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Summary 15 

The estimation of the slope (b-value) of the frequency magnitude distribution of earthquakes is 16 

based on a formula derived by Aki decades ago, assuming a continuous exponential distribution. 17 

However, as the magnitude is usually provided with a limited resolution, its distribution is not 18 

continuous but discrete. In the literature this problem was initially solved by an empirical correction 19 

(due to Utsu) to the minimum magnitude, and later by providing an exact formula such as that by 20 

Tinti and Mulargia, based on the geometric distribution theory. A recent paper by van der Elst 21 

showed that the b-value can be estimated also by considering the magnitude differences (which are 22 

proven to follow an exponential discrete Laplace distribution) and that in this case the estimator is 23 

more resilient to the incompleteness of the magnitude dataset.  24 

In this work we provide the complete theoretical formulation including i) the derivation of the 25 

means and standard deviations of the discrete exponential and Laplace distributions; ii) the 26 

estimators of the decay parameter of the discrete exponential and trimmed Laplace distributions; 27 

and iii) the corresponding formulas for the parameter b. We further deduce iv) the standard 1-sigma 28 

confidence limits for the estimated b. Moreover, we are able v) to quantify the error associated with 29 

the Utsu minimum-magnitude correction.  30 

We tested extensively such formulas on simulated synthetic datasets including complete catalogues 31 

as well as catalogues affected by a strong incompleteness degree such as aftershock sequences 32 

where the incompleteness is made to vary from one event to the next.  33 

 34 

 35 

 36 

 37 

Plain language summary 38 

The frequency distribution of the sizes (magnitudes) of earthquakes is particularly relevant for 39 

seismic hazard and forecasting. In particular, the slope (b-value) of linear relation existing between 40 
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the magnitude and the logarithm of the earthquake frequency has been proposed as an index of the 41 

state of stress within the Earth’s interior and then of the state of preparation of a future damaging 42 

earthquake. In this work we provide a thorough formulation and detailed discussion of the methods 43 

by which the b-value and its uncertainty can be correctly estimated when the magnitudes of 44 

earthquakes are given with a limited resolution and partitioned in equal-size bins. The methods can 45 

be divided in two classes: methods analyzing binned magnitudes and methods analyzing binned 46 

magnitude differences. The goodness of the different methods is compared using simulated datasets 47 

including cases when a certain number of earthquakes are randomly eliminated from the datasets so 48 

that to reproduce the incompleteness observed in real data. 49 

  50 
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Introduction 51 

The b-value of the frequency-magnitude distribution (FMD) (Gutenberg and Richter, 1944) 52 logଵ଴𝑁 = 𝑎 + 𝑏𝑀 (1)

is indicated by some researchers as a proxy of the level of differential stress within the Earth 53 

(Scholz, 1968, 2015, Amitrano, 2003) and thus as an index of the state of preparation of future 54 

strong earthquakes (Gulia and Wiemer, 2010, 2018, 2019, 2020). Some papers demonstrated that 55 

the b-value is negatively correlated with the rake of the focal mechanism (Shorlemmer et al. 2005, 56 

Petruccelli et al., 2018, Petruccelli et al., 2019a) and with the source depth (Spada et al., 2013, 57 

Petruccelli et al., 2019b). However, these results are controversial and others argued that b-value 58 

variations are statistically insignificant as they are due to artifacts of the methods used to determine 59 

it (Kagan 1999, 2002, 2003, Bird and Kagan, 2004). 60 

One of the most critical aspects in b-value computations is the determination of the magnitude 61 

completeness threshold for the seismic dataset used (e.g. Woessner and Wiemer, 2005, Mignan and 62 

Woessner, 2012) as an underestimation of the threshold might bias (lowering) the estimated b-63 

value, whereas an overestimation might reduce the size of the sample too much for a reliable b-64 

value determination.  65 

Aki (1965), assuming a continuous exponential distribution of magnitudes, deduced the formulas 66 

for the estimation of the b-value and of its standard confidence interval by the maximum likelihood 67 

method as 68 

𝑏 = 1ln(10) (𝑀ഥ − 𝑀௖) (2)

𝜎௕ = 𝑏√𝑁 
(3)

where 𝑀ഥ  is the average magnitude, 𝑀௖ is the minimum (completeness) magnitude and N is the 69 

number of magnitudes in the sample. Eq. (2) was also derived by Utsu (1965) by the method of 70 

moments. Utsu (1966) evidenced that the value estimated by eq. (2) is biased (higher) when 71 
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magnitudes are binned (usually to one decimal digit) and proposed an approximate correction to the 72 

original formula  73 

𝑏 = 1ln(10) (𝑀ഥ − 𝑀௖ + 𝛿) (4)

where 𝛿 is one half of the binning size (e.g. 0.05). 74 

Studying in detail the statistical distribution of b, Shi and Bolt (1982) suggested the following 75 

formula for the confidence interval of the continuous distribution 76 

𝜎௕ = ln(10)𝑏ଶඨ∑ (𝑀௜ − 𝑀ഥ)ଶே௜ୀଵ𝑁(𝑁 − 1)  
(5)

Actually, if the magnitude data are binned, their distribution is not continuous anymore, but discrete 77 

and this implies changes in the estimators.  78 

Bender (1983) analyzed the problem of estimating the b-value from magnitude grouped data and 79 

found that the maximum likelihood estimate of b is the value for which 80 𝑞1 − 𝑞 − 𝑛𝑞௡1 − 𝑞௡ = ෍ (𝑖 − 1)𝑘௜𝑁௡
௜ୀଵ  

(6)

where 𝑞 = expሾ−𝑏ln(10)2𝛿ሿ, 𝑘௜ is the number of earthquakes in the i-th magnitude interval of 81 

width 2𝛿, and n is the number of magnitude intervals from 𝑀௖ to the maximum magnitude of the 82 

dataset. An explicit expression for b was not derived by Bender (1983) and then it can be estimated 83 

only numerically. 84 

Guttorp and Hopkins (1986) showed that the maximum likelihood estimate of b in case of 85 

magnitude data with limited accuracy 2𝛿 is 86 

𝑏 = 12𝛿 ln(10) ln ൤1 + 2𝛿𝑀ഥ − 𝑀௖൨ 
(7)

which can also be written as  87 

𝑏 = 12𝛿 ln(10) ln ቈ𝑀ഥ − 𝑀௖ + 2𝛿𝑀ഥ − 𝑀௖ ቉ 
(8)
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Tinti and Mulargia (1987) derived the exact equation in case of grouped magnitudes in a paper 88 

focused on the confidence intervals, providing the form: 89 

𝑏 = − 12𝛿 ln(10) ln ൦(𝑀ഥ − 𝑀௖ + 𝛿)2𝛿 − 0.5(𝑀ഥ − 𝑀௖ + 𝛿)2𝛿 + 0.5൪ 
(9)

which is perfectly equivalent to eq. (8). 90 

Marzocchi et al. (2020) suggested that, when data are binned, the b-value computed through the 91 

Utsu formula (4), say 𝑏௎௧௦௨, has to be corrected by 92 

𝑏ୡ୭୰୰ୣୡ୲ୣୢ = 12𝛿 ln(10) ln ቈ1 + 𝑏௎௧௦௨𝛿 ln(10)1 − 𝑏௎௧௦௨𝛿 ln(10)቉  
(10)

By substituting (4) in (10) we have 93 

𝑏ୡ୭୰୰ୣୡ୲ୣୢ = 12𝛿 ln(10) ln ൦1 + 1ln(10)(𝑀ഥ − 𝑀௖ + 𝛿) ln(10)𝛿1 − 1ln(10)(𝑀ഥ − 𝑀௖ + 𝛿) ln(10)𝛿൪
= 12𝛿 ln(10) ln ⎣⎢⎢

⎡𝑀ഥ − 𝑀௖ + 𝛿 + 𝛿(𝑀ഥ − 𝑀௖ + 𝛿)𝑀ഥ − 𝑀௖ + 𝛿 − 𝛿(𝑀ഥ − 𝑀௖ + 𝛿) ⎦⎥⎥
⎤         

(11)

which is exactly equivalent to eq. (8). 94 

Van der Elst (2021) showed that in case of discretized data, the exact formula for estimating b is  95 

𝑏 = 1𝛿 ln(10) cothିଵ ൤1𝛿 (𝑀ഥ − 𝑀௖ + 𝛿)൨  (12)

where cothିଵis the inverse of the hyperbolic cotangent function. Recalling the definition of cothିଵ 96 

it is easy to show that even such equation is equivalent to eq. (8). 97 

Van der Elst (2021) also showed that the b-value can be consistently computed by the absolute 98 

magnitude differences |Δ𝑀| (that follow the exponential discrete Laplace distribution) by 99 

𝑏 = 12𝛿 ln(10) cschିଵ ൤ 12𝛿 |Δ𝑀|തതതതതതത൨  (13)
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where cschିଵ is the inverse of the hyperbolic cosecant and |Δ𝑀|തതതതതതത is the average of the absolute 100 

magnitude differences. Recalling the definition of cschିଵ, equation (13) can also be written in 101 

terms of natural logarithm as  102 

𝑏 = 12𝛿 ln(10) ln ⎣⎢⎢
⎡2𝛿 + ට4𝛿ଶ + ൫|Δ𝑀|തതതതതതത൯ଶ|Δ𝑀|തതതതതതത ⎦⎥⎥

⎤
 

(14)

We point out that, to compute magnitude differences, one can proceed essentially in two ways: in 103 

the first case, one computes the difference between the second and the first magnitude and then 104 

between the third and the second one and so on up to the last one: 105 |∆𝑀|௜ = |𝑀௜ାଵ − 𝑀௜| , 𝑖 = 1,2, … , 𝑁 − 1  (15)

This maximizes the number of data (in all N-1), but the differences are not independent from one 106 

another, and this might produce some statistical bias. In the second way, one computes the 107 

difference between the second and the first magnitude and then between the fourth and the third one 108 

and so on up to the last one 109 |∆𝑀|௜ = |𝑀ଶ௜ − 𝑀ଶ௜ିଵ| , 𝑖 = 1,2, … , 𝑁/2  (16)

This grants that the differences are all independent from one another, but it halves the number of 110 

data. 111 

As incompleteness also affects the Laplace distribution of magnitude differences, van der Elst 112 

(2021) suggested discarding all Δ𝑀 = 0 and then only to consider absolute differences not lower 113 

than the binning size Δ𝑀′௖ = 2𝛿. In this case, he showed that the b-value estimator becomes 114 

formally equivalent to that of binned magnitudes of eq. (12): 115 

𝑏 = 1𝛿 ln(10) cothିଵ ൤1𝛿 ൫|Δ𝑀|തതതതതതത − Δ𝑀′௖ + 𝛿൯൨  (17)

provided that |Δ𝑀|തതതതതതത and Δ𝑀′௖ replace 𝑀ഥ  and 𝑀௖ respectively. It is obvious that eq. (17) can be 116 

written in terms of natural logarithm as  117 
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𝑏 = 12𝛿 ln(10) ln ቆ|Δ𝑀|തതതതതതത − Δ𝑀′௖ + 2𝛿|Δ𝑀|തതതതതതത − Δ𝑀′௖ ቇ  
(18)

 118 

Van der Elst did not derive any expressions for the confidence intervals but suggested computing 119 

them by means of the bootstrap method (Hurvich and Tsai, 1989). He also asserted that the 120 

estimation of b-value is more stable and robust if only positive magnitude differences are used in 121 

eq. (18).   122 

As van der Elst (2021) did not give much detail on his formulations, in this paper, we provide (see 123 

Appendices A-H): i) the complete theoretical derivation of the first two moments of the discrete 124 

exponential distribution; ii) the estimators of the decay parameter of the discrete exponential as well 125 

as of the discrete Laplace distributions, even in case of distribution trimming; iii) the corresponding 126 

formulas for estimating the parameter b. Moreover, we deduce iv) the standard one-sigma lower 127 

and upper confidence limits for the estimated b valid in case of discrete exponential variables as 128 

  𝑏ଵ = 12𝛿 ln(10) ln ⎣⎢⎢
⎡𝑐 + ට 𝑐𝑁1 + ට 𝑐𝑁⎦⎥⎥

⎤
 

(19)

𝑏ଶ = 12𝛿 ln(10) ln ⎣⎢⎢
⎡𝑐 − ට 𝑐𝑁1 − ට 𝑐𝑁⎦⎥⎥

⎤
 

(20)

where  129 𝑐 = exp ൫2𝛿 ln(10)𝑏෨൯ = 10ଶఋ௕෨  (21)

and 𝑏෨ is the estimate of 𝑏. This applies to estimates made through (8) and through (18). In addition, 130 

we derive v) the one-sigma confidence limits also when b is estimated through the formula (14) that 131 

is for distributions of the absolute value of magnitude differences (see formulas (H20a) and (H20b) 132 

in the Appendix H). In the Appendix F, we demonstrate that vi) the Utsu correction (4) coincides 133 

with the expansion of the exact formula (8) truncated at the second order.  134 
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One of the main objectives of this paper is to evaluate the goodness of the various 𝑏-value 135 

estimators. To this purpose we perform a number of numerical simulations, with particular attention 136 

given to cases of incomplete magnitude datasets. The details on how we produce complete and 137 

incomplete synthetic datasets and we model aftershock sequences are given in Appendix I.  138 

Evaluation index  139 

To evaluate the goodness of the various methods, we introduce a significance level p we have 140 

devised specifically to this purpose, that, given a random sample, is suitable to measure how close a 141 

given characteristic value derived from the sample is to a given target value. In our case, the sample 142 

is the set of the M estimators 𝑏෨௜, (𝑖 = 1,2, … , 𝑀), derived through one of the estimation formulas 143 

given above, and the characteristic value is the sample mean 𝑏തெ, while the target value is the 𝑏-144 

value  used to generate the M random datasets. To compute the index p, let’s count the number 𝑀ା 145 

of 𝑏෨௜ that are larger than 𝑏തெ and the number 𝐿ା that are larger than 𝑏. Further, let’s count the 146 

number 𝑀ି of 𝑏෨௜ that are smaller than 𝑏തெ and the number 𝐿ି that are smaller than 𝑏. Usually we 147 

expect that 𝑀ା + 𝑀ି = 𝑀, and that 𝐿ା + 𝐿ି = 𝑀, but it can happen that some of the 𝑏෨௜ 148 

accidentally equals 𝑏തெ or 𝑏. Consequently, the sums  𝑀ା + 𝑀ି and  𝐿ା + 𝐿ି might be smaller than 149 𝑀, and it is more convenient to count all quantities separately. We define the performance index as: 150 𝑝 = 1 𝑖𝑓 𝑏തெ = 𝑏 

𝑝 = 𝐿ା𝑀ା       𝑖𝑓  𝑏തெ < 𝑏 

𝑝 = 𝐿𝑀ି 𝑖𝑓 𝑏തெ > 𝑏 

 

(22) 

The index 𝑝 takes values between 0 and 1. The way 𝑝 is computed, makes it a non-parametric 151 

index, very easy to obtain, and applicable to any kind of sample and to any pairs of variables one 152 

likes to compare. If the sample data number 𝑀 is so large that one can approximate the sample 153 

frequency occurrences with a density probability curve, then the above criterion (22) can be 154 

expressed in terms of probability ratios as: 155 
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𝑝 = 𝑃𝑟𝑜𝑏൫𝑏෨ > 𝑏൯𝑃𝑟𝑜𝑏൫𝑏෨ > 𝑏തெ൯ 𝑖𝑓 𝑏തெ < 𝑏 

𝑝 = 𝑃𝑟𝑜𝑏൫𝑏෨ < 𝑏൯𝑃𝑟𝑜𝑏൫𝑏෨ < 𝑏തெ൯ 𝑖𝑓 𝑏തெ > 𝑏  

 

(23) 

In case of variables 𝑏෨௜ following a Gaussian distribution with standard deviation 𝜎, where 𝑏തெ 156 

coincides with the distribution median and 𝑃𝑟𝑜𝑏൫𝑏෨ < 𝑏തெ൯ =  𝑃𝑟𝑜𝑏൫𝑏෨ > 𝑏തெ൯ = 1/2, the criterion 157 

simplifies further to: 158 

 𝑝 = 2 𝑃𝑟𝑜𝑏൫𝑏෨ > 𝑏൯      𝑖𝑓  𝑏തெ < 𝑏;      𝑝 = 2 𝑃𝑟𝑜𝑏൫𝑏෨ < 𝑏൯         𝑖𝑓  𝑏തெ > 𝑏      

(24) 

that can be easily expressed in terms of the error function of the normalized variables, and 𝑝 159 

identifies with the 𝑝-value of a two-sided Student’s 𝑡 test, i.e. 𝑝 = ൣ1 − 𝑒𝑟𝑓൫ห𝑏 − 𝑏തெห/√2𝜎൯൧.  160 

In this paper, we will rely on the index 𝑝 to judge the goodness of the estimators. We will use it like 161 

the 𝑝-value of a null-hypothesis test, where the null hypothesis is that the estimator is acceptable. If 162 𝑝 < 𝛼 where 𝛼 is the significance level, then we reject the null hypothesis and consider the 163 

estimator unacceptable. In this analysis we take 𝛼 = 0.05. A further way we use 𝑝 is assuming that 164 

the performance of the estimator method is an increasing function of 𝑝 and that if the index of a 165 

method is larger than the index of another, then the former shows a better performance.   166 

Results for complete datasets 167 

We first compare the various estimators of eqs. (2), (4), (6), (8), (14) and (18) on complete binned 168 

datasets simulated by the procedure specified by the eqs. (I1)-(I3) given in the Appendix I. In this 169 

analysis the parameter 𝑀௠௜௡ used to generate the random samples and the parameter 𝑀௖ appearing 170 

in the estimator formulas are assumed to be equal. In Table 1 we report the average b-values 𝑏തெ and 171 

the corresponding standard deviations 𝑆ெ computed on a set of M=10,000 simulated samples each 172 

including N=1000 magnitudes, with binning size 2δ=0.1 and with b=1. When applying methods that 173 

use magnitudes (i.e. eqs. (2), (4), (6) and (8)), all samples have the same number of data (𝑁=1000). 174 
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This is also true when magnitude differences are used (see eq.(14)). In this case, however, the data 175 

number depends on the way such differences are computed, since differences made through eq.(15) 176 

and through eq.(16) lead to 𝑁=999 and to 𝑁=500, respectively. When null differences are trimmed 177 

away (as is required by the estimator of eq. (18)), the number of remaining data changes from 178 

sample to sample, which gives the reason to introduce the mean number of data 𝑁ഥ in Table 1.   179 

Table 1 – Estimates from complete simulated sets with N=1000, 2δ=0.1 and b=1 180 

Estimator Eq. 𝒃ഥ𝑴 𝑺𝑴 𝑵ഥ  𝒑 

Aki (1965) (2) 1.125907 0.039867 1000 0.000587 

Aki (1965), Utsu (1966) (4) 0.996582 0.031225 1000 0.913052 

Bender (1983) (6) 0.994843 0.031965 1000 0.869062 

This paper, magnitudes (8) 1.001003 0.031644 1000 0.974374 

This paper, absolute differences by eq. (15) (14) 1.001331 0.040499 999 0.974819 

This paper, absolute differences by eq. (16) (14) 1.001854 0.044692 500 0.966667 

This paper, trimmed absolute differences by 

eq. (15) 

(18) 1.001663 0.043709 885 0.970893 

This paper, trimmed absolute differences by 

eq. (16) 

(18) 1.002250 0.048326 443 0.963718 

 181 

The results shown in Table 1 allow us to state that most methods reproduce the true b-value (𝑏 =1) 182 

reasonably well with the exception of the simple Aki formula (2) for which the estimated b-value is 183 

significantly different from the true one. Since the corresponding 𝑝 is less than 𝛼 = 0.05, we 184 

conclude that the Aki estimator is not acceptable for binned data. We notice that the Utsu estimator 185 

(4) and the Bender method (6) give results with evaluation index 𝑝 included in the interval 186 ሾ0.85,0.92ሿ, that is smaller than the index 𝑝 of all other methods. This is the first clue that the 187 

methods based on the formulas (8), (14) and (18) are the most convenient ones. This analysis is 188 

corroborated by results obtained by varying the number of data N (100, 1000, 10000) and the 189 
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theoretical b-value (0.7, 1.0, 1.5), that confirm the superiority of such methods (see Tables S1 to S9 190 

in the supplementary material).  191 

In Table 2 for different simulated complete datasets, we report b-values computed by eq. (8) and 192 

standard deviations estimated using various methods from the literature and also by eqs. (19) and 193 

(20) introduced in this paper. The latter ones are reported in the last column of the Table as the half 194 

amplitude of the confidence interval, i.e. as ଵଶ (𝑏ଶ − 𝑏ଵ). Notice that the mean value 𝑏തெ is not the 195 

midpoint of the confidence interval and is always closer to the lower end (see the third-to and 196 

second- to-last column of the Table). It is remarkable that for all cases, the estimates based on Aki 197 

and on Shi-Bolt formulas as well as the ones based on eqs. (19) and (20) of this paper correspond 198 

very well to the standard deviation 𝑆ெ computed from the simulated datasets. 199 

Table 2 – Standard deviations for complete simulated sets with  200 𝒃ഥ𝑴  estimated through eq.(8) 201 

b-value 𝑵 𝒃ഥ𝑴 𝑺𝑴 Aki 

eq.(3) 

Shi-Bolt 

eq.(5) 

𝒃ഥ𝑴 − 𝒃𝟏 

eq.(19) 

𝒃𝟐 − 𝒃ഥ𝑴 

eq.(20) 

𝟏𝟐 (𝒃𝟐 − 𝒃𝟏) 

0.7 1000 0.700502 0.022256 0.022152 0.022080 0.021494 0.022903 0.022198 

1 1000 1.000699 0.031843 0.031645 0.031507 0.030737 0.032758 0.031747 

1.5 1000 1.501058 0.047887 0.047468 0.047132 0.046222 0.049287 0.047755 

 202 

In Table 3 we report b-values computed for trimmed magnitude differences by eq. (18) and the 203 

corresponding standard deviations computed by means of eqs. (19) and (20), as specified earlier. 204 

The differences are computed by using eqs. (15) and (16). It is relevant to observe that when using 205 

independent differences (eq. 16), these values correspond well to the standard deviation 𝑆ெ 206 

computed from the simulated datasets. On the contrary, when using non independent differences 207 

computed by eq. (15), there is an underestimation that amounts to about 22% for all the treated 208 

cases. The latter might be related to some sort of data correlation that reduces the number of 209 
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“effective” independent data, say 𝑁௘, in the difference dataset, so that the calculated dispersion is 210 

less than the experimental one. Considering that the standard deviation scales inversely with the 211 

square root of the number of data, then the observed percentage increase of 𝑆ெ corresponds to the 212 

decrease of about 40% in the number of effective data, i.e. 𝑁௘~0.67𝑁. Then, we conclude that to 213 

compute differences it is always preferable to use eq. (16), and this will be our choice in all the 214 

following computations shown in the paper and in the supplementary material. 215 

Table 3 – Standard deviations for complete simulated sets with 216 𝒃ഥ𝑴  estimated through trimmed absolute differences (Eq.18) 217 

b-value Eq. 𝑵 𝒃ഥ𝑴 𝑺𝑴 𝒃ഥ𝑴 − 𝒃𝟏 

eq.(19) 

𝒃𝟐 − 𝒃ഥ𝑴 

eq.(20) 

𝟏𝟐 (𝒃𝟐 − 𝒃𝟏) 

0.7 (15) 999 0.700767 0.028808 0.021513 0.022923 0.022218 

 (16) 500 0.701012 0.031554 0.030037 0.032859 0.031448 

1 (15) 999 1.001103 0.041072 0.030764 0.032788 0.031776 

 (16) 500 1.001422 0.044977 0.042951 0.047001 0.044976 

1.5 (15) 999 1.501469 0.061124 0.046257 0.049327 0.047792 

 (16) 500 1.501969 0.067012 0.064577 0.070719 0.067648 

 218 

Table 4 - Estimates from complete simulated sets with N=1000, 2δ=0.5 and b=1 219 

Estimator Eq. 𝒃ഥ𝑴 𝑺𝑴 𝑵ഥ  p 

Aki (1965) (2) 1.884281 0.106413 1000 0.000000

Aki (1965), Utsu (1966) (4) 0.903155 0.024395 1000 0.000000

Bender (1983) (6) 0.996548 0.033689 1000 0.916258

This paper, magnitudes (8) 1.001296 0.033480 1000 0.966446

This paper, absolute differences (14) 1.001698 0.041874 500 0.960875

This paper, trimmed absolute differences (18) 1.004231 0.069217 240 0.954589

 220 
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Even if, for most papers in the literature, the binning size is fixed to 0.1 as in Tables 1, 2 and 3, 221 

larger bins can be assumed when the magnitude resolution is wider, as it may occur for magnitudes 222 

derived from maximum macroseismic intensities.  223 

In Table 4 (that coincides with Table S14 in the supplement) we show the results for a binning size 224 

2δ=0.5. We can note that in this case even the Aki (1965) estimator as corrected by Utsu (1966) (eq. 225 

4) significantly underestimates the simulated b-value, and that the corresponding evaluation index 𝑝 226 

does not pass the threshold. Therefore, it cannot be accepted as a valid estimator. This 227 

underestimation is observed even by varying the number of data N (100, 1000, 10000) and the 228 

theoretical b-value (0.7, 1.0, 1.5) (see Tables S10 to S18 in the supplementary material). This 229 

confirms that Utsu (1966) correction to the Aki (1965) formula is approximate and in not adequate 230 

for large bin sizes. Table 4 also confirms that the Bender method, though adequate, has a 231 

performance slight smaller than eq. (8) for magnitudes and formulas (14) and (18) for magnitude 232 

differences, but this might be due to a not fully accurate numerical minimization. It is relevant to 233 

note that the corresponding standard deviation 𝑆ெ increase sensibly when passing from magnitudes 234 

to magnitude differences, since the number of data decreases, which means that the latter estimators 235 

can be considered less efficient.   236 

Results for incomplete datasets 237 

Experimental magnitude datasets are always affected by some degree of incompleteness. Therefore, 238 

evaluating how the estimators perform on incomplete data set is of paramount importance. Van der 239 

Elst (2021), on analyzing incomplete binned magnitude sequences, concluded that magnitude 240 

difference estimators are more robust if only the positive differences are used, since using also the 241 

negative differences might produce biased results. To check this conclusion, in the following 242 

computations we consider two further estimators, one based only on the trimmed positive 243 

differences and the other based only the trimmed negative ones in eq. (18). We build incomplete 244 

datasets by starting from 11,000 exponentially distributed magnitudes with 𝑀௠௜௡ = 0.4 and decay 245 

parameter 𝑏 = 1, and by applying the thinning method as explained in Appendix I with parameters 246 
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𝜇 = 1 and 𝜆 = 0.2. After the reduction the remaining magnitudes are less than 10%. More precisely 247 

the mean number of earthquakes per sample is 𝑁ഥ=1093. The histogram of one of the simulated 248 

datasets is portrayed in Figure 1 and is manifestly incomplete. Seismologists usually refrain from 249 

estimating the 𝑏-value using all data of such incomplete dataset, and in common practice one 250 

discards the smaller magnitude classes that are visibly incomplete. Nonetheless, it is interesting to 251 

see the behavior of the estimators in the extreme case where 𝑀௖ is taken to be equal to 𝑀௠௜௡, 252 

although it is  clear from Figure 1 that such kind of samples are far from fitting an exponential 253 

distribution. It is worth stressing that 𝑀௖enters in all formulas based on magnitudes, namely (2), (4), 254 

(6) and (8), but not in the ones based on magnitude differences, i.e. (14) and (18). The results are 255 

shown in Table 5. 256 

Table 5 - Incomplete simulated sets with 𝝁 = 𝟏, 𝝀 = 𝟎. 𝟐, 2δ=0.1 and b=1, 𝑴𝒄=0.4 257 

Estimator Eq. 𝒃ഥ𝑴 𝑺𝑴 𝑵ഥ  p 

Aki (1965) (2) 0.460944 0.006947 1093 0.000000

Aki (1965), Utsu (1966) (4) 0.437711 0.006264 1093 0.000000

Bender (1983)  (6) 0.387450 0.024053 1093 0.000000

This paper, magnitudes (8) 0.438082 0.006280 1093 0.000000

This paper, absolute differences (14) 0.862855 0.032991 546 0.000000

This paper, trimmed absolute differences (18) 0.890224 0.036483 506 0.005059

This paper, trimmed positive differences (18) 0.892015 0.052275 253 0.052535

This paper, trimmed negative differences (18) 0.891447 0.051621 247 0.044536

 258 

As expected, all methods provide estimates quite far from the true value, and correspondingly the 259 

index 𝑝 lies below or close to the significance threshold 𝛼 = 0.05. But it is relevant to observe that 260 

on using differences one obtains better results, and even better on using strictly positive or strictly 261 

negative differences, although the improvement of the estimate is accompanied by an increment of 262 

the standard deviation.    263 
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In Table 6 we show the results considering exactly the same data sets as before, but assuming that 264 𝑀௖ is equal to 1.1, corresponding to the maximum curvature of the frequency magnitude 265 

distribution, as suggested by Wiemer and Wyss (2000). It is clear that increasing the value of the 266 

completeness magnitude, improves the results for all methods. One common feature is that all 267 

estimates lie below the true value, with one exception. Indeed, the Aki (1965) estimator gives an 268 

overestimate and is seemingly better than the estimator corrected by Utsu (1966) and the exact 269 

formula using magnitudes. However, this is an artefact since the typical underestimation due to 270 

incompleteness is overcompensated for the Aki method by the effect of magnitude binning. Most 271 

importantly, observe that methods based on magnitude differences and either on the positive 272 

differences or on the negative differences produce the best results in terms of closeness to the true b 273 

and in terms of the evaluation index 𝑝. Such evidence seems to confirm the strategy suggested by 274 

van der Elst (2021) that using magnitude differences is preferable than using magnitudes. However, 275 

his claim that positive differences lead to better estimates than using negative differences is not so 276 

evident from this Table. 277 

 278 

 279 
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Figure 1 – Incomplete simulated set of 𝑁=1029 data with parameters: 𝜇 = 1, 𝜆 = 0.2, 𝑀௠௜௡ = 0.4, 280 2 = 0.1,  𝑏 = 1.  281 

In Table 7 we show the results for the same parameters when the minimum magnitude 𝑀௖ is 282 

increased up to 1.3 corresponding to the magnitude of maximum curvature plus 0.2, that is the way 283 𝑀௖ is commonly set in the literature (Wiemer and Wyss, 2000, Mignan and Woessner, 2012). 284 

 285 

Table 6 - Incomplete simulated sets with 𝝁 = 𝟏, 𝝀 = 𝟎. 𝟐, 2δ=0.1, b=1 and 𝑴𝒄=1.1 286 

Estimator Eq. 𝒃ഥ𝑴 𝑺𝑴 𝑵ഥ  p 

Aki (1965) (2) 1.026523 0.037518 786 0.478636

Aki (1965), Utsu (1966) (4) 0.917912 0.029991 786 0.008349

Bender (1983)  (6) 0.911953 0.031097 786 0.006099

This paper, magnitudes (8) 0.921364 0.030332 786 0.012220

This paper, absolute differences (14) 0.973845 0.047540 393 0.582759

This paper, trimmed absolute differences (18) 0.986348 0.051871 353 0.788916

This paper, trimmed positive differences (18) 0.989979 0.074481 176 0.885868

This paper, trimmed negative differences (18) 0.988299 0.073980 154 0.869655

 287 

Notice that increasing the value of the completeness magnitude has the effect of reducing the size of 288 

the samples and consequently of increasing the simulated standard deviation  289 𝑆ெ. Further, it lowers the degree of incompleteness, and therefore leads to better estimates. As for 290 

the rest, most considerations made for Table 6 apply also to Table 7. Most precisely, we can see that 291 

now the Aki (1965) formula (2) clearly overestimates the b-value and is thus inadequate, whereas 292 

the other estimators using magnitudes as well as the estimators based on magnitude differences give 293 

correct results. In this case, the estimator using the trimmed positive differences seems to be slightly 294 

better than the one using negative differences but slightly worse than the one using the absolute 295 

differences, either trimmed or not.  296 
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 297 

 298 

Table 7 - Incomplete simulated sets with 𝝁 = 𝟏, 𝝀 = 𝟎. 𝟐, 2δ=0.1, b=1 and 𝑴𝒄=1.3 299 

Estimator Eq. 𝒃ഥ𝑴 𝑺𝑴 𝑵ഥ  p 

Aki (1965) (2) 1.107743 0.052196 541 0.027810

Aki (1965), Utsu (1966) (4) 0.982229 0.041025 541 0.670191

Bender (1983)  (6) 0.976523 0.042257 541 0.579654

This paper, magnitudes (8) 0.986471 0.041560 541 0.744560

This paper, absolute differences (14) 0.998481 0.060113 270 0.979558

This paper, trimmed absolute differences (18) 1.001747 0.064811 240 0.975911

This paper, trimmed positive differences (18) 1.005584 0.094333 120 0.958555

This paper, trimmed negative differences (18) 1.006768 0.092576 118 0.938444

 300 

 301 

Figure 2 – Histogram of the absolute differences computed for the dataset shown in Figure 1. As 302 

expected its size is 𝑁 = 564.  303 

 304 
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The resilience of trimmed differences estimators to magnitude incompleteness can be further 305 

proven through the following experiment. We take exactly the same datasets analyzed before and 306 

with estimates given in Table 5: they have average size 𝑁ഥ = 1093 and have  𝑀௖ = 0.4. They are 307 

strongly incomplete (see the exemplary sample in Figure 1). Let us  estimate the 𝑏-value through 308 

the eq.(18)  and change the value of ∆𝑀′௖. Figure 2 displays the histogram of the absolute 309 

differences of the same data set plotted in Figure 1. It includes also the null differences, that 310 

however will be neglected in the analysis. It is quite evident from this graph, that the histogram 311 

exhibits an exponential behavior much more than the corresponding graph of Figure 1, and it is 312 

much more so if the first column on the left hand side is discarded. This rises the expectation that 313 

methods based on differences, rather than on magnitudes are able to provide better estimates. This 314 

is confirmed in Table 8. The last three rows of Table 5 show the results for trimmed differences 315 

estimators (absolute, positive and negative) when we apply the basic trimming, which means that 316 

we set ∆𝑀′௖ = 2𝛿, so discarding the differences equal to 0. In Table 8 we show the results obtained 317 

by increasing Δ𝑀′௖ up to ∆𝑀′௖ = 10𝛿 (i.e. 5 times the bin size). In the Table we include also the 318 

outputs for ∆𝑀′௖ = 2𝛿  for the sake of comparison. Very remarkably, it can be seen that the 319 

deviations of the estimated b-values from the theoretical one progressively decrease when 320 

incrementing the amount of trimming, and at the end they become almost negligible for all of the 321 

three estimators. It is also worth stressing that increasing the trimming threshold ∆𝑀′௖ obviously 322 

reduces the number of available data and leads to larger standard deviations, but less dramatically 323 

than a similar increment is applied to the magnitude threshold 𝑀௖. Even in this experiment it can be 324 

observed that positive differences give results slightly better than negative differences and 325 

systematically better than absolute differences.  326 

Results for incompleteness changing with time 327 

It is known that incompleteness affects seismic catalogues systematically after a strong main shock, 328 

owing to the superposition of the waveforms in the recorded seismograms that prevents the correct 329 

location and size determination of many small shocks in the hours or days after the main shocks. It 330 
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is also known that in these circumstances incompleteness is time dependent since it tends to 331 

decrease in time which means that the completeness magnitude can be modeled as a decreasing 332 

function of time.   333 

 334 

Table 8 - Incomplete simulated sets generated with parameters 𝝁 = 𝟏, 𝝀 = 𝟎. 𝟐,  2δ=0.1 and 335 

b=1, 𝑴𝒄=0.4 and estimated through eq.(18) 336 

Estimator ∆𝑴′𝒄 𝒃ഥ𝑴 𝑺𝑴 𝑵ഥ  p 

This paper, trimmed absolute differences 2𝛿 0.890224 0.036483 506 0.005059

This paper, trimmed positive differences 2𝛿 0.892015 0.052275 253 0.052535

This paper, trimmed negative differences 2𝛿 0.891447 0.051621 247 0.044536

This paper, trimmed absolute differences 4𝛿 0.927973 0.042749 428 0.101695

This paper, trimmed positive differences 4𝛿 0.930314 0.061307 214 0.267504

This paper, trimmed negative differences 4𝛿 0.929565 0.060234 212 0.254639

This paper, trimmed absolute differences 6𝛿 0.957032 0.049715 355 0.394683

This paper, trimmed positive differences 6𝛿 0.959837 0.071424 178 0.570807

This paper, trimmed negative differences 6𝛿 0.959462 0.070339 180 0.560562

This paper, trimmed absolute differences 8𝛿 0.977009 0.057063 290 0.683715

This paper, trimmed positive differences 8𝛿 0.980645 0.081274 145 0.812863

This paper, trimmed negative differences 8𝛿 0.980056 0.081047 146 0.807636

This paper, trimmed absolute differences 10𝛿 0.990306 0.064465 235 0.879491

This paper, trimmed positive differences 10𝛿 0.994635 0.091919 117 0.956170

This paper, trimmed negative differences 10𝛿 0.994486 0.092570 121 0.952622

 337 

We generate the synthetic data sets following the procedure described in the Appendix I. We set the 338 

magnitude of the main shock to m=5.6 in eq. (I4), p=1 and c=0.01 in eq. (I5) and TE=5 days in eqs. 339 
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(I8-I13). We produce 𝑀 = 10,000 aftershock sequences of 𝑁 = 40,000 earthquakes that are made 340 

incomplete through the thinning mechanism, that is a probabilistic and time-dependent process. The 341 

magnitude mean of the thinning law 𝜇(𝑡) is given in eq.(I4) and 𝜆 is set to 0.2.  Further, we 342 

compute the magnitude 𝑀௖ using the criterion adopted for the analysis shown in Table 7, i.e. 𝑀௖ is 343 

equal to the magnitude 𝑀௠௫௖ corresponding to the maximum curvature of the sample frequency 344 

magnitude curve  plus twice the bin size. Then, we eliminate all magnitudes smaller than 𝑀௖. The 345 

mean number of surviving data is 𝑁ഥ = 1041. In Table 9 we present the results of the estimation 346 

when 𝑀௖ is equal to 1.3. Our finding is that none of the estimators is performing very well. 347 

However, we observe that estimators based on magnitudes tend to severely underestimate the 348 

theoretical b, and the corresponding values of the evaluation index 𝑝 is much smaller than the 5% 349 

significance level. Conversely, the estimators based on differences give results that can be 350 

considered satisfactory. A further remark is that one can note a slightly better performance for 351 

positive differences with respect to the negative ones.  352 

Table 9 – Aftershock sequence with time-dependent incompleteness; parameters: 𝝀 = 𝟎. 𝟐, 353 

m=5.6, p=1, c=0.01, TE=5 days, N=40,000 (before thinning), 2δ=0.1 and b=1, 𝑴𝒄=1.3 354 

Estimator Eq. 𝒃ഥ𝑴 𝑺𝑴 𝑵ഥ  p 

Aki (1965) (2) 0.835400 0.025265 1041 0.000000

Aki (1965), Utsu (1966) (4) 0.762046 0.021019 1041 0.000000

Bender (1983)  (6) 0.752022 0.022715 1041 0.000000

This paper, magnitudes (8) 0.764015 0.021183 1041 0.000000

This paper, absolute differences (14) 0.952553 0.040146 520 0.244594

This paper, trimmed absolute differences (18) 0.965537 0.043553 469 0.430854

This paper, trimmed positive differences (18) 0.967733 0.061519 234 0.589812

This paper, trimmed negative differences (18) 0.967363 0.062788 228 0.596715

 355 
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To examine the performance of the estimators on aftershock sequences we have varied the number 356 

of data and the theoretical b-value (see Tables from S19 to S27 in the supplementary material). 357 

Notice that Table 9 coincides with Table S23. We have found confirmation that methods based on 358 

differences provide better results than methods based on magnitudes and that methods based on 359 

differences of the same sign (positive or negative) are better than the ones obtained when using 360 

absolute differences, and provide estimates very close to one another, with slight advantage of 361 

positive over negative datasets.  362 

Discussion of the results 363 

Computing the 𝑏-value of a magnitude catalogue or a magnitude sequence is a classical activity in 364 

standard seismicity analyses and is often used in advance studies. For complete datasets, when the 365 

magnitudes are taken as continuous exponentially distributed variables, the problem of estimating 𝑏 366 

and the related confidence intervals was given a definite solution respectively by Aki (1965) and by 367 

Shi and Bolt (1982) who made recourse to the chi-square distribution. When magnitudes are 368 

grouped in bins of equal size, the problem was also given a final solution by Guttorp and Hopkins 369 

(1986) for estimating 𝑏 and by Tinti and Mulargia (1986 and 1987) to compute the corresponding 370 

confidence intervals. Catalogue incompleteness affects remarkably all the estimations, but this 371 

problem was long overlooked, since there was the believe that it regards only the smaller 372 

magnitudes range and that it is easily possible to find a threshold magnitude, 𝑀௖ above which the 373 

data set is complete and is sufficiently large to allow accurate estimates. More sophisticated views 374 

emerged progressively as wells as criteria to find 𝑀௖ (see Mignan and Woessner, 2012), but it was 375 

only recently that the problem was tackled by a very different point of view. It was van der Elst’s 376 

(2021) who analyzing aftershock sequences where the completeness is known to change quite 377 

rapidly with time, proposed to consider datasets of differences of magnitudes in place of 378 

magnitudes and to base on them all the statistical inferences. This was a remarkable turning point in 379 

the discipline. He also suggested that using datasets of positive differences was the only correct way 380 
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because the alternative choice of using absolute differences of magnitudes or negative differences 381 

leads to inaccurate estimates.   382 

In this paper we have explored the potential of the new approach and we have considered only 383 

synthetic datasets since this is the best way to evaluate the performance of inferential estimators. 384 

Indeed, one can generate easily a very high number (10,000 in this paper) of pseudorandom samples 385 

of magnitudes of any reasonable size. First of all, we have noticed that passing from random 386 

variables to their random differences implies halving the size of the data set if one wants to keep 387 

data independency (see eq. (16)), which in principle is a cost that is hard to pay. On the other hand, 388 

making consecutive differences (see eq.(15)) does not alter significantly the set size (it passes from 389 𝑁 to 𝑁 − 1), but it introduces an undesirable correlation in the data. The effect of such correlation 390 

has been shown in Table 3 where the standard deviation of the correlated differences was found to 391 

be larger than the theoretical one by an amount of about 22%. This implies that the variance 392 

increases by a factor 1.49 or correspondingly that the equivalent number of data is reduced. In this 393 

paper we have opted to work only with datasets formed by independent variables obtained through 394 

eq. (16), accepting to pay the cost of halving the dataset size. Consider that the cost is even larger if 395 

one uses only one-sign differences (either positive or negative) since in this case the database size 396 

collapses to one quarter.  397 

To judge the goodness of the various estimators based on magnitudes and magnitude differences we 398 

have devised a new evaluation index denoted by 𝑝 (eq.22), that can be interpreted as a non-399 

parametric variant of the Student’s 𝑡. Depending on the way it is defined, that is a sort of 400 

normalization, the index 𝑝, like the Student’s 𝑡, tends to tolerate larger discrepancies for estimators 401 

with larger standard deviations, and does not prize the estimator efficiency. Bearing this in mind, 402 

we consider 𝑝 a suitable index to evaluate estimators that are known a priori to operate on different 403 

dataset sizes like the ones working on magnitudes and on magnitude differences.    404 

When treating complete binned datasets our analysis confirms that the classical estimator of eq. (8) 405 

works quite well and better than estimators for continuous magnitudes either in the original form 406 



 24

(eq. (2)) or in the one corrected to account for binning (see eq. (4)). It is relevant to point out that 407 

also the methods based on magnitude differences and given in eqs. (14) and (18) provide 408 

equivalently good results. 409 

The most important finding we obtain is that magnitude samples showing a very severe 410 

incompleteness transform to samples with an almost exponential decay when magnitudes are 411 

replaced by magnitude differences (see Figures 1 and 2). This seems to be a strong support to the 412 

strategy of using absolute differences or one-sign differences to evaluate 𝑏. Results reported in 413 

Tables from 5 to 7 show that increasing the magnitude value 𝑀௖ in the traditional estimator (8) from 414 

the very low value of patent incompleteness to the magnitude of maximum curvature of the 415 

frequency magnitude distribution and even further, improves its performance very much. 416 

Nonetheless, from all those Tables it emerges that better evaluations are attained by the estimator 417 

(14) that applies to absolute differences and by the estimator (18) that applies to one-sign 418 

differences with the minimum possible trimming, i.e. the trimming involving only zero differences. 419 

Table 8 explores the performance of the estimator (18) when the magnitude dataset is very 420 

incomplete (𝑀௖ is assume to be very low) and the trimming is made progressively more substantial 421 

and it is found that increasing the trimming also improves the results. In virtue of these outcomes, 422 

one could play with 𝑀௖ and with the amount of trimming ∆𝑀′௖ to optimize the estimates. However, 423 

refining this strategy is not the scope of this paper. On comparing the results of all Tables from 5 to 424 

8, we observe that the most accurate estimates are reported in the last 4 rows of Table 7 and are 425 

obtained when 𝑀௖ = 𝑀௠௫௖ + 4=1.3 and the trimming is the minimum, namely either null or equal 426 

to 2. 427 

With this clue in mind, we have considered aftershock sequences. Their main feature is not only 428 

that they are strongly incomplete dataset, but also that the completeness magnitude changes quickly 429 

during the process, and formally it changes from one earthquake to the next (according to eq. (I4) in 430 

the Appendix I). Nonetheless, each sequence gives rise to a frequency magnitude histogram that can 431 

be examined as in the previous analysis, that is by establishing the maximum curvature magnitude 432 
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𝑀௠௫௖ and by determining 𝑀௖ through the formula given above. The results of Tables S19-S27 in 433 

the supplementary material confirm the superiority of the formulas based on magnitude differences, 434 

but they also add that the estimator (18) including trimming is generally better than formula (14).  435 

The second most important result of our analysis on the behavior of the estimators dealing with 436 

incomplete datasets is that the van der Elst’s claim (2021) that in aftershock sequences one 437 

necessarily finds that positive magnitude differences are distributed exponentially much better than 438 

the negative ones and therefore the most successful estimator is the estimator (18) applied to the 439 

subsets of positive differences is not supported by enough evidence. As a matter of fact, we found 440 

that the estimates are very close to one another and that in some cases positive differences provide 441 

better values while in other cases the reverse is true. 442 

A final remark regards the confidence limits. The van der Elst’s contribution brought in the 443 

seismological arena the two new estimators (14) and (18), without providing however the related 444 

confidence intervals. The formula (18) is practically the same as (8) but applied to magnitude 445 

differences, since the supporting distribution (discrete Laplace) is the same. This means that the 446 

corresponding theoretical confidence intervals based on the geometric distribution are already 447 

known for any given number N of sample data (Tinti and Mulargia, 1986, 1987). In this paper we 448 

have provided explicit simple formulas, (19) and (20), to compute the 1-sigma confidence interval 449 

when the sample size is large enough that the distribution of the mean (either 𝑀ഥ  or |Δ𝑀|തതതതതതത) 450 

approximates a Gaussian, which is normally the case in seismological practice. On the other hand, 451 

to authors’ knowledge, the confidence intervals of the distribution underlying the estimator (14) 452 

have not yet been given a general theoretical solution in the seismological literature. In this context, 453 

and under the same assumption of Gaussian distribution, we propose the formulas (H20a and H20b) 454 

derived in the Appendix H to compute the endpoints of the 1-sigma confidence intervals. 455 

Conclusions 456 

This paper consisted in two parts and was inspired by the new approach due to van der Elst (2021) 457 

to deal with strongly incomplete data set of magnitudes to make estimates of the b-value. The 458 
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theoretical part, mostly developed in the Appendixes recalls in a plane way the main properties of 459 

the binned magnitude distributions, more precisely the discrete exponential and the discrete Laplace 460 

distribution, the latter being analyzed also in its various variants of absolute differences (either 461 

including or not null differences) and one-sign differences. It is a systematic analysis reproducing 462 

known results, but also providing clarifications and leading to new outcomes, such as the 463 

expressions to compute the 1-sigma confidence limits of the estimators. The second part, chiefly 464 

illustrated in the main text and complemented by the supplementary material, is an attempt to 465 

evaluate the goodness of the classical estimators of the b-value compared to the ones based on 466 

magnitude differences. For estimators based on the distribution of magnitudes, exact formulations 467 

(eq. 8) are always preferable with respect to the approximate formula by Aki (1965) with Utsu 468 

(1966) correction (eq. 4), in particular when the bin size is larger than 0.1. The uncorrected formula 469 

by Aki (1965) (eq. 2) usually overestimates the theoretical b-value, but sometimes may deceptively 470 

appear to work well when, by chance, the overestimation due to the binning almost exactly 471 

compensates the underestimation due to incompleteness. In case of substantially incomplete 472 

catalogues, it was shown that the distributions of magnitude differences happen to be closer to an 473 

exponential decay. Therefore, estimators using magnitude differences (eqs. 14 and 18) are more 474 

robust with respect to magnitude incompleteness than those using magnitudes (eq. 8) and give 475 

correct b-values when the magnitude cutting threshold 𝑀௖ is not lower than the magnitude of 476 

maximum curvature of the frequency magnitude distribution. Conversely, estimators using 477 

magnitudes (eq.8) give correct results only for 𝑀௖ not lower than the magnitude of maximum 478 

curvature plus 0.2. The latter finding confirms the goodness of a common choice, made in current 479 

literature (Mignan and Woessner, 2012), to establish the magnitude completeness threshold.  480 
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Appendix A - The continuous and discrete exponential distributions 613 

Earthquake magnitudes, when taken as random variables, are supposed to follow an exponential 614 

distribution at least beyond a certain (completeness) magnitude threshold 𝑀௖. Generally, they are 615 

provided up to a few decimal digits (usually one) and therefore they can be naturally binned in 616 

classes of equal size, say 2𝛿. In the common practice, they are treated either as a discrete set of 617 

variables or as a continuous set. In the former case, if 𝑀଴ is the magnitude of the first class, the 618 

magnitude of the 𝑖 − 𝑡ℎ class is given by: 619 𝑀௜ = 𝑀଴ + 2𝛿𝑖                                                                                                                                              (𝐴1) 

The integer 𝑖 identifying the class is a discrete random variable obeying the probability distribution: 620 𝑃௜ = 𝐴(𝛼)𝑒ିఈ௜   𝑖 = 0,1,2, …                                                                                                                      (𝐴2) 

where 𝛼 is assumed to be a positive decay parameter. Because 𝑃௜ represents a probability for the 621 

random variable 𝑖, its distribution must satisfy the normalization condition, i.e. the sum of all 622 

probabilities must be equal to 1. By imposing it, we obtain: 623 

෍ 𝐴(𝛼)𝑒ିఈ௜ஶ
௜ୀ଴ = 𝐴(𝛼) ෍ 𝑒ିఈ௜ஶ

௜ୀ଴ = 𝐴(𝛼)1 − 𝑒ିఈ = 1                                                                                      (𝐴3) 

It follows that (𝐴2) can be rewritten as: 624 𝑃௜ = (1 − 𝑒ିఈ) 𝑒ିఈ௜   𝑖 = 0,1,2, …                                                                                                            (𝐴4) 

On the other hand, when treating the magnitude 𝑀 as a continuous variable, its probability density 625 

function is given by:  626 𝑃(𝑀) = 𝛽𝑒ିఉ(ெିெ೎)    𝑀 − 𝑀௖ ≥ 0                                                                                                      (𝐴5𝑎) 

or 627 𝑃(𝑀) = 𝛽𝑒ିఉ(ெିெబାఋ)    𝑀 − (𝑀଴ − 𝛿) ≥ 0                                                                                     (𝐴5𝑏) 

depending on the decay factor 𝛽. The formula (𝐴5𝑏) is justified since, usually, the first value of the 628 

discrete set of magnitudes 𝑀଴ is taken as the midpoint of the first magnitude class, i.e. the one with 629 

the lower endpoint in 𝑀௖. This means that: 630 
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𝑀௖ = 𝑀଴ − 𝛿                                                                                                                                                 (𝐴6) 

It can be shown that the decay factors 𝛼 and 𝛽 of the discrete and continuous distributions are 631 

linked by the relation:  632 𝛼 = 2𝛿𝛽                                                                                                                                                            (𝐴7) 

Indeed, if we consider the scaled variable: 633 

𝑦 = 𝑀 − 𝑀௖2𝛿                                                                                                                                                     (𝐴8) 

then its probability density has the form: 634 

𝑃(𝑦) = 𝑃(𝑀) 𝑑𝑀𝑑𝑦 = 2𝛿𝛽 𝑒ିଶఋఉ௬ =  𝛼𝑒ିఈ௬   𝑦 ≥ 0                                                                              (𝐴9) 

If we take only integer values of 𝑦, then the 𝑦 axis results to be discretized with unitary bins, while 635 

the 𝑀 axis happens to be discretized with a resolution that is finer and finer as 2𝛿 is made smaller 636 

and smaller. Under these circumstances, the expression of 𝑃௜ tends to the continuous counterpart 637 𝑃(𝑀), since the factor (1 − 𝑒ିఈ) can be approximated by 2𝛿𝛽.  638 

In the following, the random variables we will consider are the continuous variable 𝑦 defined in 639 (𝐴8) and the discrete variable 𝑖 defined in (𝐴1). We will see that all statistical formulas we will 640 

derive for the discrete variable 𝑖 will tend to the corresponding formulas of the continuous variable 641 𝑦 as the bin size 2𝛿 becomes increasingly small. More specifically, if we approximate 𝑒ିఈ with 1 642 

and (1 − 𝑒ିఈ) with 2𝛿𝛽, then the discrete-case expressions transform into the continuous-case 643 

ones.  644 

Mean, variance and standard deviation 645 

The formulas for the mean and variance of the continuous exponential distribution (𝐴9) are well 646 

known and will be given here for the sake of completeness. They are: 647 

𝜇஼ா = 1𝛼                                                                                                                                                           (𝐴10) 

𝑣𝑎𝑟஼ா = 1𝛼ଶ ;  𝜎஼ா = 1𝛼                                                                                                                                (𝐴11) 
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where the subscript 𝐶𝐸 denotes a continuous exponential random variable. As regards the discrete 648 

distribution (𝐴4), we start with computing its mean 𝜇஽ா that is defined as: 649 

𝜇஽ா = ෍ 𝑖 𝑃௜ஶ
௜ୀ଴ = (1 − 𝑒ିఈ) ෍ 𝑖 𝑒ିఈ௜ஶ

௜ୀଵ                                                                                                    (𝐴12) 

In order to compute the sum 𝑆ଵ of the series in (𝐴12), we note that:  650 

𝑆ଵ = ෍ 𝑖 𝑒ିఈ௜ஶ
௜ୀଵ =  𝑒ିఈ ෍(𝑖 + 1)  𝑒ିఈ௜ஶ

௜ୀ଴ =  𝑒ିఈ ൭෍ 𝑖 𝑒ିఈ௜ஶ
௜ୀ଴ + ෍  𝑒ିఈ௜ஶ

௜ୀ଴ ൱                                    (𝐴13) 

In the last expression, we recognize that the first summation is 𝑆ଵ, while the second one is the sum 651 

of a geometric series. Therefore, the equation (𝐴13) becomes:  652 

𝑆ଵ =  𝑒ିఈ𝑆ଵ +  𝑒ିఈ1 − 𝑒ିఈ                                                                                                                               (𝐴14) 

This is an equation in the unknown 𝑆ଵ with solution: 653 

𝑆ଵ =  𝑒ିఈ(1 − 𝑒ିఈ)ଶ                                                                                                                                           (𝐴15) 

On substituting this expression in the definition (𝐴12), we eventually get: 654 

𝜇஽ா = (1 − 𝑒ିఈ)𝑆ଵ =  𝑒ିఈ1 − 𝑒ିఈ                                                                                                               (𝐴16) 

The second moment, say 𝑀ଶ,஽ா, of the discrete exponential distribution is by definition: 655 

𝑀ଶ,஽ா = ෍ 𝑖ଶ𝑃௜ஶ
௜ୀ଴ = (1 − 𝑒ିఈ) ෍ 𝑖ଶ𝑒ିఈ௜ஶ

௜ୀଵ                                                                                            (𝐴17) 

To evaluate the sum of the series, we can follow a procedure analogous to the one used earlier, that 656 

is:  657 

𝑆ଶ = ෍ 𝑖ଶ𝑒ିఈ௜ஶ
௜ୀଵ =  𝑒ିఉ ෍(𝑖 + 1)ଶ𝑒ିఈ௜ஶ

௜ୀ଴ =  𝑒ିఈ ൭෍ 𝑖ଶ𝑒ିఈ௜ஶ
௜ୀ଴ + 2 ෍ 𝑖 𝑒ିఈ௜ஶ

௜ୀ଴ + ෍  𝑒ିఈ௜ஶ
௜ୀ଴ ൱        (𝐴18) 

Remembering the values of the series in the last member of the above equation chain, we obtain the 658 

following equation in the unknown 𝑆ଶ: 659 

𝑆ଶ =  𝑒ିఈ ൬𝑆ଶ + 2𝑆ଵ + 11 − 𝑒ିఈ൰                                                                                                            (𝐴19) 
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Its solution is: 660 

𝑆ଶ = 𝑒ିఈ1 − 𝑒ିఈ ൬2𝑆ଵ + 11 − 𝑒ିఈ൰ = 𝑒ିఈ1 − 𝑒ିఈ ൬  2𝑒ିఈ(1 − 𝑒ିఈ)ଶ + 11 − 𝑒ିఈ൰
=   𝑒ିఈ(1 + 𝑒ିఈ)(1 − 𝑒ିఈ)ଷ                                                                                                              (𝐴20) 

From the definition (𝐴17), we then obtain: 661 

𝑀ଶ,஽ா = (1 − 𝑒ିఈ)𝑆ଶ = 𝑒ିఈ(1 + 𝑒ିఈ)(1 − 𝑒ିఈ)ଶ                                                                                                 (𝐴21) 

The variance of a distribution can be computed from the mean and the second moment according to 662 

the formula: 663 𝑣𝑎𝑟஽ா = 𝑀ଶ,஽ா − (𝜇஽ா)ଶ                                                                                                                           (𝐴21) 

After substituting the respective values, it transforms to: 664 

𝑣𝑎𝑟஽ா = 𝑒ିఈ(1 + 𝑒ିఈ)(1 − 𝑒ିఈ)ଶ −  𝑒ିଶఈ(1 − 𝑒ିఈ)ଶ =  𝑒ିఈ(1 − 𝑒ିఈ)ଶ
= 14 ቀcsch 𝛼2ቁଶ                                                                                                                  (𝐴23) 

Consequently, the standard deviation 𝜎஽ா takes the form: 665 

𝜎஽ா =  𝑒ିఈଶ1 − 𝑒ିఈ = 12 csch 𝛼2                                                                                                                        (𝐴24) 

We point out here that the formula (𝐴16) for the mean 𝜇஽ா is already known in the seismological 666 

literature and forms the basis for the estimator of 𝑏 (8) given in the main text (Guttorp and Hopkins, 667 

1986, Tinti and Mulargia, 1987, van der Elst, 2021). On the contrary, the expression (𝐴24) for the 668 

standard deviation of the discrete distribution is original and first derived in this paper.  669 

  670 
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Appendix B – The continuous and discrete distributions of the differences of exponential 671 

variables (Laplace distributions) 672 

If we consider the scaled random variables 𝑦 and 𝑧, both following the exponential distribution 673 (𝐴9), then the random variable 𝑤 = 𝑧 − 𝑦 can be proven to obey the continuous Laplace 674 

distribution with density function defined as: 675 𝑃(𝑤) = 𝛼2 𝑒ିఈ|௪|  − ∞ < 𝑤 < +∞                                                                                                           (𝐵1) 

It is a continuous density function with two symmetric exponential tails, and the same decay 676 

parameter  𝛼 as the original distributions and it is known as Laplace distribution.  677 

Let us now consider the differences of integer random variables 𝑖 and 𝑗, both following the discrete 678 

exponential distribution (𝐴4) with the same parameter 𝛼. If they are independent variables, the joint 679 

probability distribution 𝑃௜௝ for the pair (𝑖, 𝑗) is given by the product:  680 𝑃௜,௝ = 𝑃௜𝑃௝ =  (1 − 𝑒ିఈ)ଶ𝑒ିఈ(௜ା௝)                                                                                                            (𝐵2) 

Here the aim is to compute the probability that the difference takes a given value 𝑑. To this 681 

purpose, we have to sum up the probabilities of all the pairs where the difference is exactly equal to 682 𝑑. If we consider the Cartesian plane where 𝑖 runs along the horizontal axis and  𝑗 runs along the 683 

vertical axis, then the pairs exhibiting a constant difference between 𝑗 and 𝑖 can be found on straight 684 

lines parallel to the bisector of the first quadrant. Exactly on the bisector, the pairs have 𝑖 = 𝑗 and 685 

the difference is identically zero. For the lines above the bisector, the difference is positive, whereas 686 

for the parallel lines lying below it, it is negative.  687 

More formally, we introduce the random variable 𝑑 = 𝑗 − 𝑖, 𝑑 ∈ 𝑍, and compute its distribution 𝑃ௗ. 688 

First, we assume that 𝑗 ≥ 𝑖, and therefore that 𝑑 ≥ 0. Given 𝑑, all pairs (𝑖, 𝑗) having difference 689 

equal to 𝑑, are of the type (𝑖, 𝑖 + 𝑑) with 𝑖 ∈ 𝑁. It follows that: 690 

𝑃ௗ = ෍ 𝑃௜𝑃௜ାௗஶ
௜ୀ଴ = (1 − 𝑒ିఈ)ଶ𝑒ିఈ(௜ା௜ାௗ) = (1 − 𝑒ିఈ)ଶ𝑒ିఈௗ ෍ 𝑒ିଶఈ௜ஶ

௜ୀ଴                                           (𝐵3) 
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Considering that the terms to be summed can be seen as the elements of a geometric series with 691 

constant ratio 𝑒ିଶఈ, we obtain the expression: 692 

𝑃ௗ = (1 − 𝑒ିఈ)ଶ1 − 𝑒ିଶఈ 𝑒ିఈௗ,   𝑑 ≥ 0                                                                                                                   (𝐵4) 

When 𝑗 ≤ 𝑖, following an analogous procedure, we can get a similar expression. Indeed, we should 693 

sum up all probabilities of the pairs (𝑗 + |𝑑|, 𝑗) getting the result: 694 

𝑃ௗ = (1 − 𝑒ିఈ)ଶ1 − 𝑒ିଶఈ 𝑒ିఈ|ௗ|,   𝑑 < 0                                                                                                                 (𝐵5) 

Remembering the identity 1 − 𝑒ିଶఈ = (1 − 𝑒ିఈ)(1 + 𝑒ିఈ), both expressions (𝐵4) and (𝐵5) can 695 

be simplified to: 696 

𝑃ௗ = 1 − 𝑒ିఈ1 + 𝑒ିఈ 𝑒ିఈ|ௗ| = tanh 𝛼2 𝑒ିఈ|ௗ|     − ∞ < 𝑑 < +∞                                                                     (𝐵6) 

where recourse is made to the identity: 697 1 − 𝑒ିఈ1 + 𝑒ିఈ = tanh 𝛼2                                                                                                                                           (𝐵7) 

In the following the distribution (𝐵6) will be referenced to as discrete Laplace distribution.  698 

Mean, variance and standard deviation 699 

The computation of the mean of the continuous Laplace distribution 𝜇஼௅ is straightforward, since 700 𝑃(𝑤) = 𝑃(−𝑤)). Here the subscript 𝐶𝐿 stands for continuous Laplace distribution. Indeed, it is 701 

trivial to see that: 702 

𝜇஼௅ = න 𝑤𝑃(𝑤)𝑑𝑤଴
ିஶ + න 𝑤𝑃(𝑤)𝑑𝑤ାஶ

଴ = − න 𝑤𝑃(−𝑤)𝑑𝑤ାஶ
଴ න 𝑤𝑃(𝑤)𝑑𝑤ାஶ

଴ = 0                   (𝐵8) 

Owing to the vanishing of 𝜇஼௅, the second moment of the Laplace distribution (𝐵1) coincides with 703 

its variance: 704 

𝑣𝑎𝑟஼௅ = න 𝑤ଶ𝑃(𝑤)𝑑𝑤ାஶ
ିஶ = 2 න 𝑤ଶ𝑃(𝑤)𝑑𝑤ାஶ

଴ = 𝛼 න 𝑤ଶ𝑒ିఈ௪𝑑𝑤 = 2𝛼ଶାஶ
଴                               (𝐵9) 

Hence, the corresponding standard deviation is: 705 
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𝜎஼௅ = √2𝛼                                                                                                                                                        (𝐵10) 

The mean 𝜇஽௅of the discrete distribution (𝐵6) is zero due to its symmetry around the origin (i.e.  706 𝑃 ௗ = 𝑃ௗ). Indeed: 707 

𝜇஽௅ = ෍ 𝑑 𝑃ௗିଵ
ௗୀିஶ + ෍ 𝑑 𝑃ௗஶ

ௗୀଵ = − ෍ 𝑑 𝑃 ௗஶ
ௗୀଵ + ෍ 𝑑 𝑃ௗஶ

ௗୀଵ = 0                                                            (𝐵11) 

And, as a consequence, its second moment and variance are coincident: 708 

𝑣𝑎𝑟஽௅ = ෍ 𝑑ଶ 𝑃ௗஶ
ௗୀିஶ = 2 ෍ 𝑑ଶ 𝑃ௗஶ

ௗୀଵ = 2 1 − 𝑒ିఈ1 + 𝑒ିఈ ෍ 𝑑ଶ𝑒ିఈௗஶ
ௗୀଵ = 2 1 − 𝑒ିఈ1 + 𝑒ିఈ 𝑆ଶ = 2𝑒ିఈ(1 − 𝑒ିఈ)ଶ

= 12 ቀcsch 𝛼2ቁଶ                                                                                                                 (𝐵12) 

The corresponding standard deviation results to be: 709 

𝜎஽௅ = √2𝑒ିఈଶ1 − 𝑒ିఈ = 1√2 csch 𝛼2                                                                                                                     (𝐵13) 

On comparing expressions (𝐴11) with (𝐵9) and (𝐴23) with (𝐵12), it is worth noting that the 710 

variances of the Laplace distributions are twice larger than the corresponding variances of the 711 

exponential distributions, i.e.: 712 

 𝑣𝑎𝑟஼௅ = 2𝑣𝑎𝑟஼ா    𝑣𝑎𝑟஽௅ = 2𝑣𝑎𝑟஽ா                                                                                                       (𝐵14)   713 

Indeed, the results reached in this section could be anticipated simply by remembering that the 714 

mean and the variance of the difference of two independent random variables are respectively the 715 

difference of their mean and the sum of their variances, which entails that the resulting mean is zero 716 

and the resulting variance is twice as large.  717 

  718 
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Appendix C – The continuous and discrete one-sign differences distributions 719 

If we restrict the attention only to one-sign differences, it is trivial to see that their distribution is 720 

exponential. Indeed, for the continuous case, the distribution (𝐵1) becomes: 721 𝑃(𝑤) = 𝛼𝑒ିఈ|௪|  − ∞ < 𝑤 ≤ 0                                                                                                              (𝐶1𝑎) 𝑃(𝑤) = 𝛼𝑒ିఈ௪      0 < 𝑤 < +∞                                                                                                              (𝐶1𝑏) 

Likewise, for the discrete case, the distribution (𝐵6) splits into: 722 

𝑃ௗ = (1 − 𝑒ିఈ)𝑒ିఈ|ௗ|    − ∞ < 𝑑 ≤ 0                                                                                                   (𝐶2𝑎) 𝑃ௗ = (1 − 𝑒ିఈ)𝑒ିఈௗ         0 ≤ 𝑑 < +∞                                                                                                  (𝐶2𝑏)  723 

It follows that the corresponding means, variances and standard deviation have the expressions 724 (𝐴10) and (𝐴11) given in the Appendix A.  725 

It is worth stressing that the result regarding the means was derived first by van der Elst (2021). 726 
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Appendix D – The continuous and discrete absolute differences distributions 727 

Let us consider the absolute values of the differences, that are |𝑤| and |𝑑| respectively. It is worth 728 

outlining that for the continuous case the distribution is exponential, while for the discrete variables 729 

this is not true. In the former case, we can write: 730 

𝑃(|𝑤|) = 𝛼𝑒ିఈ|௪| 0 ≤ |𝑤| ≤ +∞                                                                                                           (𝐷1) 

On the other hand, for the discrete variable |𝑑|, we should distinguish the case of null differences 731 

from the others, and their probability distributions results to be:  732 

𝑃଴ = 1 − 𝑒ିఈ1 + 𝑒ିఈ                                                                                                                                               (𝐷2𝑎) 

𝑃|ௗ| = 2 1 − 𝑒ିఈ1 + 𝑒ିఈ 𝑒ିఈ|ௗ|   1 ≤ |𝑑| < +∞                                                                                            (𝐷2𝑏) 
Mean, variance and standard deviation 733 

The absolute values of the continuous differences are exponential variables and their statistical 734 

moments that are relevant in our context can be taken from the expressions displayed in the 735 

Appendix A. We can write them explicitly here below: 736 

𝜇஼஺ = 1𝛼  , 𝑣𝑎𝑟஼஺ = 1𝛼ଶ  , 𝜎஼஺ = 1𝛼                                                                                                                 (𝐷3) 

In the adopted notation the subscript 𝐶𝐴 stands for continuous absolute differences.  The mean of 737 

the absolute values of the discrete differences is by definition given by: 738 

𝜇஽஺ = ෍ |𝑑|𝑃|ௗ|ஶ
|ௗ|ୀଵ = 2 1 − 𝑒ିఈ1 + 𝑒ିఈ ෍ 𝑖ஶ

௜ୀଵ 𝑒ିఈ௜ = 2 1 − 𝑒ିఈ1 + 𝑒ିఈ 𝑆ଵ = 2𝑒ିఈ(1 + 𝑒ିఈ)(1 − 𝑒ିఈ) =                (𝐷4) 

In the above computations use has been made of the expression (𝐴14) for 𝑆ଵ. 739 

Likewise, the second moment 𝑀ଶ,஽஺ is computed as: 740 

𝑀ଶ,஽஺ = ෍ |𝑑|ଶ𝑃|ௗ|ஶ
|ௗ|ୀଵ = 2 1 − 𝑒ିఈ1 + 𝑒ିఈ ෍ 𝑖ଶஶ

௜ୀଵ 𝑒ିఈ௜ = 2 1 − 𝑒ିఈ1 + 𝑒ିఈ 𝑆ଶ = 2𝑒ିఈ(1 − 𝑒ିఈ)ଶ                              (𝐷5) 
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where 𝑆ଶ has been taken from (𝐴20). The variance can be computed as the difference between 741 𝑀ଶ,஽஺ and 𝜇஽஺ squared, that is as: 742 

𝑣𝑎𝑟஽஺ = 2𝑒ିఈ(1 − 𝑒ିఈ)ଶ − 2𝑒ିଶఈ(1 + 𝑒ିఈ)ଶ(1 − 𝑒ିఈ)ଶ = 2𝑒ିఈ(1 + 𝑒ିଶఈ)(1 + 𝑒ିఈ)ଶ(1 − 𝑒ିఈ)ଶ                                       (𝐷6) 

The related standard deviation is therefore given by:  743 

𝜎஽஺ = ඥ2𝑒ିఈ(1 + 𝑒ିଶఈ)(1 + 𝑒ିఈ)(1 − 𝑒ିఈ)                                                                                                                      (𝐷7) 

It is relevant to observe that the variance of the absolute differences (𝐷6) is smaller than the 744 

variance of the discrete Laplace distribution (𝐵12), i.e.: 745 

𝑣𝑎𝑟஽஺ = 𝑣𝑎𝑟஽௅ 1 + 𝑒ିଶఈ(1 + 𝑒ିఈ)ଶ < 𝑣𝑎𝑟஽௅                                                                                                      (𝐷8𝑎)  
since the adjusting factor is smaller than 1. Similarly, we can conclude that:  746 

𝜎஽஺ < 𝜎஽௅                                                                                                                                                      (𝐷8𝑏) 
  747 
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 748 

Appendix E - The effect of trimming  749 

For trimming we mean here the removal of all values below a predefined limit. Therefore, for the 750 

continuous variable 𝑦, we will consider only values 𝑦 ≥ 𝑦ᇱ > 0, and, likewise, for the continuous 751 

difference 𝑤 we will take into account only values 𝑤 ≥ 𝑤ᇱ > 0 or 𝑤 ≤ −𝑤ᇱ < 0. It is very easy to 752 

see that the distribution of 𝑦 follows the exponential distribution: 753 𝑃(𝑦) =  𝛼𝑒ିఈ൫௬ି௬ᇲ൯   𝑦 ≥ 𝑦ᇱ                                                                                                                      (𝐸1) 

We observe that trimming acts on the random variable 𝑦 as a shift, which implies that the mean is 754 

incremented by an amount equal to the shift value, i.e.: 755 

𝜇்,஼ா = 𝜇஼ா + 𝑦ᇱ = 1𝛼  + 𝑦ᇱ                                                                                                                      (𝐸2𝑎) 

while variance and standard deviation remain unchanged: 756 

𝑣𝑎𝑟 ,஼ா = 𝑣𝑎𝑟஼ா = 1𝛼ଶ       𝜎்,஼ா = 𝜎஼ா = 1𝛼                                                                                           (𝐸2𝑏) 

Here the additional subscript 𝑇 denotes the trimmed distribution. Further, it is immediate to observe 757 

that also the one-sign differences 𝑤 − 𝑤ᇱ and the absolute differences |𝑤 − 𝑤ᇱ| follow an 758 

exponential distribution, that is: 759 𝑃(𝑤) =  𝛼𝑒ିఈ൫௪ି௪ᇲ൯   𝑤 ≥ 𝑤ᇱ > 0                                                                                                         (𝐸3𝑎)  760 𝑃(𝑤) =  𝛼𝑒ିఈห௪ି௪ᇲห   𝑤 ≤ −𝑤ᇱ < 0                                                                                                      (𝐸3𝑏)  761 𝑃(|𝑤|) =  𝛼𝑒ିఈห௪ି௪ᇲห   |𝑤| ≥ 𝑤ᇱ > 0                                                                                                    (𝐸3𝑐) 

Therefore, even for these distributions the mean results to be shifted by an amount equal to 𝑤ᇱ, 762 

whereas variance and standard deviation do not change. 763 

When considering the continuous Laplace distribution, appropriate for the differences, trimming is 764 

realized by considering the variables with absolute value larger than the threshold. The related 765 

density function is split into: 766 𝑃(𝑤) =  𝛼2 𝑒ିఈ൫௪ି௪ᇲ൯    𝑤 ≥ 𝑤ᇱ > 0                                                                                                       (𝐸4𝑎) 
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𝑃(𝑤) =  𝛼2 𝑒ିఈห௪ି௪ᇲห    𝑤 ≤ −𝑤ᇱ < 0                                                                                                     (𝐸4𝑏) 

It is symmetric, centered in zero, and therefore, if we denote its mean by 𝜇்,஼௅, we can write: 767 𝜇்,஼௅ = 0                                                                                                                                                           (𝐸5) 

As for the variance, it identifies with the second moment and can be written as: 768 

𝑣𝑎𝑟 ,஼௅ = 2 න 𝑤ଶ𝑃(𝑤)𝑑𝑤ஶ
௪ᇲ = 𝛼 න 𝑤ଶ𝑒ିఈ൫௪ି௪ᇲ൯𝑑𝑤ஶ

௪ᇲ = 𝛼𝑒ఈ௪ᇲ න 𝑤ଶ𝑒ିఈ௪𝑑𝑤ஶ
௪ᇲ                            (𝐸6) 

After a double integration by parts, the integral in the RHS can be computed analytically and (𝐸6) 769 

takes the form: 770 

𝑣𝑎𝑟 ,஼௅ = 1𝛼ଶ ሾ(1 + 𝛼𝑤ᇱ)ଶ + 1ሿ                                                                                                                (𝐸7𝑎) 

with the corresponding standard deviation:  771 

𝜎்,஼௅ = 1𝛼 ඥ(1 + 𝛼𝑤ᇱ)ଶ + 1                                                                                                                      (𝐸7𝑏) 

Both expressions tend to the respective values (𝐵9) and (𝐵10) of the untrimmed distributions as 772 𝑤ᇱ tends to zero, i.e.: 773 𝑣𝑎𝑟 ,஼௅ → 𝑣𝑎𝑟஼௅  and 𝜎்,஼௅ → 𝜎஼௅ as 𝑤ᇱ → 0                                                                                        (𝐸8) 

Notice further that both are increasing functions of 𝑤ᇱ.  774 

As regards the discrete distributions, trimming is realized by considering only variables beyond 775 

specified integer thresholds, say 𝑖ᇱ and 𝑑ᇱ. Even in this case, the trimmed exponential distributions 776 

and the one-sign differences are exponential, i.e.: 777 𝑃௜ =  (1 − 𝛼)𝑒ିఈ൫௜ି௜ᇲ൯   𝑖 ≥ 𝑖ᇱ > 0                     positive differences                                              (𝐸9) 𝑃ௗ =  (1 − 𝛼)𝑒ିఈหௗିௗᇲห   𝑑 ≤ −𝑑ᇱ < 0             negative differences                                           (𝐸10𝑎)  𝑃ௗ =  (1 − 𝛼)𝑒ିఈ൫ௗିௗᇲ൯   𝑑 ≥ 𝑑ᇱ > 0                       absolute differences                                     (𝐸10𝑏) 

So means are affected by trimming, whereas variances and standard deviations are not. For 778 

instance, for the exponential distribution we can write: 779 

𝜇்,஽ா = 𝜇஽ா + 𝑖ᇱ = 𝑒ିఈ1 − 𝑒ିఈ  + 𝑦ᇱ                                                                                                    (𝐸11𝑎) 
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𝑣𝑎𝑟 ,஽ா = 𝑣𝑎𝑟஽ா = 𝑒ିఈ(1 − 𝑒ିఈ)ଶ      𝜎்,஽ா = 𝜎஽ா = 𝑒ିఈଶ1 − 𝑒ିఈ                                                         (𝐸11𝑏) 

We observe that trimming affects substantially the distribution of the absolute differences. Indeed, 780 

since trimming discards the value 𝑑 = 0, the resulting distribution becomes exponential. It is worth 781 

to write it down explicitly: 782 𝑃|ௗ| =  (1 − 𝛼)𝑒ିఈ൫|ௗ|ିௗᇲ൯   |𝑑| ≥ 𝑑ᇱ > 0                                                                                            (𝐸12) 

Its relevant statistical indices are quite different from the ones of the untrimmed distribution (see 783 

expressions (𝐷4), (𝐷6) and (𝐷7)). They are: 784 

𝜇்,஽஺ = 𝑒ିఈ1 − 𝑒ିఈ  + 𝑑ᇱ    𝑣𝑎𝑟 ,஽஺ = 𝑒ିఈ(1 − 𝑒ିఈ)ଶ      𝜎்,஽஺ = 𝑒ିఈଶ1 − 𝑒ିఈ                                            (𝐸13) 

For the differences distributed according to the discrete Laplace distribution, trimming leads to the 785 

following expression for the probabilities: 786 

𝑃ௗ = 1 − 𝑒ିఈ1 + 𝑒ିఈ 𝑒ିఈ൫|ௗ|ିௗᇲ൯ = tanh 𝛼2 𝑒ିఈ൫|ௗ|ିௗᇲ൯  𝑑 ≤ −𝑑ᇱ < 0  or  𝑑 ≥ 𝑑ᇱ > 0                           (𝐸14) 

It is a symmetric distribution with mean equal to zero, i.e.: 787 𝜇்,஽௅ = 0                                                                                                                                                       (𝐸15) 

Its variance, being equal to its second moment, can be computed as: 788 

𝑣𝑎𝑟 ,஽௅ = 2 ෍ 𝑑ଶ𝑃ௗஶ
ௗୀௗᇲ = 2 1 − 𝑒ିఈ1 + 𝑒ିఈ 𝑒ఈௗᇲ ෍ 𝑑ଶ𝑒ିఈௗஶ

ௗୀௗᇲ = 2 1 − 𝑒ିఈ1 + 𝑒ିఈ 𝑒ఈௗᇲ ෍ (𝑗 + 𝑑ᇱ)ଶ𝑒ିఈ௝ஶ
௝ୀ଴ᇲ   (𝐸16) 

The summation in the RHS of the last equation can be further elaborated: 789 

෍ (𝑗 + 𝑑ᇱ)ଶ𝑒ିఈ௝ஶ
௝ୀ଴ᇲ = ෍ 𝑗ଶ𝑒ିఈ௝ஶ

௝ୀ଴ᇲ + 2𝑑ᇱ ෍ 𝑗𝑒ିఈ௝ஶ
௝ୀ଴ᇲ + 𝑑ᇱଶ ෍ 𝑒ିఈ௝ஶ

௝ୀ଴ᇲ
= 𝑆ଶ +  2𝑑ᇱ𝑆ଵ +    𝑑ᇱଶ1 − 𝑒ିఈ                                                                                           (𝐸17) 

Combining (𝐸16) and (𝐸17) and remembering the expressions (𝐴15) and (𝐴20) respectively for 790 𝑆ଵ and 𝑆ଶ, after some calculations we eventually get: 791 
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𝑣𝑎𝑟 ,஽௅ = 2(1 + 𝑒ିఈ)(1 − 𝑒ିఈ)ଶ ሼ𝑒ିఈ + ሾ𝑒ିఈ + 𝑑ᇱ(1 − 𝑒ିఈ)ሿଶሽ                                                 (𝐸18𝑎) 

𝜎்,஽௅ =  11 − 𝑒ିఈ ඨ 2(1 + 𝑒ିఈ) ሼ𝑒ିఈ + ሾ𝑒ିఈ + 𝑑ᇱ(1 − 𝑒ିఈ)ሿଶሽ                                                     (𝐸18𝑏) 

It is worth noting that when 𝑑ᇱ is set equal to zero, both the above expressions transform into the 792 

corresponding untrimmed variables indices, that is 𝑣𝑎𝑟஽௅ and 𝜎஽௅.  793 

  794 
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Appendix F – Estimating the decay parameters by means of the mean method 795 

For magnitudes obeying the Gutenberg-Richter formula (1) the decay parameter is 𝑏. If we opt for 796 

the canonical exponential expressions (𝐴5), the decay parameter is 𝛽. If we consider binned 797 

magnitudes, the decay parameter is 𝛼. Since these three parameters are linked by constant factors, 798 

we can estimate any one of them and very easily deduce the others. In this paper, the main attention 799 

goes to sequences of binned magnitudes and therefore here we concentrate on methods suitable to 800 

estimate 𝛼 and only on discrete distributions. In this Appendix we will consider methods based on 801 

the mean value of the distributions. If we denote the generic mean by 𝜇, and if it happens to depend 802 

on 𝛼, that is if 𝜇 = 𝑓(𝛼), then we can obtain 𝛼 by means of the expression 𝛼 = 𝑓ିଵ(𝜇) where 𝑓ିଵ 803 

is the inverse function of 𝑓, provided that the inverse function exists.  On the other hand, the mean 804 

of any distribution can be estimated from experimental data, and approximated by the sample mean 805 

value, the approximation being better and better as the data number 𝑁 increases. The goodness of 806 

the estimate of 𝜇 reflects directly on how good the estimate of 𝛼 is and will be treated later when 807 

addressing the confidence intervals. With this strategy in mind, we will consider separately the 808 

distributions treated so far, pointing out, however, that the method cannot be applied to the discrete 809 

Laplace distributions, either trimmed or untrimmed, because their mean 𝜇஽௅ and 𝜇்,஽௅ are 810 

identically zero, and thus not depending on  𝛼.   811 

Estimates based on exponential distributions 812 

The exponential distribution applies to binned trimmed or untrimmed magnitudes, as well as to 813 

binned trimmed or untrimmed one-sign magnitude differences, and also to binned trimmed absolute 814 

differences. As already stated, the untrimmed absolute differences follow a different distribution 815 

and will be addressed separately. In all these cases the formula for the mean can be written as (see 816 

Appendix E): 817 

𝜇 = 𝑒ିఈ1 − 𝑒ିఈ  + 𝑘                                                                                                                                          (𝐹1) 

where  𝑘 is the trimming threshold and is equal to zero for untrimmed distributions. 818 
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The expression (𝐹1) can be inverted easily and leads to: 819 

𝛼 = ln ൬𝜇 − 𝑘 + 1𝜇 − 𝑘 ൰                                                                                                                                        (𝐹2) 

Interestingly, we can observe that the ratio in the formula (𝐹2) can be written also as: 820 

𝜇 − 𝑘 + 1𝜇 − 𝑘 = 2 ቀ𝜇 − 𝑘 + 12ቁ + 12 ቀ𝜇 − 𝑘 + 12ቁ − 1 = 𝑥 + 1𝑥 − 1                                                                                            (𝐹3𝑎) 

where we have posed: 821 

𝑥 = 2 ൬𝜇 − 𝑘 + 12൰                                                                                                                                      (𝐹3𝑏) 

Taking advantage of the identity: 822 

cothିଵ(𝑥) =  12 ln ൬𝑥 + 1𝑥 − 1൰                                                                                                                         (𝐹4) 

that links the natural logarithm with the inverse of the hyperbolic cotangent, the variable 𝛼 in (𝐹2) 823 

can be alternatively given also as: 824 

𝛼 = 2cothିଵ ቆ2 ൬𝜇 − 𝑘 + 12൰ቇ                                                                                                                 (𝐹5) 

We stress that in the above formulas 𝛼 is the true value of the decay parameter. Therefore we can 825 

interpret formulas (𝐹2) and (𝐹5) as unbiased estimator of 𝛼, say 𝛼෤, if we replace 𝜇 with its sample 826 

mean, since the sample mean tends to 𝜇 when the number of data in the sample increases. 827 

In terms of binned magnitudes 𝑀௜ given by (𝐴1) the above formulas (𝐹2) and (𝐹5) for the 828 

estimator 𝛼෤ take the form: 829 

𝛼෤ = ln ቆ𝑀ഥ − 𝑀௞ + 2𝛿𝑀ഥ − 𝑀௞ ቇ = 2cothିଵ ቆ1𝛿 (𝑀ഥ − 𝑀௞ + 𝛿)ቇ                                                                      (𝐹6) 

where 𝑀ഥ  is the sample mean magnitude and  830 𝑀௞ = 𝑀଴ + 2𝛿𝑘     𝑘 ≥ 0                                                                                                                              (𝐹7) 

is defined as the trimming threshold magnitude which coincides with the magnitude of the lowest 831 

bin if no trimming is applied.  832 
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Since 𝛼 = 2𝛿𝑏 ln(10), thus the corresponding estimator of the decay parameter 𝑏 is: 833 

𝑏෨ = 12𝛿 ln(10) ln ቆ𝑀ഥ − 𝑀௞ + 2𝛿𝑀ഥ − 𝑀௞ ቇ = 1𝛿 ln(10) cothିଵ ቆ1𝛿 (𝑀ഥ − 𝑀௞ + 𝛿)ቇ                                   (𝐹8) 

Observe that the expressions (𝐹8) coincide with the estimators (8) and (12) in the main text, where 834 

however we used a different notation and called 𝑀௞ as 𝑀௖.  835 

The logarithmic version of the above formula can be rewritten as: 836 

𝑏෨ = 12𝛿 ln(10) ln ൬1 − 2𝛿𝑀ഥ − 𝑀௞൰                                                                                                             (𝐹9)  
This is a version expandable in series. If we truncate the expansion to the second order, we obtain: 837 

𝑏෨ = 12𝛿 ln(10) ቈ 2𝛿𝑀ഥ − 𝑀௞ − 12 4𝛿ଶ(𝑀ഥ − 𝑀௞)ଶ቉ = 1 ln(10)(𝑀ഥ − 𝑀௞) ൬1 − 𝛿𝑀ഥ − 𝑀௞൰                          (𝐹10) 

It is interesting to observe that the formula (F10) when 𝑘=0, coincides with the first terms of the 838 

expansion of the expression (4) in the main text. Indeed: 839 

𝑏෨ = 1ln(10) (𝑀ഥ − 𝑀଴ + 𝛿) = 1 ln(10)(𝑀ഥ − 𝑀଴) 11 + 𝛿𝑀ഥ − 𝑀଴
≈ 1 ln(10)(𝑀ഥ − 𝑀଴) ቆ1 − 𝛿𝑀ഥ − 𝑀଴ቇ   

Therefore, we can state that the estimator (4) is an approximation of the estimator for binned 840 

exponential magnitudes corrected at the second order in the variable 𝛿/(𝑀ഥ − 𝑀଴). 841 

When considering the binned magnitude differences, we come to analogous expressions for the 842 

estimator. If we denote by ∆𝑀 the magnitude differences, by ∆𝑀തതതതത the related sample mean value, 843 

and by ∆𝑀௞ the trimming threshold, then for trimmed positive differences we obtain: 844 

𝑏෨ = 12𝛿 ln(10) ln ቆ∆𝑀തതതതത − ∆𝑀௞ + 2𝛿∆𝑀തതതതത − ∆𝑀௞ ቇ   ∆𝑀 ≥ ∆𝑀௞ = 2𝑘𝛿     𝑘 ≥ 0                                               (𝐹11) 

For trimmed negative differences the formula is: 845 

𝑏෨ = 12𝛿 ln(10) ln ቆ|∆𝑀|തതതതതതത − ∆𝑀௞ + 2𝛿∆𝑀തതതതത − ∆𝑀௞ ቇ  ∆𝑀 ≤ ∆𝑀௞ = −2𝑘𝛿     𝑘 ≥ 0                                         (𝐹12) 

Eventually for the trimmed absolute differences, we get: 846 
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𝑏෨ = 12𝛿 ln(10) ln ቆ|∆𝑀|തതതതതതത − ∆𝑀௞ + 2𝛿|∆𝑀|തതതതതതത − ∆𝑀௞ ቇ  |∆𝑀| ≥ ∆𝑀௞ = 2𝑘𝛿     𝑘 ≥ 1                                         (𝐹13) 

All the above expressions (𝐹11) − (𝐹13) can be also given in terms of the inverse hyperbolic 847 

cotangent, like in (𝐹8). They coincide with the formula given in the main text as (18), provided that 848 

we change notation replacing ∆𝑀௞ with Δ𝑀′௖. 849 

Estimates based on the untrimmed absolute differences distribution 850 

The mean 𝜇஽஺ of the distribution of the untrimmed absolute differences is given by: 851 

𝜇஽஺ = 2𝑒ିఈ(1 + 𝑒ିఈ)(1 − 𝑒ିఈ) = 2𝑒ିఈ1 − 𝑒ିଶఈ                                                                                                (𝐹14) 

It is an invertible function of 𝛼, as we will see. Indeed, the expression (𝐹14) can be transformed 852 

into: 853 𝜇஽஺𝑒ିଶఈ + 2𝑒ିఈ − 𝜇஽஺ = 0                                                                                                                   (𝐹15𝑎) 

that can be interpreted as a quadratic equation in the unknown 𝑒ିఈ, with roots: 854 

𝑒ିఈ = −1 ± ඥ1 + 𝜇஽஺ଶ𝜇஽஺ =   − 1𝜇஽஺ ± ඨ 1𝜇஽஺ଶ + 1                                                                           (𝐹15𝑏) 

Of the two roots, only the positive one is an admissible solution, since the exponential in the LHS 855 

must be positive. Thus we can write:  856 

𝛼 = ln ൭−1 + ඥ1 + 𝜇஽஺ଶ𝜇஽஺ ൱ିଵ = ln ൭1 + ඥ1 + 𝜇஽஺ଶ𝜇஽஺ ൱ =  ln ቌ 1𝜇஽஺ + ඨ 1𝜇஽஺ଶ + 1ቍ
= cschିଵ(𝜇஽஺)                                                                                                                   (𝐹16) 

The last equality has been introduced in virtue of the following identity involving the natural 857 

logarithm and the inverse of the hyperbolic cosecant: 858 

cschିଵ(𝑥) =  ln ቌ1𝑥 + ඨ 1𝑥ଶ + 1ቍ                                                                                                            (𝐹17) 
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Substituting 𝜇஽஺ with the sample mean, we obtain an unbiased estimator 𝛼෤ and, in terms of the 859 

sample mean |Δ𝑀|തതതതതതത of the absolute magnitude differences, we obtain an expression for 𝛽෨ that 860 

coincides with the formula (14) of the main text, i.e.: 861 

862 
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𝑏෨ = 12𝛿 ln(10) ln ⎣⎢⎢
⎡2𝛿 + ට4𝛿ଶ + ൫|Δ𝑀|തതതതതതത൯ଶ|Δ𝑀|തതതതതതത ⎦⎥⎥

⎤ = 12𝛿 ln(10) cschିଵ ቆ|Δ𝑀|തതതതതതത2𝛿 ቇ      |∆𝑀| ≥ 0              (𝐹18) 

 863 

 864 

  865 
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Appendix G - Estimating the decay parameters through the Maximum Likelihood method 866 

The decay parameter can be estimated also by means of the Maximum Likelihood (ML) approach. 867 

As a general observation, the main conceptual difference between the ML method and the mean 868 

method is that the former applies to empirical samples, while the latter one uses relations proper of 869 

the theoretical distribution. However, provided that we replace the expected value of the 870 

distributions with the related sample means, the two methods are expected to lead to the same 871 

result. This is exactly what we will prove here, but we outline that there is an important caveat that 872 

we need to express for the estimator of the binned differences.  873 

Using samples of the discrete exponential distribution 874 
 875 
For the sake of simplicity, we will consider here only the untrimmed exponential distribution of 876 

binned magnitudes. Making recourse to the ML method, we introduce the Likelihood Function 877 𝐿ே(𝛼) for a sample of 𝑁 data (𝑖ଵ, 𝑖ଶ, . . , 𝑖ே), that we write:  878 

𝐿ே(𝛼) =  (1 − 𝑒ିఈ)ே ෑ  𝑒ିఈ௜ೞ௡
௦ୀଵ = (1 − 𝑒ିఈ)ே 𝑒ିఈ ∑ ௜ೞೞసಿೞసభ = (1 − 𝑒ିఈ)ே 𝑒ିఈேప̅          𝑖௦ ≥ 0     (𝐺1) 

where 𝚤 ̅is the arithmetic mean of the sample. 879 

The ML estimate of the parameter 𝛼 is that value, say 𝛼෤, that maximizes 𝐿ே(𝛼) and can be found by 880 

solving the equation obtained by imposing that the derivative of 𝐿ே(𝛼)  with respect to 𝛼 vanishes, 881 

i.e.: 882 𝑑𝐿ே(𝛼)𝑑𝛼 = 𝑁(1 − 𝑒ିఈ)ேିଵ 𝑒ିఈேప̅ 𝑑𝑑𝛼 ൫1 − 𝑒ିఈ෥ ൯ − 𝛼𝑁𝚤(̅1 − 𝑒ିఈ)ே 𝑒ିఈேప̅ = 0                          (𝐺2) 

Simplifying, we obtain that the estimator has to solve the equation: 883 𝑑𝑑𝛼 ൫1 − 𝑒ିఈ෥ ൯ − 𝚤൫̅1 − 𝑒ିఈ෥ ൯ = 0                                                                                                                (𝐺3) 

Therefore we get: 884 𝑒ିఈ෥ − 𝚤൫̅1 − 𝑒ିఈ෥ ൯ = 0                                                                                                                                 (𝐺4) 
with solution  885 
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𝛼෤ = ln ൬1 + 𝚤̅𝚤̅ ൰                                                                                                                                                (𝐺5) 

that corresponds to the expression (𝐹2), once we pose 𝑘 = 0 and substitute the theoretical mean 𝜇 886 

with the sample mean  𝚤.̅  887 

Using samples of the discrete Laplace distribution 888 

We have remarked that the Laplace distribution of the magnitude differences is unsuitable to the 889 

application of the mean method since its mean is identically zero. However, we can apply the ML 890 

method. Let us consider the Likelihood Function 𝐿ே(𝛼) as the product of three functions 𝐿ேశ(𝛼),  891 𝐿ேష(𝛼) and 𝐿ேబ(𝛼), where 𝑁 = 𝑁ା + 𝑁ି + 𝑁଴ and where the subscripts denote the absolute 892 

frequencies of differences respectively greater than, smaller than and equal to zero. If we pose (see 893 (𝐵6)):  894 𝐵(𝛼) = tanh 𝛼2                                                                                                                                             (𝐺6) 

then we can write for positive differences: 895 𝐿ேశ(𝛼) = ൫𝐵(𝛼)൯ேశ𝑒ିఈ ∑ ௗೖೖసಿశೖసభ    𝑑௞ > 0                                                                                             (𝐺7𝑎) 

Analogously, for negative differences, we have: 896 𝐿ேష(𝛽) = ൫𝐵(𝛽)൯ேష𝑒ିఉ ∑ |ௗೖ|ೖసಿషೖసభ     𝑑௞ < 0                                                                                          (𝐺7𝑏) 

And for differences equal to zero: 897 𝐿ேబ(𝛼) = ൫𝐵(𝛼)൯ேబ                                                                                                                                    (𝐺7𝑐) 

As a consequence, the Likelihood Function 𝐿ே(𝛼) can be given the expression: 898 𝐿ே(𝛼) = 𝐿ேశ(𝛼) 𝐿ேష(𝛼) 𝐿ேబ(𝛼) = ൫𝐵(𝛼)൯ே𝑒ିఈே|ௗ|തതതത               − ∞ < 𝑑 < ∞                                 (𝐺8) 

By imposing that the first derivative of 𝐿ே(𝛼) with respect to 𝛼 is equal to zero, we get the ML 899 

solving equation, that is: 900 𝑑𝐵(𝛼෤)𝑑𝛼 − |𝑑|തതതത𝐵(𝛼෤) = 0     − ∞ < 𝑑 < ∞                                                                                                (𝐺9) 
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Recalling the position (𝐺6) and recalling further the formula of the first derivative of the hyperbolic 901 

tangent, we get: 902 12 1ቀcosh 𝛼෤2ቁଶ = |𝑑|തതതത tanh 𝛼෤2     − ∞ < 𝑑 < ∞                                                                                          (𝐺10) 

After some calculations, the expression becomes: 903 

sinh 𝛼෤ = 1|𝑑|തതതത      − ∞ < 𝑑 < ∞                                                                                                                 (𝐺11)  
which leads to the final expression for the estimator: 904 𝛼෤ = cschିଵ൫|𝑑|തതതത൯     − ∞ < 𝑑 < ∞                                                                                                           (𝐺12) 

It is very important to stress that the formula (𝐺12) identifies with the formula (𝐹16) that resulted 905 

from the application of the mean method to the binned untrimmed absolute differences. Notice that 906 

if we had applied the ML approach to the distribution of the absolute differences, we would have 907 

obtained exactly the same result. So the question is: what is the distribution underlying the formula? 908 

The discrete Laplace distribution or the distribution of the absolute differences? The matter is 909 

relevant since it has an impact on the calculation of the confidence intervals. The answer can be 910 

given by observing that the formula (𝐺12) contains the mean of the absolute value of the 911 

differences, and therefore what matters are the properties of the sample mean of the untrimmed 912 

absolute differences.    913 
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 914 

Appendix H - Confidence intervals 915 

The decay parameters 𝛼 and 𝑏 derived in the previous Appendix F are functions of the mean 𝜇 of a 916 

distribution of a discrete variable 𝑖 with probability 𝑃௜ and standard deviation 𝜎. Let us say that:  917 𝑝 = 𝑔(𝜇)                                                                                                                                                       (𝐻1)  
where 𝑝 denotes the parameter and 𝑔 the function. The corresponding estimator 𝑝෤ has been 918 

computed through the same function 𝑔 as: 919 𝑝෤ = 𝑔(𝜇̅ே)                                                                                                                                                  (𝐻2) 

 where 𝜇̅ே is the mean of an empirical sample of 𝑁 data. The sample mean, being a linear 920 

combination of random variables, is in turn a random variable with expected value equal to 𝜇 and 921 

with standard deviation  922 

𝜎ே = 1√𝑁  𝜎                                                                                                                                                   (𝐻3) 

According to this view, the function 𝑔 maps the random variable 𝜇̅ே into the random variable 𝑝෤. It 923 

is known that 𝜇̅ே tends to follow a Gaussian distribution 𝐺(𝜇, 𝜎ே) as 𝑁 increases, that peaks more 924 

and more around the true value 𝜇. If we consider the one-sigma interval 𝐼ఓಿ =  ሾ𝜇̅ே − 𝜎ே, 𝜇̅ே + 𝜎ேሿ, 925 

then the 𝑔-mapping induces a corresponding image interval 𝐼௣ಿ = ൣ𝑝ଵ,ே, 𝑝ଶ,ே൧ in the estimator 926 

space, where, if the function 𝑔 is monotonically decreasing as in our case, the extremes are given 927 

by: 928 𝑝ଵ,ே = 𝑔(𝜇̅ே + 𝜎ே)       𝑝ଶ,ே = 𝑔(𝜇̅ே − 𝜎ே)                                                                                            (𝐻4) 

If we call 𝑃ఙ the probability that 𝜇 belongs to the interval 𝐼ఓಿ, then, in virtue of the mapping, it 929 

results that the parameter 𝑝 has the same probability to belong to the interval 𝐼௣ಿ. Formally it can be 930 

written that:    931 𝑃ఙ = 𝑃൫𝜇 ∈ 𝐼ఓಿ൯ = 𝑃൫𝑝 ∈ 𝐼௣ಿ൯                                                                                                                (𝐻5) 

Further we can state that since 𝜇̅ே ∈ 𝐼ఓಿ by construction, then its image 𝑝෤ ∈ 𝐼௣ಿ . Since, in general 932 

the function 𝑔 is not linear, thus 𝑝෤ is not the midpoint of the interval. It is common practice to 933 
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provide 𝑝෤ as the estimator of  𝑝 and the extremes 𝑝ଵ,ே and 𝑝ଶ,ே of the image interval 𝐼௣ಿ as the one-934 

sigma confidence interval. We stress that instead of 𝑝෤ as given in (𝐻2) it would be more correct to 935 

provide the midpoint of the image interval and its half-length as the result of the estimation process, 936 

i.e.: 937 

𝑝෤ே = 12 ൫𝑝ଵ,ே + 𝑝ଶ,ே൯                                                                                                                                  (𝐻6) 

 ∆𝑝෤ே = ଵଶ ൫𝑝ଶ,ே − 𝑝ଵ,ே൯                                                                                                                                 (𝐻7) 938 

Note that in the above formulas we assume to know 𝜎 that, through (𝐻3), would allow us to know 939 𝜎ே. In practice, however, 𝜎 is not known. It could be estimated from the empirical standard 940 

deviation. Here we make the choice to estimate it as a function of the estimator 𝑝෤ given by 941 (𝐻2). More specifically, the procedure to compute the confidence interval is:  942 

1) compute 𝜇̅ே from the 𝑁-sample data; 943 

2) calculate the estimator 𝑝෤;  944 

3) obtain 𝜎 through a proper function of 𝑝෤, say 𝜎 = 𝜎(𝑝෤);  945 

4) compute 𝜎ே via (𝐻3); 946 

5) calculate the extremes 𝑝ଵ,ே and 𝑝ଶ,ே by means of (𝐻4).  947 

Confidence intervals for exponential distributions 948 

 As an illustrative example of the exponential distributions addressed in this paper, let us consider 949 

the discrete untrimmed exponential distribution and write the function 𝑔 as: 950 

𝛼෤ = 𝑔(𝜇̅ே) = ln ൬𝜇̅ே + 1𝜇̅ே ൰                                                                                                                       (𝐻8) 

Then we compute the standard deviation of an N-size sample in terms of the computed 𝛼෤: 951 

𝜎ே = 1√𝑁  𝑒ିఈ෥ଶ1 − 𝑒ିఈ෥                                                                                                                                         (𝐻9) 

The further step is to compute the extremes of the interval 𝐼ఙಿ: 952 
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𝜇̅ே ± 𝜎ே =  𝑒ିఈ෥1 − 𝑒ିఈ෥ ± 1√𝑁  𝑒ିఈ෥ଶ1 − 𝑒ିఈ෥ =  1𝑐 − 1 ቆ1 ± ට 𝑐𝑁ቇ                                                                (𝐻10) 

In (𝐻10) use has been made of the inverse expression giving 𝜇̅ே in terms of 𝛼෤. The last member of 953 

the above chain of equalities is obtained by first multiplying all numerators and denominators by 954 

the factor 𝑐 = 𝑒ఈ෥  and then by isolating the common factor 1/(𝑐 − 1). The lower end of the interval 955 𝐼௣ಿ is:  956 

𝑝ଵ,ே = ln ൬𝜇̅ே + 𝜎ே + 1𝜇̅ே + 𝜎ே ൰ = ln ⎝⎜
⎛ 1𝑐 − 1 ቆ1 + ට 𝑐𝑁ቇ + 11𝑐 − 1 ቆ1 + ට 𝑐𝑁ቇ ⎠⎟

⎞ = ln ⎝⎛
𝑐 + ට 𝑐𝑁1 + ට 𝑐𝑁⎠⎞          𝑐 = 𝑒ఈ෥              (𝐻11) 

Likewise, the upper end results to be: 957 

𝑝ଶ,ே = ln ൬𝜇̅ே − 𝜎ே + 1𝜇̅ே − 𝜎ே ൰ = ln ⎝⎛
𝑐 − ට 𝑐𝑁1 − ට 𝑐𝑁⎠⎞          𝑐 = 𝑒ఈ෥                                                                     (𝐻12) 

These calculations allow us to compute the one-sigma confidence interval for the decay parameter 958 𝑏, since we may determine the end points 𝑏ଵ,ே and 𝑏ଶ,ே as follows: 959 

𝑏ଵ,ே = 𝑝ଵ,ே2𝛿 ln(10) = 12𝛿 ln(10) ln ⎝⎛
𝑐 + ට 𝑐𝑁1 + ට 𝑐𝑁⎠⎞                                                                                 (𝐻13𝑎)  

𝑏ଶ,ே = 𝑝ଶ,ே2𝛿 ln(10) = 12𝛿 ln(10) ln ⎝⎛
𝑐 − ට 𝑐𝑁1 − ට 𝑐𝑁⎠⎞                                                                                  (𝐻13𝑏) 

Here 𝑐 = 𝑒ଶఋ ୪୬(ଵ଴)௕෨ = 10ଶఋ௕෨  and 𝑏෨ is given by the formula (𝐹8), that for untrimmed magnitudes 960 

is: 961 

𝑏෨ = 12𝛿 ln(10) ln ቆ𝑀ഥ − 𝑀଴ + 2𝛿𝑀ഥ − 𝑀଴ ቇ                                                                                                        (𝐻14) 

The estimated standard confidence interval can be computed as  962 



 59

∆𝑏ି = 𝑏෨ − 𝑏෨ଵ,ே                                                                                                                                          (𝐻15𝑎) 

and 963 ∆𝑏ା = 𝑏෨ଶ,ே − 𝑏෨                                                                                                                                         (𝐻15𝑏) 

and finally 964 

∆𝑏 = 12 ൫𝑏෨ଶ,ே − 𝑏෨ଵ,ே൯                                                                                                                              (𝐻15𝑐) 
The above formula are the ones proposed in the main text as (19) and (20). 965 
 966 

Confidence intervals for the absolute difference distribution 967 

The decay parameter 𝛼 of the distribution of the absolute values of the differences is linked to the 968 

distribution mean through the formula (𝐹16) that therefore provides us with the function 𝑔: 969 

𝛼෤ = 𝑔(𝜇̅ே) = ln ൭1 + ඥ1 + 𝜇̅ேଶ𝜇̅ே ൱ = cschିଵ(𝛼෤)                                                                                 (𝐻16) 

This formula was derived also by applying the ML method to the distribution of the differences, as 970 

noted before, but the standard deviation to use here is the one of the absolute differences shown in 971 (𝐷7), while the formula (𝐵13) is unsuitable and would lead to incorrect evaluations. By using it, 972 

we can compute the sample standard deviation as: 973 

𝜎ே = 1√𝑁 ඥ2𝑒ିఈ෥ (1 + 𝑒ିଶఈ෥ )(1 + 𝑒ିఈ෥ )(1 − 𝑒ିఈ෥ )                                                                                                             (𝐻17) 

The endpoints of the interval 𝐼ఙಿare: 974 

𝜇̅ே ± 𝜎ே = 2𝑒ିఈ෥(1 + 𝑒ିఈ෥ )(1 − 𝑒ିఈ෥ ) ± 1√𝑁 ඥ2𝑒ିఈ෥ (1 + 𝑒ିଶఈ෥)(1 + 𝑒ିఈ෥ )(1 − 𝑒ିఈ෥ )                                                        (𝐻18) 

After some manipulations this formula can be given the following version:  975 

𝜇̅ே ± 𝜎ே =  ቌ1 ± ඨcosh𝛼෤𝑁 ቍ  csch𝛼෤                                                                                                       (𝐻19) 

In terms of the absolute difference magnitudes, the endpoints of the confidence interval are:  976 
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𝑏ଵ,ே = 12𝛿 ln(10) ln
⎣⎢⎢
⎢⎢⎡2𝛿 + ඨ4𝛿ଶ + (csch𝛼෤)ଶ ቆ1 + ටcosh𝛼෤𝑁 ቇଶ

 ቆ1 + ටcosh𝛼෤𝑁 ቇ csch𝛼෤ ⎦⎥⎥
⎥⎥⎤

= 12𝛿 ln(10) cschିଵ ቌ ቌ1 + ඨcosh𝛼෤𝑁 ቍ csch𝛼෤ቍ                                                  (𝐻20𝑎) 
977 
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𝑏ଶ,ே = 12𝛿 ln(10) ln

⎣⎢⎢
⎢⎢⎡2𝛿 + ඨ4𝛿ଶ + (csch𝛼෤)ଶ ቆ1 − ටcosh𝛼෤𝑁 ቇଶ

 ቆ1 − ටcosh𝛼෤𝑁 ቇ csch𝛼෤ ⎦⎥⎥
⎥⎥⎤

= 12𝛿 ln(10) cschିଵ ቌ ቌ1 − ඨcosh𝛼෤𝑁 ቍ csch𝛼෤ቍ                                                  (𝐻20𝑏) 
For convenience we repeat here the corresponding estimator of 𝑏෨: 978 

𝑏෨ = 12𝛿 ln(10) ln ⎣⎢⎢
⎡2𝛿 + ට4𝛿ଶ + ൫|Δ𝑀|തതതതതതത൯ଶ|Δ𝑀|തതതതതതത ⎦⎥⎥

⎤ = 12𝛿 ln(10) cschିଵ ቆ|Δ𝑀|തതതതതതത2𝛿 ቇ      |∆𝑀| ≥ 0             (𝐻21) 

The associated amplitude of the confidence interval is deduced like in the previous example as: 979 

∆𝑏 = 12 ൫𝑏෨ଶ,ே − 𝑏෨ଵ,ே൯                                                                                                                              (𝐻22) 

The above formulas are not provided in the main text. 980 

 981 

 982 

  983 
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Appendix I - Simulation of complete and incomplete magnitude datasets 984 

To generate a complete random dataset of magnitudes 𝑀 ≥ 𝑀௠௜௡ with exponential distribution, we 985 

use the inverse exponential transformation  986 

𝑀 = − lnሼrandሿ0: 1ሾሽ𝑏ln(10) + 𝑀௠௜௡ 
(I1)

where randሿ0: 1ሾ is a pseudo random number with uniform distribution in the interval ሿ0: 1ሾ.  987 

The binning of magnitudes is obtained by  988 

𝑀௕௜௡௡௘ௗ = round ൬ 𝑀2𝛿൰ 2𝛿 (I2)

where round(x) indicates the closest integer to the argument value x and 2𝛿 is the binning size. In 989 

such case, in order the simulated dataset be complete, the latter must include magnitudes down to 990 𝑀௠௜௡ − 𝛿 991 

𝑀 = − lnሼrandሿ0: 1ሾሽ𝑏ln(10) + 𝑀௠௜௡ − 𝛿 
(I3)

Therefore, eq. (𝐼3) is the one adopted to generate all the complete magnitude datasets in the paper. 992 

As suggested by Ogata and Katsura (1993), magnitude data incompleteness can be mimicked by a 993 

cumulative Gaussian probability distribution with mean 𝜇 and standard deviation 𝜆  994 

𝑃(𝑚 ≤ 𝑀|𝜇, 𝜆) = 1𝜆√2𝜋 න 𝑒ି(௠ିఓ)మଶఒమ 𝑑𝑚ெ
ିஶ  

(I4)

In this formulation the mean 𝜇 corresponds to the threshold magnitude at which P=0.5, that means 995 

that below it, the 50% of earthquakes cannot be correctly evaluated and are lost for the frequency 996 

magnitude analyses. 997 

It can be introduced in the simulated dataset using the thinning method (Ogata, 1981), which 998 

consists in discarding the magnitudes for which an extracted random number in the interval ሿ0: 1ሾ is 999 

larger than the cumulative Gaussian probability (I4).  1000 
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Van der Elst (2021) simulated datasets with time varying incompleteness as it may occur in the first 1001 

hours or days after a strong main shock. For modelling such decaying incompleteness threshold, 1002 

Helmstetter et al. (2006) proposed the empirical equation 1003 𝑚௖(𝑡) = 𝑚 − 4.5 − 0.75logଵ଴𝑡 (I5)

where 𝑚௖ is the time dependent magnitude threshold of completeness, m is the magnitude of the 1004 

mainshock and t is the time elapsed since the mainshock in days. The law (I5) is a decreasing 1005 

function of time and implies that after a single day the threshold lowers down to 𝑚 − 4.5. Van der 1006 

Elst suggested to use equation (I5) to set the time varying mean 𝜇(𝑡) in eq. (I4), which entails the 1007 

assumption that 𝑚௖ is the magnitude below which half of the earthquakes are lost.    1008 

In order to simulate the time t of each shock after a main shock, we assumed a simple Omori-Utsu 1009 

decay law (Utsu, 1961) with equation 1010 

𝑟(𝑡) = 𝐾(𝑡 + 𝑐)௣ (I6)

where 𝑟(𝑡) is the time varying rate (in shocks per day) of a non-homogeneous Poisson process, p 1011 

and c are empirical parameters and K is a normalization factor depending on the number of shocks 1012 

and on the considered time interval. Usually, 𝑝 ≈ 1 and c is of the order of some tens of minutes 1013 

(about 0.01 days). The time integration 1014 

𝜏 = න 𝑟(𝑠)𝑑𝑠௧
଴ = 𝐹(𝑡) 

(I7)

produces a set of transformed times which follow a stationary Poisson process with intensity 1 1015 

(Ogata, 1988). 1016 

Conversely, given a set of times 𝜏௜ generated according to a stationary Poisson process with 1017 

intensity 1, the inverse integral transformation  1018 𝑡 = 𝐹ିଵ(𝜏) (I8)

corresponds to a non-homogeneous Poisson process with rate 𝑟(𝑡). 1019 
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Moreover, it is often useful to generate sequences of exactly N events over a given time interval 1020 ሾ0, 𝑇ாሿ  1021 

න 𝑟(𝑠)𝑑𝑠೐்଴ = 𝑁 
(I9)

This implies that 1022 

𝐾 = ⎩⎨
⎧ 𝑁(1 − 𝑝)(𝑇ா + 𝑐)ଵି௣ − 𝑐ଵି௣ 𝑝 ≠ 1𝑁ln(𝑇ா + 𝑐) − ln(𝑐) 𝑝 = 1⎭⎬

⎫
 

(I10)

Then, the direct timescale transform is 1023 

𝜏 = 𝐹(𝑡) = න 𝑟(𝑠)𝑑𝑠௧
଴ = ⎩⎪⎨

⎪⎧𝑁 (𝑡 + 𝑐)ଵି௣ − (𝑐)ଵି௣(𝑇ா + 𝑐)ଵି௣ − (𝑐)ଵି௣ 𝑝 ≠ 1N  ln(𝑡 + 𝑐) − ln(𝑐)ln(𝑇ா + 𝑐) − ln(𝑐) 𝑝 = 1⎭⎪⎬
⎪⎫

 

(I11)

and the inverse timescale transform is 1024 

𝑡 = 𝐹ିଵ(𝜏) = ⎩⎪⎨
⎪⎧ቈ𝜏 (𝑇ா + 𝑐)ଵି௣ − (𝑐)ଵି௣𝑁 + (𝑐)ଵି௣቉ଵ/(ଵି௣) − 𝑐 𝑝 ≠ 1

exp ቈ𝜏 ln(𝑇ா + 𝑐) − ln(𝑐)𝑁 + ln(𝑐)቉ − 𝑐 𝑝 = 1⎭⎪⎬
⎪⎫

 

(I12)

The set of stationary Poisson times withy intensity 1 can be generated by cumulating exponentially 1025 

distributed interevent times (starting from 𝜏ଵ = −lnሼ1 − randሿ0: 1ሾ ሽ) 1026 𝜏௜ = 𝜏௜ିଵ − lnሼ1 − randሿ0: 1ሾ ሽ, 𝑖 = 2, 𝑁 (I13)

 1027 

 1028 
 1029 


