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Introduction

This supporting information provides information on the user survey, on SMOS data

preprocessing, on the methodology used to build L4 SSS fields, to estimate SSS variability and

level 2 SSS uncertainties used for the L4 SSS generation. It also illustrates maps of climatology of

SSS variability taken as input in the Ol, of Aquarius representativity uncertainties and of SSS

anomalies computed with ISAS SSS fields. Last, it gives details about PIMEP validation statistics

obtained for weekly SSS CCl fields over the global ocean and for monthly fields in the Southern

Ocean.

All the material presented here is not essential to the comprehension of the article but provides

more detailed information to the reader.



S1. SSS data requirements for ocean and climate studies
To create an SSS data set that satisfies the needs of climate users, both modeling and Earth-
observing scientists groups, users of satellite SSS data were consulted through various
approaches: personally, via e-mail, mailing lists, or at meetings. They were invited to participate
in web surveys and to specify their requirements for satellite SSS data. In our survey, we asked
specific questions to find out the user’s priorities (typically higher resolution or improved
uncertainty estimates).
The survey (available on https://forms.gle/BVDroYrNpVvpxFJu9) gathered 54 answers from
various countries of origin/fields (Table S1). Most responses were from the USA (28%), followed
by Germany (19%) and the UK (17%).

Table S1: Percentage of respondents to the online survey.
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The questionnaire had four different parts, which were 1) User profile information, 2) User dataset

requirements, 3) User dataset quality information, 4) Other user requirements or suggestions.

The majority of users requires global spatial coverage and temporal coverage from at
least 9 years. The resolution requirements vary according to the studied phenomena. About 33%
of respondents require data with a temporal resolution of 1-3 days, while, for 35% (28%) of
respondents, weekly (monthly) averaged data are sufficient (Figure S1a). In terms of spatial
resolution, 39% of respondents require data on a 0.25° spatial grid, while 28% of respondents
require data on 1° spatial grid (Figure S1b). The majority of respondents would prefer a data
product with high spatial and temporal resolution (weekly, 0.25°) on a regular latitude-longitude
grid. Interestingly, a majority of users would prefer a product with high temporal and spatial
resolution and a lower accuracy rather than working with a product with high accuracy but a
lower resolution (Figure S1c). It was also found that the participants are aware of the data set

limitations and have realistic expectations.
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Figure S1: Percentage of required (a) temporal and (b) spatial resolution. c) Preferred SSS product based

on the user’s spatial and temporal resolution needs.

According to the survey, data should be combined to overcome the weaknesses of
individual datasets. 50% prefer a combination of satellite and in-situ measurements, whereas 39%
require the combination of data from different satellite sensors. However, in the CCI L4 SSS
products described here, information from in-situ measurements was restricted to a minimum in
order to work with measurements having homogeneous spatio-temporal resolution and sampling.
By making available the multiple-sensor datasets on different spatial-temporal grids, the needs of
different users can be met. The most common requirement is for L4 data (43%), directly followed
by requirements for L3 (37%). Some potential users, mainly modelers or scientists investigating
rapid SSS changes, require L2 (20%). L3 and L2 data are already available from the original data
centers. L2 and L3 datasets including the CCI+SSS systematic corrections are kept as an internal
CCI+SSS product.

Uncertainty information for each SSS grid point has to be fully characterized, including
random noise and systematic uncertainties of the applied adjustments. Information about bias
(systematic uncertainty) correction is most commonly required by respondents. 46% of the
respondents would prefer a quality information easy to use, such as a good/bad flag or the
probability that a value is good/bad.

User Requirement Survey results show the importance of contacting users and promoting

communication between the users and potential users of CCI L4 SSS fields. Users will be



regularly contacted to refine requirements, as well as to check their satisfaction with the CCI L4
SSS product. The recommendations regarding resolution, format, quality, and additional
information derived from the user consultation are summarized in the User Requirement
Document (URD available on https://climate.esa.int/en/projects/sea-surface-salinity/key-
documents/).

S2. SMOS SSS data pre-processing

We only consider SMOS SSS satisfying the following criteria (same notations as in (Boutin et al.,
2018)): normalized y of the retrieval, y n < 3, SSS random uncertainty, Esss 12 < 3, pixel within
+/-400 km from the center of the swath, with small number of Tb outliers (level 2 fg_outlier flag),
uncontaminated by ice (level 2 Dg _suspect_ice=0; this flag removes pixels in cold waters
(SST<2°C) in which at least one Thb differs by more than 20K from modeled Th. This is a very
stringent filtering that is likely to be removed in future versions), with moderate to strong RFI and
ice contamination as detected using SMOS retrieved pseudo-dielectric constant, Acard (JAcard
smos — Acard mod|<2 and Acard>42; see more in (Supply et al., 2020b)), wind speed less than 16
m/s, SSS between 2 and 45.

Deficiencies in the dielectric constant model leads us to adjust SMOS SSS with a
polynomial SST function derived from comparisons between Aquarius SSS (retrieved with
similar dielectric constant model and atmospheric model as SMOS processing models), and Argo
SSS (blue dotted curve in Figure 16 of (Dinnat et al., 2019)). A correction for seasonal latitudinal
varying biases is also applied, similar to what is described in (Boutin et al., 2018):

SSSobs(t, d, A\ Xswath, Xorb)=SSSSMOSret (¢, A,M)—biat(d,Xswath,Xorb, M)

where SSSqs is the observed SSS, tis the time of the measurement, ¢, and A, are
respectively the latitude and the longitude of the considered pixel over the ocean, Xswath
corresponds to the pixel location across the swath, Xor, indicates the satellite orbit direction
(ascending or descending), b is a latitudinal correction that varies seasonally as a function of the
month, m, and SSSsmos is a reference SMOS SSS taken at a given Xswath and Xor, Chosen so that
SSSsmosyer interannual variability for the considered month and the corresponding pixel is the
closest with that of in situ interpolated (In-situ Analysis System, ISAS) SSS after 5° latitudinal
smoothing. bix is estimated through a least square minimization approach, and through a series of
iterations. In order to avoid land-sea contamination, by is derived from SMOS measurements
further than 1200 km from coast except at the high northern latitudes where the distance to coast

is reduced to 600km in order to get enough measurements. It is computed over 2012-2018 to



avoid large RFIs in the North Atlantic in 2010 and 2011. by is then removed from all SMOS SSS
whatever their distance to coast and before estimating the land-sea contamination correction.

S3. Generation of level 4 SSS fields: detailed algorithm

The algorithm is searching for solutions SSS(t) and bc that both minimize the cost function. Each
grid node is processed separately. All available SSS data associated with the grid node considered
are used by the algorithm. The problem is linear, so that to minimize the cost function, a classic
Raphson-Newton descent is used.

SSSobs is the observation vector that contains SMOS, SMAP and Aquarius data:

SSSSI’HOS)

SSSobs= (SSSaqua
SSSsmap

The parameter vector is written:

SSS
bc_smos
bc_aqua
bc_smap

m=

bc_smos, bc_aqua,bc_smap are the vectors that contain the biases for each type of acquisition
(ascending/descending,dwell lines, etc) that can be grouped into a vector bc. We take as a priori
bc=0 for all sensors and acquisition types.

The vector parameter a priori is written:

SSSprior
0

0
0

m_prior=

SSSprior is the initial SSS value, this value is constant over time. It is taken equal to the median
of the observed SSS.

We call H, the matrix of partial derivatives:

r0SSSsmos  dSSSsmos  dSSSsmos  dSSSsmos

dSSSs dbc_smos dbc_aqua dbc_smap
0SSSaqua 0SSSaqua dSSSaqua  dSSSaqua

dSSS dbc_smos dbc_aqua dbc_smap
dSSSsmap JSSSsmap 09SSSsmap dSSSsmap

dSSS dbc_smos dbc_aqua dbc_smap.




where: SSSsensor=F(m)=SSS-bc_sensor

with "sensor" = smos (SMQOS), aqua (Aquarius) or smap (SMAP).
This matrix is calculated on the observation points.

The covariance matrices used are defined as follows:

- Co the error matrix with data uncertainties derived,

- Cm the matrix of SSS variability and a priori uncertainty on bc,

- Cr the matrix of representativity uncertainties.

Co_smos 0 0
Co= 0 Co_aqua 0
0 0 Co_smap
_[CSSS 0
Cm= [ 0 Cbc]

CSSS is a time smoothing operator that contains the expected variability that is provided as
auxiliary data. Thus, the covariance of the SSS that links two times t1 and t2 (either between two
observational times or between an observational time and a sampled time of the Ol) is written:
(t1-t2)2>
Z—z
with =25 days and 6 days for monthly and weekly products respectively. "sigSSS" is

CSSS(t1,t2)=sigSSS(t1)sigSSS(t2)exp (

interpolated temporally to t1 and t2 from seasonal variability.
"Chc" is a diagonal matrix that contains the a priori standard deviation of biases. This standard
deviation is set at 4 pss.

The Cr matrix corresponds to representativity uncertainties:

Cr_smos 0 0
Cr= 0 Cr_aqua 0
0 0 Cr_smap

With, in CCI v1 and v2, "Cr_smos" and "Cr_smap" set to 0.

In addition to measurement uncertainties, representativity uncertainties are added:
Ct=Co+Cr

Representativity uncertainties are reported monthly. They are interpolated temporally to the

acquisition times.

In this formalism the cost function is written for each grid node:



C(SSS,hc) =(SSSobs — F(m))™Ct?*-(SSSobs — F(m)) + (m —m_prior)".Cm*-(m — m_prior)
with:
F(m)=SSS-bc

We look for SSS_est and bc_est that minimizes C (SSS,bc). The solution of minimization is
written:

m_est=m_prior+Cm"-HT - (H-Cm-HT+Ct)"! - (SSS,ps-F(m_prior))
where "T" indicates the transpose operator, Cm is the matrix of variability operating in the
observational space and Cm’ the matrix of variability between observational time and regular

sampled time of the OI.

Estimation of monthly SSS

In order to estimate the monthly SSS, we proceed in 3 steps:

1) a first estimation of the biases and time series of SSS is performed spatial grid node by spatial
grid node,

2) a 3-sigma filtering of the observed SSS in comparison with the estimated SSS is done.

The aim here is to identify any outliers against the returned SSS field. Outliers can be linked to
intermittent RFIs. It is assumed here that stable RFI contamination can be corrected.

3) a second estimate of SSS biases and time series after removing outliers.

The relative biases used to derive monthly SSS are estimated taking the averaged SSS from the

SMOS central across swath location as a priori.

Estimation of weekly SSS

To estimate the weekly SSS, the biases calculated at the monthly SSS generation step are frozen
(it is assumed that the biases will not be better estimated from a weekly smoothing). We start
from the monthly SSS as a priori value. We estimate the weekly fluctuations around this a priori,
taking into account the acceptable SSS variability between weekly and monthly fields that was
derived as a monthly climatology from the Mercator model. A 3-sigma filter is used in order to

eliminate outliers that deviate too far from what is expected. Here, o =

\Jerror_L22 + variability?. The weekly SSS field estimate is done in a single step.



Absolute SSS correction

At the end of the inter-sensor bias correction step, the salinities are obtained in relative values, i.e.
they are known within one additive constant. This is corrected by adjusting a quantile of the CCI
and ISAS SSS statistical distributions in each grid node over the period considered. The dynamics
of SSS variability are not affected by this adjustment as only one constant value, grid node per
grid node, is added for the entire period. In regions where SSS variability is low, we assume that
high frequency variability better sampled by CCI than by ISAS does not affect significantly the
median of the SSS and we therefore adjust the SSS median (50% quantile). In regions with larger
variability, given that intermittent freshening is much more frequent than intermittent over-
salting, we expect the high part of the SSS distribution to be less affected by the higher frequency
sampling by satellite than by ISAS. Hence in case of high weekly variability, we perform the
calibration of CCI SSS on ISAS SSS, not by using the median but a higher quantile, in order to
promote the calibration on the high SSS values. A high quantile is not used everywhere as in case
the SSS error is greater than the variability, the high quantile of the satellite SSS is expected to
differ (be higher) from the one of ISAS.

If the variability is greater than 0.8, the quantile is taken as 80%. If the variability is between 0.6
and 0.8, we take a quantile intermediate between 50% and 80% that varies linearly with the SSS
variability. The map of quantiles used for the absolute calibration of the SSS is given in Figure
S4.
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Figure S3: Quantile map used for the SSS absolute calibration. x and y axis units in pixel number

for longitude and latitude respectively.

Estimation of SSS uncertainties

The computation of theoretical uncertainties is obtained directly from the pseudo Hessian matrix.
Cpost=Cm"-Cm"HT - (H-Cm-HT+Ct)" - H- Cm'T

Where single apostrophe (') indicates covariance defined between observational time and regular
sampled time of the OI. Double apostrophe (") indicates covariance acting over regular sampled
time of the Ol.

The problem becomes into inverting the "H-Cm-H™+Ct" matrix over the entire period, which is
rather computationally heavy. We therefore prefer to take a sliding window over a large time
interval and invert the matrix on this time domain (the computation being similar to the one we
could perform over the entire period).

Note that the a posteriori uncertainty is necessarily lower than the variability introduced in the
operator Cm. In the monthly case, this variability corresponds to the expected monthly
fluctuations with respect to the whole time series. In the weekly case, the variability is calculated

relative to the monthly field. The latter is generally lower than the monthly variability. The a
10



posteriori uncertainty obtained on the weekly fields should therefore be lower than that obtained
on the monthly fields. However, this is only true if the weekly fields are derived from noise-
corrected monthly fields, which is not the case. The propagation of uncertainties on the weekly
fields must therefore take into account uncertainties on the monthly field. Thus, for the monthly
fields, we have:

CpOStmonth=Cm;1,10nth-cm;nonth'HT' (H'Crnmonth'HT-l'Ct)-1 "H- Cm;ll,l(;nth

and for the weekly fields:

Cpostyeek=CPOStmonth +CMiyeer-CMiyeerHT * (HCMyyee HT+HCH) ™ - H- Cml Lo
with "Cmmonn™', the monthly variability and "Cmweex"" the weekly variability relative to the
monthly variability.

The a posteriori uncertainties on the monthly and weekly fields are therefore obtained as follows:

0-Sssmonth=\/diag(cpOStmonth)

GSSSweek:\/diag(CPOStweek)
The number of outliers is also calculated on this same basis as well as the number of data
available. The window sizes used are respectively +/- 30 days and +/- 10 days for monthly and

weekly products respectively.

11



S4. Climatology of monthly SSS variability relative to the whole period SSS mean

d) November
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Figure S4. Examples of climatological maps of monthly SSS variability relative to the whole

period SSS mean. a) February; b) May; c) August; d) November.

12



S5. Climatology of weekly SSS variability relative to monthly mean:

a) February b) May

d) November
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Figure S5. Examples of variability of weekly SSS relative to monthly mean SSS taken as input
information in weekly Ol , from GLORY'S reanalysis. A) February; b) May; ¢) August; d)
November.

S6. SSS random uncertainties of L2 satellite SSS

The SMAP random uncertainties are derived from the std of the difference between SSS retrieved
from fore and aft acquisitions (Figure S6.1, red). They are very close to a modeled error with a
0.45K radiometric noise.
The Aquarius random uncertainties are derived from comparisons of successive (7-days apart)
Aguarius SSS measurements and are fitted with an SST dependency.

(Figure S6.1, blue).
The SMOS random uncertainties are taken from the theoretical error multiplied by the Chi of the
retrieval provided in SMOS L2 files which provide a reasonable estimate (Figure S6.2).
In the above estimates, only pixels further than 800 km from coast have been considered in order

to avoid land-sea contamination and very large representativity uncertainties.
13
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Figure S6.1. SSS uncertainties derived for SMAP (red) and Aquarius (blue) as a function of SST.
We check the reasonable behavior of estimated random errors, 6SSS, by considering the
statistical distribution of the centered reduced SSS, SSSc:

S8Sc =(SSSobs-SSSref)/aSSS (1)

where SSSobs is the retrieved SSS possibly corrected from systematic uncertainties, SSSref is a
reference SSS. Figure S6.2 shows an example obtained with SMOS data further than 800 km
from coast compared with a 20-day SSS average. In that case SSSc is quite close to the expected
Gaussian law. The slightly large value of std(SSSc) (1.25 instead of 1) is partly due to the

presence of outliers.

1 0® ocean, (SS§Scorr-meanSSS)/(errSSSxchi) mean/std=-0.00952/1.252

. Mﬂ\HHH WTM _

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure S6.2. Example of the distribution of the centered reduced SSS for grid points in open
ocean (further than 800 km from coast) in March 2012. SSScorr represents SMOS L2 SSS
corrected from systematic uncertainties. meanSSS is an estimation of the true SSS obtained by
averaging SSScorr over a 20day period.

Closer to the coast, std(SSSc) deviates more significantly from 1. Part of this difference can be
associated with the variability of salinity. In order to verify this, we sought to quantify std(SSSc)
in regions with low variability. For grid nodes with variability lower than 0.2 on SMOS-CCI SSS

14



rmsd, we compute a robust std, and we observe it to increase towards the coast. We apply the
same process to SMAP and Aquarius data. We then derive multiplicative factors which are
function to the distance to the coast, f(dcoast), that will be applied to 6SSS of each instrument
(Figure S6.3), so that the reduced random variables normalized with the L2 random uncertainties

multiplied by these factors, have a standard deviation equal to 1.
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Figure S6.3: Multiplicative factor applied to the 6SSS as a function to the distance to the coast.
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S7. Aquarius representativity uncertainties

Figure S7. Examples of representativity uncertainties between Aquarius and SMOS/SMAP
(150km/7day Aquarius, 50km/30days), from GLORYS simulations. A) February; b) May; c)
August; d) November.
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S8. Maps of SSS anomalies derived from ISAS SSS

Figure S8. Quarterly SSS anomalies derived from ISAS SSS (only grid points with
PCTVAR<95% have been retained to avoid grid points very far from in situ measurements and
almost only affected by climatological values).
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S9. Statistics of weekly satellite SSS comparisons with in situ SSS

Table S9.1. Statistics of weekly satellite SSS comparisons with Argo SSS (All matchups)
Statistics of ASSS (Satellite - Argo) - ALL

Satellite products # Median Mean STD RMS IQR r? STD*
All period
smos-13-catds-locean-v5-9d 1269470 0.01 0.01 0.43 0.43 0.40 0.954 0.30
smos-13-bec-v2-9d 929645 -0.01 -0.01 0.50 0.50 0.38  0.958  0.28
cci-l4-esa-merged-0i-v2.31-Tdr 903968 0.00 0.00 0.28 0.28 022 0968 0.17
SMOS+ Aquarius period
aquarius-13-or-v5-7dr 376341 -0.03 -0.08 0.48 0.48 0.32 0.891 0.24
aquarius-13-jpl-v5-7dr 360097 0.06 0.08 0.32 0.33 0.31 0910 0.23
aquarius-14-ipre-vh-1w 378544 0.00 -0.01 0.21 0.21 0.17  0.961 0.13
cci-l4-esa-merged-oi-v2.31-7dr 339240 0.01 0.00 0.28 0.28 0.22 0958  0.16
SMOS+SMAP period
smap-13-rss-v4-8dr 599327 -0.02 -0.05 0.45 0.45 033 0974 0.24
smap-13-jpl-v5.0-8dr 598118 0.05 0.03 0.66 0.66 041 0947  0.31

cci-l4-esa-merged-0i-v2.31-Tdr 429984 -0.01 0.00 0.25 0.25 0.22 0980  0.17

Table S9.2. Statistics of weekly satellite SSS comparisons with Argo SSS (only match-up pairs

where RR=0 mm/h, 3<U10 <12 m/s, SST>5°C, distance to coast > 800 km)
Statistics of ASSS (Satellite - Argo) - C1

Satellite products # Median Mean STD RMS IQR r? STD*
All period
smos-13-catds-locean-v5-9d 409987 0.02 0.02 0.27 0.27 0.32 0924 0.24
smos-13-bec-v2-9d 302586 0.00 0.00 0.26 026  0.31 0928 0.23
cci-l4-esa-merged-o0i-v2.31-7dr 307045 0.00 0.00 0.17 0.17 0.18  0.969 0.14
SMOS+ Aquarius period
aquarius-13-or-v5-7dr 122213 -0.02 -0.03 0.22 022 024 0947 0.18
aquarius-13-jpl-v5-7dr 122846 0.03 0.04 0.22 022 024 0949 0.18
aquarius-14-ipre-vh-1w 125391 0.00 0.00 0.13 0.13  0.14 0981  0.10
cci-l4-esa-merged-o0i-v2.31-7dr 112743 0.00 0.00 0.16 0.16  0.17 0972  0.13
SMOS+SMAP period
smap-13-rss-v4-8dr 192729 -0.01 -0.02 0.22 0.22 0.24 0948  0.18
smap-13-jpl-v5.0-8dr 192768 0.04 0.04 0.29 0.29 0.32  0.910 0.24

cci-l4-esa-merged-oi-v2.31-7dr 147040 -0.01 0.00 0.17 0.17 0.18 0970 0.14

18



Table S9.3. Statistics of weekly satellite SSS comparisons with VOS LEGOS DM TSG and

GOSUD RV TSG SSS (All matchups)
Statistics of ASSS (Satellite - TSG) - ALL

Satellite products # Median Mean STD RMS IQR r? STD*
All period
smos-13-catds-locean-v5-9d 9705848 0.00 0.01 0.76 0.76 0.57 0.837 0.43
smos-13-bec-v2-9d 7732977 -0.02 0.01 0.92 0.92 0.52 0.853  0.39
cci-l4-esa-merged-o0i-v2.31-Tdr 5925158 -0.01 -0.01 0.49 0.49 0.28  0.866 0.21
SMOS+ Aquarius period
aquarius-13-or-v5-7dr 2262004 -0.11 -0.27 1.20 1.23 0.55 0.496  0.38
aquarius-13-jpl-v5-7dr 1948287 0.06 0.11 0.76 0.77 039 0.631 0.28
aquarius-l4-ipre-vh-1w 2231652 0.00 0.08 0.70 0.71 0.24 0.731  0.18
cci-l4-esa-merged-oi-v2.31-7dr 2003186 -0.02 -0.02 0.61 0.61 0.31 0817  0.23
SMOS+SMAP period
smap-13-rss-v4-8dr 4808432 0.02 0.10 0.64 0.64 0.39 0920 0.29
smap-13-jpl-v5.0-8dr 4999148 0.00 0.01 0.83 0.83 047 0873  0.35
cci-l4-esa-merged-o0i-v2.31-7dr 2976906 0.01 0.03 0.38 0.38 0.24 0914  0.18

Table S9.4. Statistics of weekly satellite SSS comparisons with VOS LEGOS DM TSG and
GOSUD RV TSG SSS (only match-up pairs where RR=0 mm/h, 3<U10 <12 m/s, SST>5°C,

distance to coast > 800 km)

Statistics of ASSS (Satellite - TSG) - C1

Satellite products # Median Mean STD RMS IQR r? STD*

All period
smos-13-catds-locean-v5-9d 1074287 0.00 0.00 0.27 0.27 0.33  0.932 0.24
smos-13-bec-v2-9d 765676 -0.02 -0.01 0.26 0.26 031 093 0.23

cci-l4-esa-merged-0i-v2.31-Tdr 814930 0.00 -0.01 0.18 0.18 020 0.968 0.15
SMOS+ Aquarius period

aquarius-13-or-v5-7dr 283888 -0.01 -0.02 0.24 0.24 0.27  0.951 0.20

aquarius-13-jpl-v5-7dr 284167 0.03 0.04 0.23 0.24 029 0952 0.21

aquarius-14-ipre-vh-1w 281734 0.00 0.00 0.17 0.17 0.18  0.975 0.13
cci-l4-esa-merged-oi-v2.31-7dr 271143 0.00 0.00 0.18 0.18 0.20 0970  0.15
SMOS+SMAP period

smap-13-rss-v4-8dr h55814 -0.01 -0.01 0.20 0.20 024 0962 0.18

smap-13-jpl-v5.0-8dr 554702 0.01 0.02 0.24 0.24 029 0940 0.22

cci-l4-esa-merged-oi-v2.31-Tdr 431706 0.00 0.00 0.17 0.17  0.19 0969 0.14
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S10. Statistics of monthly satellite SSS comparisons with in situ SSS in the Southen Ocean

(south of 50°S)

Table S10.1. Statistics of monthly satellite SSS comparisons with Argo SSS (All matchups)
Statistics of ASSS (Satellite - Argo) - ALL

Satellite products # Median Mean STD RMS IQR r? STD*
All period
smos-13-catds-locean-v5-18d 106637 0.02 0.02 0.22 0.22 0.26  0.344 0.19
cci-l4-esa-merged-o0i-v2.31-30dr 59375 0.01 0.01 0.21 0.21 0.22  0.363 0.16
SMOS+ Aquarius period
aquarius-13-or-vi-1m 32559 0.04 -0.04 0.64 0.64 0.33 0.131 0.25
aquarius-13-jpl-vi-1m 28297 0.20 0.20 0.28 0.34 0.32  0.251 0.24
aquarius-l4-ipre-v5-1m 27161 0.02 0.02 0.10 0.11 0.11  0.753 0.09
cci-l4-esa-merged-0i-v2.31-30dr 20269 0.04 0.04 0.23 0.23 0.23 0358  0.17
SMOS+SMAP period
smap-13-rss-v4-1m 52516 -0.09 -0.16 0.61 0.63 0.40 0.144 0.30
smap-13-jpl-v5.0-1m 50470 0.13 0.06 0.99 0.99 061 0.062 045
cci-l4-esa-merged-0i-v2.31-30dr 29762 -0.01 -0.01 0.20 0.20 021 0.367 0.16
Table S10.2. Statistics of monthly satellite SSS comparisons with sea mammals SSS (All
matchups; see a description of the dataset on https://www.salinity-pimep.org)
Statistics of ASSS (Satellite - Sea mammals) - ALL
Satellite products # Median Mean STD RMS IQR r? STD*
All period
smos-13-catds-locean-v5-18d 63465 -0.03 -0.03 0.25 0.25 0.29 0.176  0.22
cci-l4-esa-merged-oi-v2.31-30dr 33319 -0.02 -0.02 0.25 0.25 0.25 0159  0.19
SMOS+ Aquarius period
aquarius-13-or-vh-1m 26447 0.12 -0.08 1.06 .07 0.39 0.020 0.28
aquarius-13-jpl-v5-1m 22593 0.31 0.29 0.37 0.47 045 0.090 0.34
aquarius-14-ipre-vh-1m 17804 -0.02 -0.02 0.11 0.11 0.12  0.737  0.09
cci-14-esa-merged-o0i-v2.31-30dr 17013 0.01 0.01 0.26 026 026 0.222 0.19
SMOS+SMAP period
smap-13-rss-v4-1m 12913 0.00 -0.15 0.95 096 046 0.004 0.34
smap-13-jpl-v5.0-1m 12001 0.04 -0.22 1.98 1.99  0.64 0.012 046
cci-l4-esa-merged-oi-v2.31-30dr 6907 -0.04 -0.03 0.21 022 021 0.022 0.16
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