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Text S1:

1. Data Analysis

1.1. Relative Differences between Scenarios

When comparing fields from different scenarios, the PD simulation is always taken as reference.

Differences in fields of extensive variables are shown as relative differences in % as in Equation

1.

RD(X)scenarioi =
Xscenarioi −XPD

XPD

· 100 (1)

where RD(X)scenarioi refers to the relative difference of variable X for the scenarioi. Xscenarioi

and XPD is the mean value among ensemble members of the variable X for the scenarioi and

the PD scenario respectively.

1.2. Statistical Test

When representing relative changes between scenarios with its spatial distribution, a statistical

test is carried on to only show relative changes that are statistically significant. Here we use the

t-test to compare the 30 ensemble values in each grid cell between simulations. The level of

statistical significance is expressed as a p-value between 0 and 1. Following this procedure, we

mask all grid-cells where p-values are lower than 0.05 (Student, 1908).

November 14, 2022, 6:48pm



: X - 3

1.3. Ensemble spread

To have a measure of the ensemble spread (e.g., the difference between the 30 members of the

same ensemble) we compute the standard deviation (σ) with respect to the ensemble mean (X)

as shown in Equation 2.

σ =

√√√√ 1

N

N∑
i=1

(xi −X)2 (2)

where N is the number of ensemble members, xi is the value of a variable x in a grid cell for

the member i, and X is the ensemble mean for that variable x in that grid cell.

1.4. Acidity in terms of the pH

The acidity level of a solution can be quantified based on the thermodynamic activity of

dissolved hydrogen ions (H+). This measure of acidity is reported as a dimensionless quantity

known as the pH. Here we use pH as a diagnostic of acidity computed based on the H+ molality

(mH+):

pH = − log10 (mH+) (3)

pH values reported in this study are computed by averaging monthly pH values, where data

points with no water is not considered and pH values lower than 0 are masked and set to 7

and values between 0 and 1 are set to 1 . Those transformations are done to correct the pH

overestimation caused in areas with low relative humidity by the metastable assumption in the

thermodynamic equilibrium model.
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Figures S1 to S5

Figure S1. Regions defined for (a) perturbed dust scenarios and (b) analysis of deposition in

different ocean basins. Regions are based on the defined ones by the HTAP project (Koffi et al.,

2016)
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Figure S2. Mean annual emissions in Tg/yr of dust (right figure), sulfur dioxide (SO2) (middle

figure) and oxalate (OXL) (right figure) for each of the scenarios considered. The different colors

represent the contribution of the different HTAP regions considered to the total emission budget.
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Figure S3. Mean annual dust emission (Tg/yr) for the PD scenario (b) and relative differences

(%) in the estimates for the PI (a) and the future scenarios SSP1-2.6 (c), SSP2-4.5 (d), and SSP3-

7.0 (e) with respect to the PD, mean annual surface winds (m s−1) for the PD scenario (g) and

relative differences (%) in the estimates for the PI (f) and the future scenarios SSP1-2.6 (h),

SSP2-4.5 (i), and SSP3-7.0 (j) with respect to the PD (f,h,i,j).November 14, 2022, 6:48pm
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Figure S4. Mean annual dissolution rate for PD for FeF (b), FeB (g) and FeD (l) for the PD.

Absolute differences of the mean annual dissolution rate for FeF, FeB and FeD in the PI (a,f,k),

and the future scenarios SSP1-2.6 (c,h,m), SSP2-4.5 (d,i,n) and SSP3-7.0 (e,j,o) with respect to

the PD.
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Figure S5. Fe solubilization budgets for the different perturbed-dust scenarios and atmo-

spheric processing mechanisms: acidic dissolution (left), oxl-promoted dissolution (middle), and

photoreductive dissolution budgets (right). Solubilization of Fe from dust sources (FeD) is repre-

sented with the yellow-orange colour and solubilization of Fe from combustion sources (FeC) (i.e.,

both from biomass burning, FeB, and anthropogenic sources, FeF) is represented in blue-green

colour. Black bars indicate the budget spread for the 30 ensemble members.
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Tables S1 to S2
Table S1. Annual deposition rates of total Fe and soluble Fe (Tg Fe/yr) over the open ocean

for pre-industrial (PI), present day (PD) and future (FU) time in this study and in the literature.

TFe SFe

PD PI PD FU

This study 12.1 (± 1.4) 0.21 (± 0.01) 0.41 (± 0.01) 0.27-0.56

Myriokefalitakis et al. (2020) 0.18-0.23 0.28-0.35 0.24-0.30

Hamilton et al. (2020) 0.46-0.70 0.70-0.76 0.77

Hamilton et al. (2019) 12-26 0.50-0.53

Ito et al. (2019) 16 (± 7) 0.26 (± 0.12)

Myriokefalitakis et al. (2018) 17 (± 7) 0.30 (± 0.09)

Scanza et al. (2018) 18.5 0.59

Ito and Shi (2016) 10.2 0.051-0.067 0.11-0.12

Myriokefalitakis et al. (2015) 6.964 0.063 0.19 0.136

Johnson and Meskhidze (2013) 0.26

Luo and Gao (2010) 0.34

Luo et al. (2008) 0.1 0.21
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