestrial laser scanner FARO Focus3D X 330 (Faro Technologies, Lake Mary, FL) was used to scan the trees in both years, with a scan time of 11 minutes and 29 seconds being kept constant throughout the respective scanning processes. Six or more spherical targets were used during the scanning campaigns, while a minimum of three spheres remained in place from one scan to the next to maintain points of reference for scan registrations. The average distance between scan locations was approximately 4.5 m, as the scans were taken between the respective young trees, approximately 3.8 m away from the tree trunk. When moving from one row to the next, the average distance was closer to approx. 6 m, corresponding to the distance between the young-tree rows.  
The software FARO SCENE (v2022.1.0, Faro Technologies, Lake Mary, FL 2022) was used to process the raw scans and conduct the point cloud co-registration. The scans were separated into the respective projects according to year. Processing the scans for both seasons included options to remove stray points, edge and scan artifacts, and a distance filter. The option dark-point processing, which removes points if under a specified lumen reflectance, was excluded due to the overcast weather conditions during both scanning periods. The stray-point filter option checks distances between nearby scan points to establish a uniform 2D grid cell among the processed scans. 
Scan registration was first conducted with pre-aligned scans to achieve faster convergence of the automatic registration procedure provided by FARO SCENE. The pre-aligned registration also involved manually verifying the identification of the spherical scan targets between scans. At times of misregistration by SCENE, manual correspondence was used to force identification between two known targets. Following the pre-aligned registration, a second cloud-cloud registration was conducted to minimize distances between estimated center points of the spherical targets. Mean point error for the 2021 registration was 6.7 mm and in 2022 the mean point error was 11.8 mm. Lastly, point clouds of each young tree were manually segmented from the registered point cloud for both project years, using the auto-clipping box tool in SCENE. The data were exported for reconstruction with TreeQSM in the .xyz format.

2.3 Tree Architecture
2.3.1 Reconstruction procedure with TreeQSM
Similar to other literature sources that have utilized TreeQSM for tree architecture reconstruction, the procedure we employed followed three distinct objectives after scan processing and registration (Lau et al., 2018; Jin et al., 2022). These steps were as follows: a) exporting and down-sampling individual tree point clouds; b) optimizing the TreeQSM input parameters for the 3D reconstruction for peach trees grown in an open-vase training system; and c) analyzing the QSMs in silico data and determination of model reliability. The selected trees were exported and processed in CloudCompare (v2.12 alpha, 2020). This additional processing before modeling in TreeQSM consisted of removing ground points and down-sampling the point cloud. Removing the ground points is necessary for TreeQSM to produce accurate models, keeping as much of the trunk intact as possible. Down-sampling is essentially when a voxel grid is used to reduce the density of the point cloud. We down-sampled the individual tree point clouds at a uniform density with cubic voxels of side length 1.7 cm. 

2.3.2 TreeQSM reconstruction process and optimization of input parameters
Although TreeQSM has previously modeled other temperate fruit crops, such as apple trees, no work has been conducted to the same extent regarding peaches (Zhang et al., 2020). To remedy this deficiency, TreeQSM first needed to be optimized for the produced point clouds of peach trees to provide accurate in silico models, and thus accurate data. The modelling approach has several input parameters to define the cylinder reconstruction of a QSM. TreeQSM has three input parameters to be optimized; PatchDiam1, PatchDiam2Min, and PatchDiam2Max (Kunz et al., 2017; Raumonen, 2020). PatchDiam1 is responsible for the initial cover-set fitting of the 3D model. This initial fitting defines the trunk and the rough outline of the tree’s branching structure. The PatchDiam2 Min and Max parameters are arguably the most important regarding model fitting, as they determine the second cover-fit accuracy and heavily influence primary and higher branching order structure. The initial and final cover fittings are constructed around randomly generated voxels that replace the original cloud points for branch segmentation. These three input parameters directly affect the size of these voxels. TreeQSM constructs patches of branch surfaces from these voxels as an initial cover set. A second reconstruction process computes cylinders from the cover set to represent in situ branch limbs. In silico biometric data, such as tree height and crV, is then derived from the least-squares fitted cylinders. 
	Input parameters were optimized for each individual point cloud of the two peach trees, for both years of data collection, following the optimization guidelines of TreeQSM’s manual (Raumonen, 2020). Three reasonable values were selected for each key input parameter, and a simple grid search tested the resulting 27 unique combinations of model parameters, with over 20 unique models generated for each combination (a total of 540 models per tree point cloud). The QSM-derived tree parameters were compared to the ground truth measurements. The cylinder distance was used as a suitable metric to select the optimal model input parameters. The cylinder distance compares the distance between the fitted cylinders and the original point cloud, while the lowest mean cylinder distance value defines the optimal QSM, and the optimal parameters, see Table 1. After optimization, we computed 40 QSM replications per individual tree. The trait measurements of each individual tree are then averaged across the 40 digital replicates as means to overcome randomization elements of the TreeOSM algorithms. These replicates were selected only from models which fit the open-vase training system BO (1 trunk, 3-5 scaffolds).

Table 1. Parameters used for young peach trees in 2021 and 2022 respectively.
	Year
	PatchDiam1 (cm)
	PatchDiam2Min (cm)
	PatchDiam2Max (cm)

	2021
	0.12
	0.02
	0.06

	2022
	0.15
	0.02
	0.07



2.3.3 In silico data collection & QSM validation
As the QSMs are generated, quantitative data are collected following the geometric reconstruction process. Although the scope of in silico data generated after the cylinder fittings is wide ranging, focus was placed on collecting and analyzing biometric data (tree height and crV) and BD. For the four young trees in this study, 40 digital replicates with optimal parameters were executed for each tree for both years. The respective averages and standard deviations were then calculated from the 40 replications for the tree height, crV, and BD. Outliers were discarded before initial calculations, i.e. models that did not fit the open-vase training system BO, until the 40 replications reflected the open-vase model reconstruction. 

2.3.4 Comparing in situ and in silico biometric and BD – Data comparison and validation 
After calculating the averages and SD from the 40x in silico measurements, the in situ data collected from the field were used as reference points when comparing the data. The mean absolute deviation (MAD) percentage scores were calculated to describe the error of estimation between the in silico and in situ data. This process was conducted for the biometric data for t19 and t30 for both years, as well for BD from all the trees during 2021. Utilizing MAD scores to validate computational models has been reported previously. The MAD score is defined as (Jin et al., 2022):
 ,
where Q is the mean of the in silico generated biometric data BD, and R is the collected in situ ground truth data.

2.3.5 Examining residual ground truth values
TreeQSM includes metrics to quantify the quality of the QSMs by comparing biometric statistics between the computed cylinder models and the TLS point cloud. Two of these metrics accessible in TreeQSM are cylinder distance; which is used to determine the optimal parameters for model generation, and the average surface coverage (%) of the cylindrical model regarding the origin point cloud. Both metrics were calculated following the model creation and include results for the tree architecture segments: trunk, branch, 1branch, and 2branch. These segments correspond to measurements from the tree trunk, all branching orders of the tree (excluding the trunk), first-order branches, and second-order branches. The mean values for both cylinder distance and average surface coverage were calculated from the 40 individual tree models and were analyzed as another metric to reveal model reliability (Knapp-Wilson et al., 2021).        


3. RESULTS 

3.1 Initial 3D model reconstructions
In situ BD proved much easier to collect from younger trees than from the more mature tree scans collected in 2022. The less-intricate tree architecture of the 2021 trees enabled us to measure the entire architecture and branching structure accurately by hand. Therefore, in situ BD were only collected during 2021. This point is evident in the models generated from the 2022 scans, as they possessed more complex tree architecture overall. This difference in crown complexity is especially noticeable when considering that the young trees have been in the field for only one year between scans (see Figure 1). This resulted in numerous model replications to achieve the correct designation of BOs. However, after one year in the field the complexities in their tree architecture increased and noticeable differences between rootstocks were visually apparent. Drastic changes in tree architecture should be expected from vigorous scion/rootstock combinations, such as Julyprince/Gd (as seen in Young Tree 30). Although more branches in the crown resulted in a slower convergence of digital replications constructed via the TreeQSM modeling process We also observed that a higher surface density of the point cloud results in fewer modeling errors. When surface density was lower, a wider range of extreme outliers were recorded, such as with the scans taken during 2021. 

[image: ]
Figure 1. Individual tree point clouds of t30 and t19 from 2021 and 2022 receptively. Branches are colorized and denoted by their corresponding branching order, with the legend on the far right. On the far left shows the relative height in meters. Note that t30 was grafted on a Gd rootstock, which is known for its high vigor; while t19 is grafted on MP-29 rootstock, a dwarfing rootstock.


3.2 Analysis and comparison of in situ and in silico generated data 
3.2.1 In situ and in silico biometric data comparison
The in silico data (average 40 model replications) of Young Trees 19 and 30 from 2021 and 2022 were calculated. The difference in the MAD scores between the in situ and in silico data were noted for tree height and crV. The differences were minimal, with the largest MAD difference percentage score (est. of error) being for Young Tree 30 regarding tree height (12.91% and 11.91% for the years 2021 and 2022, respectively; Table 2). 


Table 2 – Comparisons of tree height and crV for t19 (MP-29) and t30 (Gd) 
	Metric
	Variable
	Unit
	t19
	t30

	
	
	
	2021
	2022
	2021
	2022

	Height
	Mean (in silico)
	m
	1.74
	1.84
	1.77
	2.52

	
	Reference (in situ)
	m
	1.83
	1.8
	2.03
	2.25

	
	MAD
	m
	0.10
	1.84
	0.26
	0.27

	
	MAD score
	%
	5.25
	2.71
	12.91
	11.91

	crV

	Mean
	m
	0.65
	2.67
	0.79
	6.47

	
	Reference
	m
	0.71
	2.86
	0.86
	6.67

	
	MAD
	m
	0.07
	0.21
	0.08
	0.26

	
	MAD score
	%
	10.36
	7.17
	8.81
	3.84



This difference could be attributed to the 2021 scans not correctly recording all the thin, still-growing branches during field measurements. Typically, objects smaller than 0.5 cm in diameter are difficult for TLS scanners to detect accurately (Hackenberg et al., 2015). As the young trees during this period were still juvenile, perhaps smaller branches could have been included in field measurements, affecting crown width. This under-sampling of branches could explain the decrease in MAD scores from 2021 to 2022 for both Young Trees 19 and 30 across both crV and tree height.  

3.2.2 In situ and in silico BD 							
The models generated from our young-tree scans during 2021 were used to gather in silico BD and compared with in situ BD from the field. The MAD scores were generated for all BOs and all young trees (Table 3). These MAD scores essentially compare the number of recorded branches found in the field with the number generated from TreeQSM across the 40 model replications. The MAD scores for all the 2021 young-tree models had a MAD of >1 branch at the first BO, and a MAD of >4 branches at the second BO. At subsequently higher BOs (third and fourth), the MAD scores comparing the in situ BD and the in silico BD were also found to be >4 branches (except for Young Tree 19 at the third BO). However, the MAD percentages were much greater at higher BOs. The average MAD percentages were found to climb as BOs increased. The MAD percentage difference between the second and third BOs was approx. 15%. However, even with the MAD percentage error above 50% at higher BOs, this does not translate into large differences in the expected number of branches. Examining the MAD scores, which list the expected variability of branches from the reference (in situ) field data, the differences at these higher BOs do not exceed an average of 2.41 branches at the third BO and 2.03 branches at the fourth BO. 
Table 3. Comparisons of branching data for young trees measured in 2021
	Metric
	Variable
	Unit
	1st BO
	2nd BO
	3rd BO
	4th BO

	MAD branch
	t19
	branch
	0.20
	3.60
	5.20
	2.55

	
	t20
	branch
	0.55
	2.15
	1.75
	1.10

	
	t29
	branch
	0.40
	3.05
	1.15
	3.30

	
	t30
	branch
	0.20
	1.90
	1.55
	1.15

	
	AVG
	branch
	0.34
	2.68
	2.41
	2.03

	MAD Score
	t19
	%
	5.00
	18.95 
	52.00 
	51.00 

	
	t20
	%
	13.75 
	10.24 
	25.00 
	27.50 

	
	t29
	%
	8.00 
	9.84 
	7.19 
	55.00 

	
	t30
	%
	5.00 
	7.92 
	22.14 
	23.00 

	
	AVG
	%
	7.94 
	11.74 
	26.58 
	39.13 



The MAD scores and percentages are partitioned across the four main BOs for the young trees in 2021. The MAD scores here specifically refer to the number of branches, with the MAD percentages corresponding to the percentage difference between the reference data (in situ) and the computational data (in silico). 
Producing in silico 3D models of peach trees that reveal differences of one to five branches at higher BOs might still be useful for supplying larger, aggregate BD that can be used in genomic studies regarding tree architecture. Another note of interest is the different rates at which young trees develop, depending on which rootstock they were grafted upon (Figure 1). Reviewing 2021 data in Table 2, reveals a difference between the t19 (grown on an ‘MP-29’ rootstock) and t30 (grown on Gd rootstock) rates of growth. The differences regarding the number of branches between in situ and in silico sources lie within a range of three branches across both the ‘MP-29’ and Gd rootstocks (Figure 2). In 2022, however, the differences between the two rootstocks grew substantially. Gd rootstocks are known to be a high-vigor rootstock, with an approximate difference of 93 branches between in silico Gd and ‘MP-29’ in the 2022 BD. 

3.2 Analysis of the in situ branch data and residual metrics
After successfully generating models for all the young trees and optimizing the QSM parameters, the results from the QSM reconstruction of the specified young trees include biometric data, BD, and residual ground truth metrics, which, as referenced previously, are cylinder distance (mm) and cylinder surface coverage (%). These two metrics were compiled from the 40 digital replications in TreeQSM for the young tree 2021 scans. The values from these metrics are displayed below in Figure 2. The categories that TreeQSM delineates the residual data into are based on the BOs for each tree: trunk, all branch, first branch, and second branch. These metrics have been used previously to derive modeling and 
[image: ]Figure 2. Comparison of in situ (right) and in silico (left) data from trees 20 (blue) and 29 (orange) from 2021.

data accuracy from QSM cylinder recreation (Knapp-Wilson et al., 2021). Figure 3 illustrates that all the trees from 2021 (trees 19, 20, 29, and 30) had cylinder surface coverages for both trunk and first-order branches above 50%, and the more complicated second-order branches had a surface coverage above 45%. The young trees with Gd rootstocks (29, 30) excel when compared with MP29 rootstocks (19, 20) in terms of cylinder coverage fitting. The Gd rootstock trees had higher point cylinder surface area averages for all metrics except trunk, with a rating above 50% for all categories. The higher cylinder coverage metrics might be due to the more vigorous branching nature that Gd rootstocks possess. Increased vigor, which leads to more-robust architecture, results in a greater surface density in the point cloud data of Gd trees when scanned. The larger point density then results in an informed small cover-set generation during initial reconstruction in TreeQSM. Although the more informed small-cover generation might result in greater cylinder coverage percentages, the denser cloud point density can also lead to a higher distance between the point cloud and the 3D cylinder segmentations created during the geometric reconstruction process (see Figure 3).
Figure 3. The ground truth residuals from the 2022 young-tree scans, represented as the cylinder distance (avg. distance between the original point cloud data and the resulting QSM cylindrical reconstruction, top), and the surface coverage average (bottom). All the averages were computed from 40 digital replications for each tree.

In addition to cylinder coverage, the cylinder distance measurements of the reconstructed cylindrical models were below 10 mm for nearly all metrics, with Young Tree 30’s “all branch” surface coverage being slightly above at 10.36 mm. The only cylinder distance exception was the all BOs metric (“all branch”). Overall, the mean surface coverage average % for all BOs, from all trees in 2022, was found to be slightly over 50% (50.45%). The cylinder distance recorded for all BOs from all young trees in 2022 was > 10 mm (9.65 mm). Both of these ground truth values are consistent with previous findings for TLS reconstructive models, especially in peach trees (Hackenberg et al., 2015; Knapp-Wilson et al., 2021).

3.3 Subsequent BD & emerging trends
The BD were collected in addition to residual ground truth metrics, with the results from all the young trees scanned during 2022 illustrated below. As mentioned previously, there is a marked difference in tree architecture emerging between the Gd and ‘MP-29’ rootstocks, which is evident from Figure 4. In the 2021 scans, the young trees were under two years old, still in the early stages of tree growth. In 2022, the differences in total branches, vigor, and tree architecture – quantified by the difference in second- and third-order branch numbers between the two trees – have increased. 

Figure 4. On top, the box-and-whisker graphs depict the collected in silico BD from Young Trees 20 and 29 in 2022. The differences in the number of branches between the BOs and the crown architecture are evident. The graph below contains the averages of both MP29 young trees (19, 20) and both Gd young trees (29, 30). The averages are consistent with the trends above, even with the addition of the other two trees. 

The trees with the Gd rootstock not only experienced considerable increases across all branching orders, but also possessed the most branches within the third branching order: approx. 20 more branches than the next largest BO. In stark contrast, the trees with ‘MP-29’ rootstocks had relatively little growth between 2021 and 2022. The growth that occurred was mainly around the third branching order, with an average of 10 more branches than in 2021. The ‘MP-29’
 trees also experienced more growth in higher BOs, producing fifth and sixth BOs, when none were recorded in 2021. The major difference between the two rootstocks is that the largest number of branches in the ‘MP-29’ trees still appeared within the second BO, which contrasts with the Gd trees, with the largest number of branches within in the third BO. Whether this phenomenon is a result of slow third BO growth, an effect of the training system, or a trend that will remain consistent remains to be tested and will need to include a larger pool of samples. 

3. DISCUSSION AND CONCLUSIONS 

This study demonstrated the feasibility of creating 3D models of young peach trees with TLS and QSMs for retrieval of branching data. Results further enabled its use for tree physiology and breeding applications as a high throughput phenotyping methodology. We evaluated the accuracy of in silico quantitative data collected in 2021 and 2022 scans via 3D reconstructive modeling (QSMs). The findings from these QSMs were compared with previously collected in situ data from the field. Altogether, the findings from this study encourages future investigation and study of quantitative modeling approaches in regard to peach and its potential agronomic uses. The presented ground truth data (cylinder distance and cylinder coverage) are consistent with previous findings and the expected results as outlined in the TreeQSM manual (Raumonen, 2017). The MAD scores (Tables 1 and 2) varied between the biometric data and the BD but were overall consistent with previous literature that has reported similar margins of error. The results from our numerous comparisons of in situ, in silico, and residual ground truth data suggest that TreeQSM can produce reliable quantitative models. These QSMs can be utilized as an automated replacement for field data measurements and future research into tree architecture.  
Our study also showcased the attributes of TLS, which, combined with quantitative modeling, may be of future agronomic use in horticultural/orchard settings. The methodology we employed in this study represents an effective, time-efficient, and comparatively less-laborious approach to phenotyping orchard trees. As our approach removes the human error and labor barrier of manually collecting BD, it is now possible to standardize the collection and recording of such data. Using TLS as a quick HTPP tool is economically scalable and easy to learn. A more involved and thorough procedural manual could be released to help facilitate familiarity with the tools and systems. Growers and researchers can be trained in one-day workshops to adopt our approach. Furthermore, research into the areas of tree architecture will become increasingly important, as the need for automation grows, as well as orchard management that can accommodate such changes (e.g., high-density orchards, fruiting wall configurations; Nielsen et al., 2012; Medeiros et al., 2016; Yue et al., 2018; Wu et al., 2018). Therefore, the selection of new scion cultivars possessing traits more amenable to these high-density orchard systems will be in greater demand. The tools demonstrated in this study can be utilized to begin collecting the necessary data. 
Similarly, future trends for our research will focus more on the potentially notable difference in branching structure between Gd and ‘MP-29’ rootstocks. Quantified by the difference in branch numbers and new growth in BOs between the 2021 and 2022 scans, Gd and ‘MP-29’ rootstocks may have a stronger effect on tree architecture than previously known. At the juvenile stage of development, both the Gd and ‘MP-29’ rootstocks displayed similar trends in biometric data and BD. When examining tree architecture on the branch level, the majority of branches for the Gd and ‘MP-29’ trees were found in the second BO. The subsequent BOs with the highest number of branches followed a descending order, with the third and fourth BOs having comparatively fewer branches. This decreasing trend noticeably shifted, however, as evident in the 2022 in situ BD in Figure 4. This shift highlights a potential architectural difference that was largely, if not solely, influenced by the two rootstocks examined in this study. Although it is known that the ‘MP-29’ rootstock can strongly affect tree vigor, there is no literature available on how these dwarfing rootstocks affect tree architecture (Beckman et al., 2012). In species such as pear and apple, field trials and genomic studies have been conducted to investigate this very question (Alla et al., 2008; Petersen & Krost, 2013; Friend et al., 2020). Many aspects concerning the nature of rootstock/scion interaction and their effects and each other’s subsequent architectures (i.e., root and crown architecture) have yet to be investigated. Even less research has been conducted regarding peach trees (Migicovsky et al., 2019; Williams et al., 2021). Therefore, this study might act as a starting point for further field trials, computational modeling, and genomic studies into this area of research for peach. 
[bookmark: _GoBack]To summarize, our TreeQSM models were found to have a MAD of approx. = 8.2% in regards to tree height, and a MAD of approx. = 7.6% when comparing the in situ and in silico crV data from 2021 and 2022. In 2022, the young trees showed residual ground cylinder distance < 10 mm at all branching orders, as well as a mean surface coverage > 50% across all branching orders. While young tree BD was more difficult to accurately characterize at higher BOs, first and secondary BOs were shown to have MAD < 8% and <12% respectively in 2021 scans. Nonetheless, this BD is vital; event at higher BOs, in the process of utilizing TLS technology to phenotype peach tree architecture in an automated and reliable manner. As such, the presented work burgeons the possibility to discover and functionally characterize previously unknown tree architecture phenotypes.
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Young Tree Branch Data Measurements (In-Silico and In-Situ)
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