References
Abisko Scientific Research Station, 2020. Meteorological Data from Abisko Observatory, Daily Values 1913-01-01 – 2020-12–31. [dataset available upon request]
Amap, 2021. Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policy-Makers. Arctic Monitoring and Assessment Programme (AMAP), p. 16. Tromsø, Norway.
Batjes, N.H., 2012. ISRIC-WISE derived soil properties on a 5 by 5 arc-minute global grid (Ver. 1.2). Report 2012/01, ISRIC – World Soil Information, Wageningen (with data set, available at www.isric.org) Report 2012/01. 52 pp.; 9 fig.; 6 tab.; 48 ref.
Bartsch, A., Kumpula, T., Forbes, B., Stammler, F., 2010. Detection of snow surface thawing and refreezing in the Eurasian Arctic using QuikSCAT: implications for reindeer herding. Ecol. Appl., 20, 2346–2358. https://doi.org/10.1890/09-1927.
Beer, C., Porada, P., Ekici, A., Brakebusch, M., 2018. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions. Cryosphere., 12, 741–757.
Belda, M.D., Anthoni, P., Wårlind, D., Olin, S., Schurgers, G., Tang, J., Smith, B., Arneth, A. 2022. LPJ-GUESS/LSMv1.0: A next generation Land Surface Model with high ecological realism, Geosci. Model Dev., 15, 6709–6745, https://doi.org/10.5194/gmd-2022-1.
Bokhorst, S., Bjerke, J.W., Tømmervik, H., Callaghan, T.V., Phoenix. G.K., 2009. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J. Ecol., 97: 1408–1415.
Bokhorst, S., Bjerke, J.W., Davey, M.P., Taulavuori, K., Taulavuori, E., Laine, K., Callaghan, T.V., Phoenix, J.K., 2010. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol. Plant., 140: 128–140.
Bruhwiler, L., Parmentier, F.-J.W., Crill, P., Leonard, M., Palmer, P.I., 2021. The Arctic Carbon Cycle and Its Response to Changing Climate. Curr. Clim. Change Rep., 7, 14.
Callaghan, T.V., Bergholm, F., Christensen, T.R., Jonasson, C., Kokfelt, U., Johansson, M., 2010. A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts. Geophys. Res. Lett., 37: L14705.
Crank, J., Nicolson, P. 1996. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Adv. Comput. Math., 6, 207–226, doi:10.1007/BF02127704.
Ed Dlugokencky and Pieter Tans, NOAA/GML (gml.noaa.gov/ccgg/trends/) [dataset]
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R. J., Taylor, K. E., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016. [dataset accessible at https://esgf-data.dkrz.de/search/cmip6-dkrz/]
Hansen, B.B., Isaksen, K., Benestad, R.E., Kohler, J., Larsen, J.O., Varpe, Ø., Pedersen, Å. Ø., Loe, L.E., et al., 2014. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett., 9, 114021 https://doi.org/10.1088/1748-9326/9/11/114021.
Heliasz, M. 2012. Spatial and temporal dynamics of subarctic birch forest carbon exchange, Doctoral, Department of Physical Geography and Ecosystems Science, Lund University Sweden, 132 pp.
Johansson, M., Callaghan, T.V., Bosiö, J., Åkerman, J., Jackowicz-Korcynski, M., Christensen, T.R., 2013. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environ. Res. Lett., 8: 035025.
Langlois, A., Johnson, C.-A, Montpetit, B., Royer, A., Blukacz-Richards, E.A. Neave, E. Dolant, C. Roy, et al., 2017. Detection of rain-on-snow (ROS) events and ice layer formation using passive microwave radiometry: A context for Peary caribou habitat in the Canadian Arctic, Remote Sens Environ., 189, 84–95.
Michelsen, A., Rinnan, R., Jonasson, S., 2012. Two Decades of Experimental Manipulations of Heaths and Forest Understory in the Subarctic, Ambio., 41, 218–230, doi:10.1007/s13280-012-0303-4.
Gustafson, A., Miller, P.A., Björk, R.G., Olin, S., 2021. Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model, Biogeosciences, 18, 6329–6347, https://doi.org/10.5194/bg-18-6329-2021.
Natali, S.M., Watts, J.D., Rogers, B.M., Potter, S., Ludwig, S.M., Selbmann, A.-K., Sullivan, P.F., Abbott, B.W., et al., 2019. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang., 9, https://doi.org/10.1038/s41558-019-0592-8, 2019.
Pan, C.G., Kirchner, P.B., Kimball, J.S., Kim, Y., Du, J., 2018. Rain-on-snow events in Alaska, their frequency and distribution from satellite observations. Environ. Res. Lett., 13, 075004 https://doi.org/10.1088/1748-9326/aac9d3.
Pascual, D., Åkerman, J., Becher, M., Callaghan, T.V., Christensen, T.R., Dorrepaal, E., Emanuelsson, U., Giesler, R., et al., 2020. The missing pieces for better future predictions in subarctic ecosystems. Ambio, 50 (2), 375–392. https://doi.org/ 10.1007/s13280-020-01381-1.
Pascual, D., Johansson, M., 2022. Increasing impacts of extreme winter warming events on permafrost, Weather. Clim. Extreme., 36, https://doi.org/10.1016/j.wace.2022.100450
Phoenix, G.K., Bjerke, J.W., 2016. Arctic browning: extreme events and trends reversing arctic greening. Global Change Biol., 22, 2960–2962. https://doi.org/10.1111/gcb.13261.
Pongracz, A., Wårlind, D., Miller, P.A., Parmentier, F.-J.W., 2021. Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme. Biogeosciences, 18, 5767–5787.
Sheffield, J., Goteti, G., Wood, E. F., 2006. Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling, [dataset] J. Climate., 19 (13), 3088-3111. [dataset accessible at http://hydrology.princeton.edu/]
Simin, T., Tang, J., Holst, T., Rinnan, R., 2021. Volatile organic compound emission in tundra shrubs – Dependence on species characteristics and the near-surface environment, Environ. Exp. Bot., 184, 104387.
Smith, B., Prentice, I.C., Sykes, M.T., 2001. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space, Glob. Ecol. Biogeogr., 10, 621–637, doi:10.1046/j.1466-822X.2001.t01-1-00256.x.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., Zaehle, S., 2014. Implications of incorporating N cycling and N limitations on primary production in an individual based dynamic vegetation model, Biogeosciences, 11, 2027–2054, doi:10.5194/bg-11-2027-2014.
Swedish meteorological, hydrological institute (SMHI). [dataset accessible at https://www.smhi.se/data/utforskaren-oppna-data/?p=1&q=]
Tang, J., Miller, P.A., Persson, A., Olefeldt, D., Pilesjö, P., Heliasz, M., Jackowicz-Korczynski, M., Yang, Z., et al., 2015. Carbon budget estimation of a subarctic catchment using a dynamic ecosystem model at high spatial resolution. Biogeosciences, 12: 2791–2808.
Van Bogaert R. 2010 Recent treeline dynamics in sub-Arctic Sweden: a multidisciplinary landscape assessment. Doctoral, Geography Department, Ghent University, Ghent.
Vikhamar-Schuler, D., Isaksen, K., Haugen, J.E., 2016. Changes in winter warming events in the nordic arctic region. J. Clim., 29, 6223–6244.
Wania, R., Ross, I., Prentice, I. C., 2009. Integrating peatlands and permafrost into a dynamic global vegetation model; 1, Evaluation and sensitivity of physical land surface processes, Global Biogeochem. Cy., 23, GB3014, doi:10.1029/2008gb003412.
Wania, R., Ross, I., Prentice, I. C. 2009. Integrating peatlands and permafrost into a dynamic global vegetation model; 2, Evaluation and sensitivity of vegetation and carbon cycle processes, Global Biogeochem. Cy., 23, GB3015, doi:10.1029/2008gb003413.
Wania, R., Ross, I., Prentice, I. C. 2010. Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565–584, doi:10.5194/gmd-3-565-2010.
Westermann, S., Boike, J., Langer, M., Schuler, T.V., Etzelmüller, B., 2011. Modeling the impact of wintertime rain events on the thermal regime of permafrost. Cryosphere, 5, 945–959. https://doi.org/10.5194/tc-5-945-2011.
Zhang, T., 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys. 43(4).