References
Abisko Scientific Research Station, 2020. Meteorological Data from
Abisko Observatory, Daily Values 1913-01-01 – 2020-12–31. [dataset
available upon request]
Amap, 2021. Arctic Climate Change Update 2021: Key Trends and Impacts.
Summary for Policy-Makers. Arctic Monitoring and Assessment Programme
(AMAP), p. 16. Tromsø, Norway.
Batjes, N.H., 2012. ISRIC-WISE derived soil properties on a 5 by 5
arc-minute global grid (Ver. 1.2). Report 2012/01, ISRIC – World Soil
Information, Wageningen (with data set, available at
www.isric.org) Report 2012/01. 52 pp.; 9
fig.; 6 tab.; 48 ref.
Bartsch, A., Kumpula, T., Forbes, B., Stammler, F., 2010. Detection of
snow surface thawing and refreezing in the Eurasian Arctic using
QuikSCAT: implications for reindeer herding. Ecol. Appl., 20,
2346–2358. https://doi.org/10.1890/09-1927.
Beer, C., Porada, P., Ekici, A., Brakebusch, M., 2018. Effects of
short-term variability of meteorological variables on soil temperature
in permafrost regions. Cryosphere., 12, 741–757.
Belda, M.D., Anthoni, P., Wårlind, D., Olin, S., Schurgers, G., Tang,
J., Smith, B., Arneth, A. 2022. LPJ-GUESS/LSMv1.0: A next generation
Land Surface Model with high ecological realism, Geosci. Model Dev., 15,
6709–6745, https://doi.org/10.5194/gmd-2022-1.
Bokhorst, S., Bjerke, J.W., Tømmervik, H., Callaghan, T.V., Phoenix.
G.K., 2009. Winter warming events damage sub-Arctic vegetation:
consistent evidence from an experimental manipulation and a natural
event. J. Ecol., 97: 1408–1415.
Bokhorst, S., Bjerke, J.W., Davey, M.P., Taulavuori, K., Taulavuori, E.,
Laine, K., Callaghan, T.V., Phoenix, J.K., 2010. Impacts of extreme
winter warming events on plant physiology in a sub-Arctic heath
community. Physiol. Plant., 140: 128–140.
Bruhwiler, L., Parmentier, F.-J.W., Crill, P., Leonard, M., Palmer,
P.I., 2021. The Arctic Carbon Cycle and Its Response to Changing
Climate. Curr. Clim. Change Rep., 7, 14.
Callaghan, T.V., Bergholm, F., Christensen, T.R., Jonasson, C., Kokfelt,
U., Johansson, M., 2010. A new climate era in the sub-Arctic:
Accelerating climate changes and multiple impacts. Geophys. Res. Lett.,
37: L14705.
Crank, J., Nicolson, P. 1996. A practical method for numerical
evaluation of solutions of partial differential equations of the
heat-conduction type, Adv. Comput. Math., 6, 207–226,
doi:10.1007/BF02127704.
Ed Dlugokencky and Pieter Tans, NOAA/GML (gml.noaa.gov/ccgg/trends/)
[dataset]
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer,
R. J., Taylor, K. E., 2016. Overview of the Coupled Model
Intercomparison Project Phase 6 (CMIP6) experimental design and
organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016. [dataset accessible at
https://esgf-data.dkrz.de/search/cmip6-dkrz/]
Hansen, B.B., Isaksen, K., Benestad, R.E., Kohler, J., Larsen, J.O.,
Varpe, Ø., Pedersen, Å. Ø., Loe, L.E., et al., 2014. Warmer and wetter
winters: characteristics and implications of an extreme weather event in
the High Arctic. Environ. Res. Lett., 9, 114021
https://doi.org/10.1088/1748-9326/9/11/114021.
Heliasz, M. 2012. Spatial and temporal dynamics of subarctic birch
forest carbon exchange, Doctoral, Department of Physical Geography and
Ecosystems Science, Lund University Sweden, 132 pp.
Johansson, M., Callaghan, T.V., Bosiö, J., Åkerman, J.,
Jackowicz-Korcynski, M., Christensen, T.R., 2013. Rapid responses of
permafrost and vegetation to experimentally increased snow cover in
sub-arctic Sweden. Environ. Res. Lett., 8: 035025.
Langlois, A., Johnson, C.-A, Montpetit, B., Royer, A., Blukacz-Richards,
E.A. Neave, E. Dolant, C. Roy, et al., 2017. Detection of rain-on-snow
(ROS) events and ice layer formation using passive microwave radiometry:
A context for Peary caribou habitat in the Canadian Arctic, Remote Sens
Environ., 189, 84–95.
Michelsen, A., Rinnan, R., Jonasson, S., 2012. Two Decades of
Experimental Manipulations of Heaths and Forest Understory in the
Subarctic, Ambio., 41, 218–230, doi:10.1007/s13280-012-0303-4.
Gustafson, A., Miller, P.A., Björk, R.G., Olin, S., 2021. Nitrogen
restricts future sub-arctic treeline advance in an individual-based
dynamic vegetation model, Biogeosciences, 18, 6329–6347,
https://doi.org/10.5194/bg-18-6329-2021.
Natali, S.M., Watts, J.D., Rogers, B.M., Potter, S., Ludwig, S.M.,
Selbmann, A.-K., Sullivan, P.F., Abbott, B.W., et al., 2019. Large loss
of CO2 in winter observed across the northern permafrost region. Nat.
Clim. Chang., 9, https://doi.org/10.1038/s41558-019-0592-8, 2019.
Pan, C.G., Kirchner, P.B., Kimball, J.S., Kim, Y., Du, J., 2018.
Rain-on-snow events in Alaska, their frequency and distribution from
satellite observations. Environ. Res. Lett., 13, 075004
https://doi.org/10.1088/1748-9326/aac9d3.
Pascual, D., Åkerman, J., Becher, M., Callaghan, T.V., Christensen,
T.R., Dorrepaal, E., Emanuelsson, U., Giesler, R., et al., 2020. The
missing pieces for better future predictions in subarctic ecosystems.
Ambio, 50 (2), 375–392. https://doi.org/ 10.1007/s13280-020-01381-1.
Pascual, D., Johansson, M., 2022. Increasing impacts of extreme winter
warming events on permafrost, Weather. Clim. Extreme., 36,
https://doi.org/10.1016/j.wace.2022.100450
Phoenix, G.K., Bjerke, J.W., 2016. Arctic browning: extreme events and
trends reversing arctic greening. Global Change Biol., 22, 2960–2962.
https://doi.org/10.1111/gcb.13261.
Pongracz, A., Wårlind, D., Miller, P.A., Parmentier, F.-J.W., 2021.
Model simulations of arctic biogeochemistry and permafrost extent are
highly sensitive to the implemented snow scheme. Biogeosciences, 18,
5767–5787.
Sheffield, J., Goteti, G., Wood, E. F., 2006. Development of a 50-yr
high-resolution global dataset of meteorological forcings for land
surface modeling, [dataset] J. Climate., 19 (13), 3088-3111.
[dataset accessible at http://hydrology.princeton.edu/]
Simin, T., Tang, J., Holst, T., Rinnan, R., 2021. Volatile organic
compound emission in tundra shrubs – Dependence on species
characteristics and the near-surface environment, Environ. Exp. Bot.,
184, 104387.
Smith, B., Prentice, I.C., Sykes, M.T., 2001. Representation of
vegetation dynamics in the modelling of terrestrial ecosystems:
comparing two contrasting approaches within European climate space,
Glob. Ecol. Biogeogr., 10, 621–637,
doi:10.1046/j.1466-822X.2001.t01-1-00256.x.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg,
J., Zaehle, S., 2014. Implications of incorporating N cycling and N
limitations on primary production in an individual based dynamic
vegetation model, Biogeosciences, 11, 2027–2054,
doi:10.5194/bg-11-2027-2014.
Swedish meteorological, hydrological institute (SMHI). [dataset
accessible at
https://www.smhi.se/data/utforskaren-oppna-data/?p=1&q=]
Tang, J., Miller, P.A., Persson, A., Olefeldt, D., Pilesjö, P., Heliasz,
M., Jackowicz-Korczynski, M., Yang, Z., et al., 2015. Carbon budget
estimation of a subarctic catchment using a dynamic ecosystem model at
high spatial resolution. Biogeosciences, 12: 2791–2808.
Van Bogaert R. 2010 Recent treeline dynamics in sub-Arctic Sweden: a
multidisciplinary landscape assessment. Doctoral, Geography Department,
Ghent University, Ghent.
Vikhamar-Schuler, D., Isaksen, K., Haugen, J.E., 2016. Changes in winter
warming events in the nordic arctic region. J. Clim., 29, 6223–6244.
Wania, R., Ross, I., Prentice, I. C., 2009. Integrating peatlands and
permafrost into a dynamic global vegetation model; 1, Evaluation and
sensitivity of physical land surface processes, Global Biogeochem. Cy.,
23, GB3014, doi:10.1029/2008gb003412.
Wania, R., Ross, I., Prentice, I. C. 2009. Integrating peatlands and
permafrost into a dynamic global vegetation model; 2, Evaluation and
sensitivity of vegetation and carbon cycle processes, Global Biogeochem.
Cy., 23, GB3015, doi:10.1029/2008gb003413.
Wania, R., Ross, I., Prentice, I. C. 2010. Implementation and evaluation
of a new methane model within a dynamic global vegetation model:
LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565–584,
doi:10.5194/gmd-3-565-2010.
Westermann, S., Boike, J., Langer, M., Schuler, T.V., Etzelmüller, B.,
2011. Modeling the impact of wintertime rain events on the thermal
regime of permafrost. Cryosphere, 5, 945–959.
https://doi.org/10.5194/tc-5-945-2011.
Zhang, T., 2005. Influence of the seasonal snow cover on the ground
thermal regime: An overview. Rev. Geophys. 43(4).