References From the Supporting Information
Abisko Scientific Research Station, 2020. Meteorological Data from Abisko Observatory, Daily Values 1913-01-01 – 2020, pp. 12–31
Anderson, E. A. 1976. A point energy and mass balance model of a snow cover, NOAA technical report NWS 19., Md: Office of Hydrology, National Weather Service.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., et al. 2011. The Joint UK Land 500 Environment Simulator (JULES), model description “ Part 1: Energy and water fluxes, Geosci. Model Dev, 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Christensen, T. R., Jackowicz-Korczyński, M., Aurela, M., Crill, P., Heliasz, M., Mastepanov, M., Friborg, T. 2012. Monitoring the Multi-Year Carbon Balance of a Subarctic Palsa Mire with Micrometeorological Techniques, AMBIO, 41, 207–217, doi:10.1007/s13280-012-0302-5.
D’Amboise, C. J. L., Müller, K., Oxarango, L., Morin, S., Schuler, T. V. 2017. Implementation of a physically based water percolation routine in the Crocus/SURFEX (V7.3) snowpack model, Geosci. Model Dev., 10, 3547–3566, https://doi.org/10.5194/gmd-10-3547-2017, 2017.
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R. J., Taylor, K. E., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.
Finderup Nielsen T., Ravn N.R., Michelsen A. 2019. Increased CO2 efflux due to long-term experimental summer warming and litter input in subarctic tundra – CO2 fluxes at snowmelt, in growing season, fall and winter. Plant Soil 444:365-382 https://doi.org/10.1007/s11104-019-04282-9
Fukusako, S. 1990. Thermophysical Properties of Ice, Snow, and Sea Ice, Int. J. Thermophys., 11.
Gutowski, W.J., Jr., Decker, S.G., Donavon, R.A., Pan, Z., Arritt, R.W., & Takle, E.S. 2003. Temporal–Spatial Scales of Observed and Simulated Precipitation in Central U.S. Climate, J. Clim, 16(22), 3841-3847.
Hawkins, E., Osborne, T.M., Ho, C.K., Challinor, A.J., 2013. Calibration and bias correction of climate projections for crop modelling: An idealised case study over Europe, Agric. For. Meteorol., 170, 19–31.
Heliasz, M. 2012. Spatial and temporal dynamics of subarctic birch forest carbon exchange, Doctoral, Department of Physical Geography and Ecosystems Science, Lund University Sweden, 132 pp.
Jackowicz-Korczyński, M., Christensen, T. R., Bäckstrand, K., Crill, P., Friborg, T., Mastepanov, M., Ström, L. 2010. Annual cycle of methane emission from a subarctic peatland, J. Geophys. Res.-Biogeo., 115, G02009, doi:10.1029/2008JG000913.
Pappas, C., Fatichi, S., Leuzinger, S., Wolf, A., Burlando, P. 2013. Sensitivity analysis of a process-based ecosystem model: Pinpointing parameterization and structural issues, J. Geophys. Res.-Biogeo., 118, 505–528, doi:10.1002/jgrg.20035.
Pascual, D., Johansson, M., 2022. Increasing impacts of extreme winter warming events on permafrost, Weather. Clim. Extreme, 36, https://doi.org/10.1016/j.wace.2022.100450.
Riahi, K., van Vuuren, D.P, Kriegler, E., Edmonds, j., O’Neill, B.C., Fujimori, S., Bauer, N., Calvin, K., et al., 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Glob. Environ. Change., 42, 153–168, doi.org/10.1016/j.gloenvcha.2016.05.009.
Rinne, J., Swedish National Network, 2019. Ecosystem fluxes time series (ICOS Sweden), Abisko-Stordalen Palsa Bog, 2015-12-31–2016-12-31, [dataset] https://hdl.handle.net/11676/0WzAlJIkSQDK2YuLXnkw6BX_
Rinne, J., Swedish National Network, 2019. Ecosystem fluxes time series (ICOS Sweden), Abisko-Stordalen Palsa Bog, 2016-12-31–2017-12-31, [dataset] https://hdl.handle.net/11676/jGBBiZrsgz19J47noGGPzpPf
Saltelli, A. 2002. Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 145(2), 280–297, doi:10.1016/S0010-4655(02)00280-1.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. 2008. Global Sensitivity Analysis: The Primer, Wiley-Blackwell, Chichester.
Saltelli, A., & Annoni, P. 2010. How to avoid a perfunctory sensitivity analysis, Environ. Model. Software, 25(12), 1508–1517, doi:10.1016/j.envsoft.2010.04.012.
Sheffield, J., Goteti, G., Wood, E. F., 2006. Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling, J. Climate, 19 (13), 3088-3111.
Singh, P., Spitzbart, G., Hübl, H ., Weinmeister, H.W. 1997. Hydrological response of snowpack under rain-on-snow events: a field study, J. Hydrol, 202, (1–4). 1–20, https://doi.org/10.1016/S0022-1694(97)00004-8.
Swedish meteorological, hydrological institute (SMHI). www.smhi.se/.
Tang, J., Schurgers, G., Valolahti, H., Faubert, P., Tiiva, P., Michelsen, A., Rinnan, R., 2016. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath, Biogeosciences, 13, 6651–6667, https://doi.org/10.5194/bg-13-6651-2016.
Vikhamar-Schuler, D., Isaksen, K., Haugen, J.E., 2016. Changes in winter warming events in the nordic arctic region. J. Clim. 29, 6223–6244.
Vionnet, V., Brun, E.,Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., Willemet, J.-M. 2012. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev, 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012.