References From the Supporting Information
Abisko Scientific Research Station, 2020. Meteorological Data from
Abisko Observatory, Daily Values 1913-01-01 – 2020, pp. 12–31
Anderson, E. A. 1976. A point energy and mass balance model of a snow
cover, NOAA technical report NWS 19., Md: Office of Hydrology, National
Weather Service.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H.,
Ménard, C. B., Edwards, J. M., Hendry, M. A., et al. 2011. The Joint UK
Land 500 Environment Simulator (JULES), model description “ Part 1:
Energy and water fluxes, Geosci. Model Dev, 4, 677–699,
https://doi.org/10.5194/gmd-4-677-2011, 2011.
Christensen, T. R., Jackowicz-Korczyński, M., Aurela, M., Crill, P.,
Heliasz, M., Mastepanov, M., Friborg, T. 2012. Monitoring the Multi-Year
Carbon Balance of a Subarctic Palsa Mire with Micrometeorological
Techniques, AMBIO, 41, 207–217, doi:10.1007/s13280-012-0302-5.
D’Amboise, C. J. L., Müller, K., Oxarango, L., Morin, S., Schuler, T. V.
2017. Implementation of a physically based water percolation routine in
the Crocus/SURFEX (V7.3) snowpack model, Geosci. Model Dev., 10,
3547–3566, https://doi.org/10.5194/gmd-10-3547-2017, 2017.
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer,
R. J., Taylor, K. E., 2016. Overview of the Coupled Model
Intercomparison Project Phase 6 (CMIP6) experimental design and
organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016.
Finderup Nielsen T., Ravn N.R., Michelsen A. 2019. Increased CO2 efflux
due to long-term experimental summer warming and litter input in
subarctic tundra – CO2 fluxes at snowmelt, in growing season, fall and
winter. Plant Soil 444:365-382
https://doi.org/10.1007/s11104-019-04282-9
Fukusako, S. 1990. Thermophysical Properties of Ice, Snow, and Sea Ice,
Int. J. Thermophys., 11.
Gutowski, W.J., Jr., Decker, S.G., Donavon, R.A., Pan, Z., Arritt, R.W.,
& Takle, E.S. 2003. Temporal–Spatial Scales of Observed and Simulated
Precipitation in Central U.S. Climate, J. Clim, 16(22), 3841-3847.
Hawkins, E., Osborne, T.M., Ho, C.K., Challinor, A.J., 2013. Calibration
and bias correction of climate projections for crop modelling: An
idealised case study over Europe, Agric. For. Meteorol., 170, 19–31.
Heliasz, M. 2012. Spatial and temporal dynamics of subarctic birch
forest carbon exchange, Doctoral, Department of Physical Geography and
Ecosystems Science, Lund University Sweden, 132 pp.
Jackowicz-Korczyński, M., Christensen, T. R., Bäckstrand, K., Crill, P.,
Friborg, T., Mastepanov, M., Ström, L. 2010. Annual cycle of methane
emission from a subarctic peatland, J. Geophys. Res.-Biogeo., 115,
G02009, doi:10.1029/2008JG000913.
Pappas, C., Fatichi, S., Leuzinger, S., Wolf, A., Burlando, P. 2013.
Sensitivity analysis of a process-based ecosystem model: Pinpointing
parameterization and structural issues, J. Geophys. Res.-Biogeo., 118,
505–528, doi:10.1002/jgrg.20035.
Pascual, D., Johansson, M., 2022. Increasing impacts of extreme winter
warming events on permafrost, Weather. Clim. Extreme, 36,
https://doi.org/10.1016/j.wace.2022.100450.
Riahi, K., van Vuuren, D.P, Kriegler, E., Edmonds, j., O’Neill, B.C.,
Fujimori, S., Bauer, N., Calvin, K., et al., 2017. The Shared
Socioeconomic Pathways and their energy, land use, and greenhouse gas
emissions implications: An overview, Glob. Environ. Change., 42,
153–168, doi.org/10.1016/j.gloenvcha.2016.05.009.
Rinne, J., Swedish National Network, 2019. Ecosystem fluxes time series
(ICOS Sweden), Abisko-Stordalen Palsa Bog, 2015-12-31–2016-12-31,
[dataset]
https://hdl.handle.net/11676/0WzAlJIkSQDK2YuLXnkw6BX_
Rinne, J., Swedish National Network, 2019. Ecosystem fluxes time series
(ICOS Sweden), Abisko-Stordalen Palsa Bog, 2016-12-31–2017-12-31,
[dataset]
https://hdl.handle.net/11676/jGBBiZrsgz19J47noGGPzpPf
Saltelli, A. 2002. Making best use of model evaluations to compute
sensitivity indices, Comput. Phys. Commun., 145(2), 280–297,
doi:10.1016/S0010-4655(02)00280-1.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J.,
Gatelli, D., Saisana, M., & Tarantola, S. 2008. Global Sensitivity
Analysis: The Primer, Wiley-Blackwell, Chichester.
Saltelli, A., & Annoni, P. 2010. How to avoid a perfunctory sensitivity
analysis, Environ. Model. Software, 25(12), 1508–1517,
doi:10.1016/j.envsoft.2010.04.012.
Sheffield, J., Goteti, G., Wood, E. F., 2006. Development of a 50-yr
high-resolution global dataset of meteorological forcings for land
surface modeling, J. Climate, 19 (13), 3088-3111.
Singh, P., Spitzbart, G., Hübl, H ., Weinmeister, H.W. 1997.
Hydrological response of snowpack under rain-on-snow events: a field
study, J. Hydrol, 202, (1–4). 1–20,
https://doi.org/10.1016/S0022-1694(97)00004-8.
Swedish meteorological, hydrological institute (SMHI).
www.smhi.se/.
Tang, J., Schurgers, G., Valolahti, H., Faubert, P., Tiiva, P.,
Michelsen, A., Rinnan, R., 2016. Challenges in modelling isoprene and
monoterpene emission dynamics of Arctic plants: a case study from a
subarctic tundra heath, Biogeosciences, 13, 6651–6667,
https://doi.org/10.5194/bg-13-6651-2016.
Vikhamar-Schuler, D., Isaksen, K., Haugen, J.E., 2016. Changes in winter
warming events in the nordic arctic region. J. Clim. 29, 6223–6244.
Vionnet, V., Brun, E.,Morin, S., Boone, A., Faroux, S., Le Moigne, P.,
Martin, E., Willemet, J.-M. 2012. The detailed snowpack scheme Crocus
and its implementation in SURFEX v7.2, Geosci. Model Dev, 5, 773–791,
https://doi.org/10.5194/gmd-5-773-2012.