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Abstract10

Understanding the faults behavior through geodetic data has an important impact in our assessment of the seismic hazard. To11

shed light on the aseismic evolution of geologic faults, we developed a new slip inversion strategy, the ELADIN (ELastostatic12

ADjoint INversion) method, that uses the adjoint elastostatic equations to efficiently compute the gradient of the cost function.13

To handle slip constraints, ELADIN is a 2-steps inversion algorithm. In the first step, it finds the slip that better explain the data14

without any slip constraints, and the second step refines the solution by imposing those constraints through a Gradient Projection15

Method. In order to get a physical plausible slip distribution and to overcome the poor fault illumination due to scarce data,16

ELADIN reduces the solution space by means of a von Karman autocorrelation function that controls the wavenumber content17

of the solution. Furthermore, to account for the data uncertainty, the method weights the observations depending on their18

covariance by means of the precision matrix. For estimating the resolution, we introduce a mobile checkerboard analysis that19

allows to determine lower-bound resolution zones over the fault for an expected slip-patch size and a specific stations array. We20

systematically test ELADIN with synthetic examples and use it to invert the 2006 Guerrero Slow Slip Event (SSE), which is21

one of the most studied SSEs in Mexico. Since only 12 GPS stations recorded the event, careful regularization is thus required22

to achieve reliable solutions. We compared our preferred slip solution with two previously published models and found that23

our solution preserves the most reliable characteristics of both models. Besides, although the three SSE models predict an24

updip penetration of the event into the seismogenic zone of the Guerrero seismic gap, our resolution analysis indicates that this25

penetration might not be a reliable feature of the 2006 event26
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Introduction27

An elegant and powerful mean to solve geophysical inverse problems is the adjoint method (AM ). Given an objective function,28

C, measuring the difference between data and a model prediction (i.e. a forward problem), to determine the model parameters29

that minimize C, the AM allows computing efficiently the derivative of C with respect to the parameters by combining the30

forward problem and the solution of an adjoint equation (i.e. of an adjoint problem) (Fichtner et al., 2006; Tromp et al., 2005;31

Tarantola, 1984; Gauthier et al., 1986). Thus, the inverse problem can be solved by using any optimization method that exploits32

that derivative to find the minimum of C. The most important advantage of the AM is its efficiency to compute the derivative33

of C that, in many 3D geophysical inverse problems, is simply unaffordable. The AM has been successfully used to solve34

full-waveform inverse problems in seismology, either to determine the elastic properties of the earth (Tromp et al., 2005; Askan35

et al., 2007; Fichtner et al., 2010; Krischer et al., 2018) or the kinematic history of earthquake sources (Sánchez-Reyes et al.,36

2018; Somala et al., 2018). However, to our knowledge no adjoint formulation has been proposed to invert geodetic data.37

The slow secular displacement observed in the Earth’s crust may be often explained in terms of the aseismic slip occurring38

at the contact of tectonic plates. Depending on whether the interplate slip rate is larger than the relative plate motion, the39

plate interface experiences either a coupling regime (i.e. creeping or full locking) (Simpson et al., 1988) or a slow slip event40

(SSE) (Dragert et al., 2001). In the first case, the associated deformation could be explained through the backslip formulation41

(Savage, 1983). In the second, a dislocation may predict the displacement field. In the real Earth, the surface displacement is42

the summation of all contributions from the interface segments experiencing either a coupling regime or a SSE. In the case of43

intra- or inter-plate active faults where aseismic slip or an earthquake may occur, the same approach holds true although an44

earthquake will produce an instantaneous dislocation followed by a postseismic slow slip relaxation (Ozawa et al., 2011). In the45

present work, to determine the plate interface aseismic slip history in these terms from continuous GPS (or any other geodetic)46

measurements, we introduce and solve a constrained optimization problem based on the adjoint elastostatic equations with47

Tikhonov regularization terms (Calvetti et al., 2000; Asnaashari et al., 2013) and a von Karman autocorrelation function (Mai48

and Beroza, 2002; Amey et al., 2018). The new method, called ELADIN (ELastostatic ADjoint INversion), simultaneously49

determines the distribution of the interplate coupling and slow slip from surface displacements.50

In those cases where the crustal strain field corresponds to a quasi-static seismotectonic process, the surface displacement is51

linearly related to the fault slip. However, determining the slip over an extended buried fault from such displacement remains an52

ill-posted problem. Underdetermination of the model parameters (i.e. of the slip distribution) arises from the sparse sampling of53

the displacement field and the rapidly decreasing sensitivity of displacement to slip with distance to the fault (Nocquet, 2018).54

One rigorous framework to overcome this problem and to determine the uncertainty of such an inverse problem solution are the55

Bayesian approaches. The incorporation of prior information through probability density functions (pdf) allows determining56

the posterior model covariance and pdfs, as well as imposing model restrictions by means of truncated prior pdfs (Tarantola57

and Valette, 1982; Nocquet, 2018; Minson et al., 2013; Yabuki and Matsu’Ura, 1992; Amey et al., 2018; Nocquet et al., 2014;58
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Nishimura et al., 2004). Although Bayesian approaches are widely used and powerful, one important limitation that most have59

is the large computational load required to determine stochastically the posterior pdfs and thus the uncertainty of the model60

parameters.61

An alternative to solve the elastostatic inverse problem is by introducing model regularizations and physically consistent restric-62

tions. To prevent unrealistic oscillatory slip distributions the most common regularization approach is to smooth the solution by63

applying a Laplacian operator (i.e., penalizing the second derivative of the slip) (McCaffrey et al., 2007; Wallace and Beavan,64

2010; Radiguet et al., 2011). Usually, the hyperparameter that controls the strength of the smoothing is chosen subjectively by65

finding a satisfactory weight between the data fit and the smoothing of the slip distribution. One common strategy to determine66

the hyperparameter is through an L-curve analysis that looks for an optimal hyperparameter value that keeps the data fitted67

with the strongest possible regularization (Radiguet et al., 2011). From an statistically approach, the hyperparameter can be68

determined using objective methods such as the Akaikes Bayesian Information criterion (ABIC) (Yabuki and Matsu’Ura, 1992;69

Miyazaki et al., 2006) or fully Bayesian techniques (Fukuda and Johnson, 2008). Although the Laplacian operator reduces70

unphysical and rough slip solutions (and thus unreliable large stress drops), this is not the most convenient mathematical strat-71

egy to preserve the real nature of the slip when regularizing the problem, where the self-similarity of the fault slip observed in72

earthquakes should be resolved as proposed by Amey et al. (2018).73

When designing ELADIN, our goal was introducing a regularization approach that preserves the nature of faulting (i.e. the slip74

self-similarity) and, at the same time, that allows a spectral control of the problem solution that guaranties a given resolution75

criterion. To this purpose we introduce a von Karman autocorrelation function that reduces the solution space to a domain76

where the wavenumber content of all possible solutions satisfies a minimum slip characteristic length previously determined77

through robust resolution tests. We illustrate the capabilities of the method by inverting GPS data for the 2006 Guerrero SSE,78

which has been widely investigated in the literature, and describe several benefits that our solution has as compared with some79

previous models. Systematic inversion of GPS data along the entire Mexican subduction zone applying the ELADIN method is80

presented in an associated work (Cruz-Atienza et al., 2020) where we analyzed the aseismic slip history of the plate interface81

between 2017 and 2019.82

The ELADIN Method83

In this section, we first introduce the forward model that allows us to compute the synthetic displacements produced by a slip84

over the fault. Then, we formulate the inverse problem in a constrained optimization framework, reducing the solution space85

to control its spectral content with a von Karman correlation function. We also include a Tikhonov term to penalize regions86

where slip is not expected to occur and to impose slip magnitude constraints. Finally, we present a 2-step algorithm that first87

solves the inverse problem without slip constraints using the adjoint equations for the gradient computation. Then we project88
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the resulting solution into the feasible solution space to initiate the second step by following the Gradient Projection method to89

optimize the solution by respecting the desired slip constraints.90

Forward model91

The elastostatic representation theorem for the displacement field, u(x), due to a slip, d(ξ), produced at a fault, Σ, is92

uj(x) =

∫
Σ

Tk(Sij(ξ, x), n̂(ξ))dk(ξ)dΣ, i, j, k ∈ {x, y, z}, (1)

where Ti(·, ·) is the i-component of the traction vector on the fault computed through the Somigliana tensor, Sij(ξ, x), and93

the fault normal vector n̂(ξ). If the traction and the slip are proyected along the plate convergence direction, c-, and the94

complementary perpendicular direction, p−direction, eq. (1) can be written in matrix form as95


u1(x)

u2(x)

u3(x)

 =

∫
Σ


Tp(Si1(ξ, x), n̂(ξ)) Tc(Si1(ξ, x), n̂(ξ))

Tp(Si2(ξ, x), n̂(ξ)) Tc(Si2(ξ, x), n̂(ξ))

Tp(Si3(ξ, x), n̂(ξ)) Tc(Si3(ξ, x), n̂(ξ))


 dp(ξ)

dc(ξ)

 dΣ, i ∈ {x, y, z}

u(x) =

∫
Σ

T (ξ;x)d(ξ)dΣ. (2)

Then, the fault is discretized in M subfaults such that the integral can be approximated as96

u(x) '
M subfaults∑

i=1

AiT (ξi;x)d(ξi), (3)

whereAi is the i−subfault area. Finaly, if we want to compute the displacement forN receivers, we can order the displacements97

in a single vector such that the entire computation is reduced to a simple matrix-vector product as98



u(x1)

u(x2)

...

u(xN )


=



A1T (ξ1;x1) A2T (ξ2;x1) · · · AMT (ξM ;x1)

A1T (ξ1;x2) A2T (ξ2;x2) · · · AMT (ξM ;x2)

...
...

. . .
...

A1T (ξ1;xN ) A2T (ξ2;xN ) · · · AMT (ξM ;xN )





d(ξ1)

d(ξ2)

...

d(ξM )


,

U = T D, (4)

where U ∈ R3N , T ∈ R3N ·2M and D ∈ R2M .99
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Inverse problem100

The inverse problem consists in recover the slip at each subfault of a known interface that produces displacements observed101

at geodetic stations. Due to the linearity of the forward model, eq. (4), we construct a quadratic cost function to formulate a102

convex inverse problem as103

C(D) =
1

2
[U − Uo]

T
[U − Uo] , s.t. U = T D, (5)

where Uo ∈ R3N are the displacements observed at the N geodetic stations stored in a single ordered vector, as we did with U104

in eq. (4). Since real data are sparse and may have significant noise, the inverse problem (5) is ill-conditioned. In order to face105

these issues, a problem regularization and realistic physical constraints are introduced next.106

Problem Regularization: von Karman autocorrelation function107

Most often, the problem regularization is done by means of two elements: a model precision matrix and/or Tikhonov terms.108

The model precision matrix is the inverse of the model covariance matrix which, in our case, controls how sensitive is the slip109

in a given subfault to the slip on its neighbor subfaults. Radiguet et al. (2011) proposed a subfault correlation that follows a110

decreasing exponential function according to a defined correlation length. The problem we found with this approach is that111

the precision matrix for different correlation lengths does not have significantly different effects due to the fast decay of that112

function. For different types of correlation functions we tested, the model covariance matrix starts to become ill conditioned113

when the subfaults size becomes smaller than the correlation length.114

Tikhonov terms added to the cost function are used to penalize the roughness of the solution. Generally, the penalization115

is applied to the first or second spatial derivatives of the slip. Exercised we performed revealed that, when penalizing the116

derivatives, the norm of the slip solution is usually reduced as well. Besides, these two alternatives involve hyperparameters117

that need to be optimally determined because they control de tradeoff between the misfit of the data and the strength of the118

regularization.119

These inconveniences lead us to propose a new approach that reduces the solution space so that the wavenumber content of120

the solution (i.e. the minimum characteristic length of the slip patches) can be controlled. The main idea is to apply a filter121

operator, F , to the slip D. Then, the cost function (5) can be formulated as122

C(D) =
1

2
[U − Uo]

T
C−1

d
[U − Uo] , s.t. U = T FD, (6)

where C
d

is the data covariance matrix that we introduce to weight the data according to their quality or importance.123

Recently, Amey et al. (2018) showed that a von Karman regularization for slip inversions is a good strategy to guarantee the124
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slip self-similar properties (Mai and Beroza, 2002) that can not be achieved with a common Laplace regularization. The spatial125

von Karman autocorrelation function is126

vk(r) =
rHKH(r)

(1e−10)HKH(1e−10)
, (7)

where H is the Hurst exponent, KH(·) is the modified Bessel function of second kind of order H , r is the correlation length127

that can be computed as128

r =

√
s2

a2
s

+
d2

a2
d

, (8)

where (s, d) are the coordinates in the along-strike and along-dip directions on the fault, and (as, ad) are the correlation lengths129

in the same directions. This autocorrelation function can be used to construct a linear operator K which, convolved with the130

slip D, controls the wavenumber content of the output function along both the strike and dip component. This convolution can131

be formulated as a matrix-vector product where the matrix operator, F , applies the convolution of the linear operator K to the132

slip, D, as was done in eq. (6).133

Slip constraints134

The model regularization we introduced guarantees that an optimal slip solution can be found. However, this solution may135

violate some expected physically-consistent restrictions such as the full-coupling regime limit or slip rakes consistent with the136

plate convergence direction. Thus, slip constraints need to be imposed according to the available information. The cost function137

(6) can then be reformulated as138

C(D) =
1

2
[U − Uo]

T
C−1

d
[U − Uo] +

β

2

[
W (FD −Dp)

]T [
W (FD −Dp)

]
, (9)

s.t.

U = T FD, (10)

Dj,l
i ≤ (FD)i ≤ Dj,u

i , i ∈ {p, c} ∧ j ∈ {SSE,Coupling} regime, (11)

where β is a hyperparameter, W is a model-weight diagonal matrix that penalizes the slip per subfaults, Dp is an a priori slip139

solution and (Dj,l
i , D

j,u
i ) are the lower and upper limits of the i-component of the slip in the j-regime. The slip is either in140

the SSE regime if its c-component is opposite to the plate convergence direction or in the coupling regime otherwise. If we141

have an a priori slip solution, Dp, we can force the solution to be as close as possible to it by accepting only model changes142

that improve the data fit. In that case, the weight matrix should be the identity matrix, W = I . If no a priori slip information143

is available, we simply set Dp = 0 and, to obtain the minimum norm solution, we make again W = I . Since we are not144

interested in getting the minimum norm solution in the present study, we thus set W = 0 everywhere except in the subfaults145

where we assume free slip (i.e. no coupling or SSE regime). The bigger the weighting value, the bigger is the subfaults slip146

penalization. The hyperparameter β controls the tradeoff between the fit of the data and the slip constraints imposed in the cost147
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function. However, since it is in the slip penalization term, its value should only guarantee that the solution does not contain148

significant slip in the penalized regions. On the other hand, if an a priori slip solution (Dp 6= 0,W = I) is used or a minimal149

norm solution (Dp 6= 0,W = I) is desired, then β must be determined following an optimal strategy as an L-curve analysis150

(e.g. Radiguet et al. (2011)) or the ABIC criterion (e.g. Miyazaki et al. (2006)).151

Gradient computation: Adjoint method152

To solve the inequality-constrained inverse problem (eqs. (9), (10) and (11)), first we address the gradient of the cost function153

without considering the inequality constraints, eq. (11). In the framework of constrained inverse problems, the Lagrangian can154

be computed as155

L(D,U, λ) = C(D) + λT
[
U − T FD

]
, (12)

where λ are the Lagrange multipliers. The Lagrangian total derivative with respect to the slip, D, is156

DDL = ∇DL+∇UL · ∇DU +∇λL · ∇Dλ. (13)

To simplify the computation of the gradient, we follow the adjoint method strategy (Fichtner et al., 2006). We start forcing157

∇λL = 0 by solving a forward model Ũ = T FD. Then, we use the predicted displacement, Ũ , to compute the adjoint source158

as λ̃ = C−1

d

[
Uo − Ũ

]
which implies ∇UL = 0. As a result, the Lagrangian total derivative is the solution of the adjoint159

problem plus a term related with the slip constraints as160

DDL = ∇DL

= −(T F )T λ̃+ β
[
FTWTW

(
FD −Dp

)]
. (14)

Once the gradient of the cost function has been evaluated, we can follow any numerical optimization strategy to find the set of161

model parameters that minimize that function.162

Gradient Projection Method163

To avoid dealing with inequality constraints, it is often convenient to project the solution into the physically-consistent space164

after each iteration of the inversion procedure. However, for the slip inversion we realized that such projection is not convenient165

because, frequently, the gradient direction is orthogonal to the slip constraints making the algorithm to stop. For large scale166

problems with lower and upper bounds for the variables, Nocedal and Wright (2006) propose the Gradient Projection Method167

(GPM) as an efficient strategy to deal with inequality restrictions. The GPM consists of two stages per iteration. In the first168

stage, the steepest descent direction is followed until a bound, i.e. the limit of an inequality constraint, is encountered which169

needs to be bent to stay feasible. Then along the resulting piecewise-linear path, a local minimizer, called Cauchy point, is170
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found (see Appendix A for details). For the second stage, a new optimum point is searched in the face of the feasible box on171

which the Cauchy point lies, i.e. those slip constraints that have reached a limit are changed to equality constraints. It implies172

that those inequality constraints now are part of the active set. This subproblem is usually not solved exactly since the remaining173

inequality constraints are usually not considered.174

For the slip inversion, we do not follow exactly the GPM to avoid the subproblem of the second stage. Mainly because we175

expect that many subfaults in the coupling regime achieve its slip limit and that the number of iterations required was difficult176

to define. So, after computing the Cauchy point, we directly take it as a new iteration point where the gradient is computed177

again. Thus, it is essentially a steepest descent algorithm that respects the inequality constraints. Our GPM version is slow so178

to achieve a fast convergence, we then propose an algorithm that is explained in the next section.179

2-step inversion algorithm180

In order to increase the convergence speed, we developed a 2-step inversion algorithm. The purpose of the first step is to get181

an optimal initial solution for the GPM. In this step, we solve the unconstrained slip inverse problem using the adjoint method182

to compute the gradient of the cost function. Once the gradient is obtained, any iterative optimization algorithm can be used to183

find the optimal solution, e.g. the Conjugate Gradient method, the l-BFGS method, etc. In this work, we use the SEISCOPE184

optimization toolbox, which is a friendly and powerful optimization library developed in FORTRAN 90 with many available185

optimization strategies (Métivier and Brossier, 2016). After some performance trials, we decided to use the l-BFGS method. In186

the second step, we first project the solution into the physically-consistent domain and then we solve the constrained slip inverse187

problem with a slight modification of the GPM. As explained above, after computing the Cauchy point, instead of reformulating188

the inverse problem according to the new active set incorporating some inequality constraints, we use it as the new iteration of189

the slip. This is not a fast strategy, but since we start from a slip distribution that is close to the optimal solution, only a few190

iterations of the GMP are required (about 200). The pseudcode is described in Algorithm 1.191
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Algorithm 1: 2-Steps Algorithm
1st Step: Unconstrained slip inverse problem (Adjoint method)

Data: GPS Data

Initialize the slip D0 = 0;

while Convergence is not achieved do
1. Compute a forward problem

Uk = T FDk.

2. Compute the adjoint source

λk = C−1

d
[Uo − Uk] .

3. Compute the adjoint problem to get the gradient

∇DL = −(T F )Tλk + β
[
FTWTW

(
FDk −Dp

)]

4. With the gradient use any iterative optimization algorithm to find an update step ∆Dk

5. Update the slip

Dk+1 = Dk + ∆Dk.

end

2nd Step: Constrained slip inverse problem (Gradient Projection Method)

Data: Optimal solution of 1st step, D∗

Project D∗ into the physically-consistent domain to get the initial solution D0;

while Convergence is not achieved do
1. From Dk compute the Cauchy point Dc

k (details in Appendix A)

2. Update the slip

Dk+1 = Dc
k.

end

192

Resolution193

Resolution of our inverse problem essentially depends on the geometry configuration of the problem. This is, on the fault194

geometry and the distribution of observation sites (i.e. on the displacement field sampling and the sensitivity of displacement195

to dislocations in the fault). For a given problem discretization, synthetic inversions are a powerful mean to quantify how196

well an inverse method performs. If well-conceived, these tests may lead to very useful resolution information under realistic197

conditions (i.e. if they include data uncertainties and minimize the dependence on the target model). In the following, we198
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present comprehensive exercises where the restitution of the target model is systematically quantified. To this purpose, for a199

given slip solution we define the restitution index, ri as200

ri = 1−
∣∣∣∣dTi − dIidTi

∣∣∣∣ , (15)

where dTi and dIi are the slip or the target and inverted models at the i-subfault, respectively. The slip component used to201

determine the restitution index can be either the plate convergence or its perpendicular direction. We also introduce the average202

restitution index, ari, which is the mean of the restitution indexes over the M subfaults that discretize the 3D subduction203

interface between the Cocos and the North American plates in central Mexico (Cruz-Atienza et al., 2020). ri is one if the204

inverted slip equals the target slip and zero if the difference between them equals the target value. We have discretized the205

plate interface with subfaults whose surface projection is a square of 10× 10 km2. To compute the static traction vectors along206

the interface due to single body forces at the stations, eq. (1), we assumed a four-layer 1D structure suitable for the region207

(Campillo et al., 1996) and used the AXITRA method (Coutant, 1990). For the analysis, we have considered all available208

permanent GPS stations (66 sites) in central Mexico (Cruz-Atienza et al., 2020) and 5 ocean bottom pressure gauges (OBP)209

deployed in the Guerrero seismic gap since November 2017 (CruzAtienza et al., 2018), where only the vertical displacements210

were considered.211

Mobile checkerboard212

A widely used strategy to quantify an inverse problem resolution is the checkerboard (CB) test. However, this test is intrinsically213

linked to the arbitrary choice of the target CB model, which means to the CB unit size, its positions and the absolute model-214

properties periodically attributed. For this reason, we performed comprehensive mobile checkerboard (MOC) tests for different215

patch sizes (PS). Based on previous GPS data inversions in central Mexico (Radiguet et al., 2012; Cruz-Atienza et al., 2020),216

we attributed patch slip values in the plate convergence direction of 30 cm (i.e. as typical SSEs in the region) and -10 cm (i.e.217

a backslip corresponding to 20 months of full coupling assuming a 6 cm/y plate convergence rate).218

Figure 1 shows the inversion results for three CBs with different PS (i.e. 60, 80 and 100 km) and the same correlation length219

(i.e. L = 20 km). As we shall see, this value of L maximizes the average restitution index (ari) in these cases where no220

slip restrictions were imposed (i.e. no gradient projection method was used) and no data uncertainly was considered (i.e. the221

precision matrix was the identity matrix). Although the data fit is almost perfect in all three cases, it is clear that the target222

model restitution strongly depends on PS, the slip model characteristic length. As expected, the larger PS the better is the223

restitution. This is quantified in the right column, where the restitution index, r, is displayed for all subfaults. Besides, two224

more conclusions stand out: (1) restitution is better in SSE patches than in coupling patches, and (2) the inversion scheme225

cannot resolve the unrealistic slip discontinuity along the boundary of the CB patches. Both conclusions were expected because226

the backslip is one third of the positive slip, and because of both the imposed model regularization and the limited sensitivity227
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of displacements with distance to the fault.228

Previous results do not provide a reliable estimate of the problem resolution when facing real data because in that case we do not229

know the actual slip producing the observed displacements. A MOC test consists in multiple CB inversions so that all possible230

model positions are explored. Results from the test may be translated into the mobile checkerboard restitution index (mcri) per231

subfault, which corresponds to the average of the r values estimated for each inversion. The mcri is a quantity that eliminates232

the resolution dependence on the CB position. For a given PS, we performed 6 MOC tests, one without regularization (i.e. L233

= 0 km) and the rest with different correlation lengths (i.e. for L = 10, 20, 30, 40 and 50 km). Five different PS of 40, 60, 80,234

100 and 120 km were considered so each case required a different number of CB inversions to complete the associated MOC235

test. Since the horizontal projection of the subfaults is 10 km per side and we shifted the CBs with a 20 km jump along the dip236

and strike directions to complete all possible configurations, the total number of CB inversions in a MOC test for an given PS237

is (PS/10)2.238

Figure 2 presents an overview of three MOC tests for PS of 60, 80 and 100 km (i.e. those considered in Figure 1). As expected,239

in the top row, we see that the mcri increases with the PS, reaching values close to 0.8 in some regions close to the coast where240

there is the largest density of stations, and where the plate interface is closest to them. In deeper interface regions, between 30241

and 50 km depth, mcri falls down up to about 0.2 for PS of 60 km and over 0.5 for PS of 100 km along the whole subductions242

zone. As clearly seen in the right column of Figure 1, the unrealistic slip discontinuities along the patches edges strongly243

difficults the restitution, so we can considerer the mcri maps of Figure 2 (first row) as a lower resolution bound. Isocontours244

of these maps for different PSs and optimum correlation lengths thus define reliable fault regions where the inversions should245

resolve the unknown target slip above the mcri isocontour value (e.g., above 40% of the target slip if mcri equals 0.4).246

The MOC tests also allow to identify the optimum correlation length per subfault that maximizes the ari. This is shown in247

the second row of Figure 2, where we see that L decreases for PS of 100 km along the coast as compared with smaller slip248

characteristic lengths (i.e. for smaller PSs). The opposite happens in deep and less instrumented interface regions, where L249

increases with PS. Notice also that regularization should be stronger offshore, close to the subduction trench, as PS decreases.250

Based on this multiscale analysis we assembled optimum solutions for the same CBs of Figure 1 by integrating the best inverted251

slip per subfault (i.e. for the optimum local regularization). Resolution improvements for the multiscale models ranged between252

10% and 20% as shown in the third row of the figure (compare with the right column of Figure 1). However, something253

unexpected came out when comparing whole-interface average mcri values for all MOC tests. Figure 3 shows this metric254

along with the average data-misfit error (i.e. the L2 norm of the difference between target and inverted displacements) for all255

tested PSs as a function of L, the correlation length. Although the spatial distribution of the optimum L depends on the slip256

characteristic length PS, the best average regularization was the same for all PSs and equal to 20 km. Such independency of the257

average mcri on L for different PSs is strongly determined by the unrealistic slip jumps of the checkerboards slip values that258
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sweep the whole interface no matter the PS. However, as we shall see latter, the optimal regularization length actually increases259

with PS if both the data uncertainty (i.e. the precision matrix) and the slip restrictions (i.e. the GMP method) are considered in260

the inversions. What is remarkable and was indeed expected in Figure 3 is that (1) the maximum restitution values increased261

with PS, (2) the restitution function for a given PS displayed a concave behavior and (3) the best fitting models are not the best262

solutions (i.e. those with the highest restitution). Regularization is thus critical to achieve physically acceptable and reliable263

slip models.264

Gaussian slip265

The analysis of the previous section did not consider the uncertainty in geodetic measurements that may be significantly large,266

especially in the vertical component where atmospheric noise and non-tectonic physical signals are particulary present. Nor did267

the analysis incorporate slip restrictions that are essential to guaranty tectonic expectations in our slip solutions such as backslip268

smaller than expected for a full-coupled interface regime and slip rake angles close to the plate convergence direction. For this269

reason, we now study three synthetic exercises where (1) the target slip corresponds to truncated Gaussian slip distributions (i.e.270

to an SSE) surrounded by a full-coupled plate interface, and (2) the associated surface displacements (i.e. the inverted data) are271

strongly and randomly perturbed according to a normal probability distribution given by the data covariance per component,272

which we took as 2.1, 2.5 and 5.1 mm in the north, east and vertical directions, respectively (Radiguet et al., 2011).273

Figure 4 shows the target slip models and both, the associated exact displacements (blue arrows) and the perturbed ones (red274

arrows). The data uncertainty is represented by the gray ellipses at the tips of the perturbed vectors, the semiaxes corresponding275

to the standard deviation of the normal distribution used to perturb the data per component. The interplate coupling corresponds276

to three-months cumulative backslip assuming a 6 cm/yr plate convergence (i.e. 1.5 cm), and the geometry and position of the277

three Gaussian slip patches were inspired by recent SSE solutions found in the region (Cruz-Atienza et al., 2020). Please notice278

how large are the perturbations.279

Inversions for the three Gaussian slip models were done for both the exact and perturbed data. Each set of data was inverted280

without regularization and with correlation lengths of 10, 20, 30, 40, 50 and 60 km. In all cases backlip restrictions were applied281

by means of the GPM so the interplate coupling could never overcome the value of one. Figure 5A shows some slip solutions282

for the largest-Gaussian exact data together with the associated restitution maps. Although the data fit is excellent in all cases,283

acceptable solutions are only retrieved when model regularization is applied. For L = 30 km, the ari is above 0.9 so that the284

slip solution is almost perfect, except along the Gaussian contour where there is an unrealistic slip discontinuity in the target285

model (i.e. a similar problem as for the checkerboards of last section).286

When random noise is added to the theoretical observations and the inverse problem is solved by integrating the data uncertainty287

by means of the precision matrix, the model regularization becomes even more critical to achieve a reliable solution. This can288
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be seen in Figure 5B, where the restitution is very poor around the Gaussian slip area when no regularization is applied as289

compared with that for L = 40 km, where the ari is also above 0.9 and thus the slip solution is surprisingly good. Also290

astonishing, results for the other two, smaller Gaussian slip models were very similar (see Appendix B, Figures S1 and S2). A291

summary of the 42 inversions (i.e. 14 per Gaussian model) is shown in Figure 6, where we see that although the data-fitting292

errors for the noisy inversions are roughly four times larger than those obtained from the exact data, the ari in all cases is293

above 0.9 for the best solutions (i.e. for the optimum L) even for the smallest and circular Gaussian case, which has a slip294

characteristic length smaller than 80 km centered at 38 km depth (Figure 4A).295

The 2006 Guerrero SSE296

During 20 years preceding the devastating 2017 Mw8.2 Tehuantepec earthquake that took place offshore the Oaxaca state,297

Mexico, long term SSEs in Guerrero occurred almost every four years (i.e. six events between 1998 and 2017) and had a298

remarkably large moment magnitudes (Mw>7.5) (Kostoglodov et al., 2003; Radiguet et al., 2012; CruzAtienza et al., 2018).299

After the earthquake, the regional plate-interface SSE beating has strongly changed so that two other SSEs took place in that300

state in the next two years (in 2018 and 2019) with much smaller magnitudes (Mw around 7.0) (Cruz-Atienza et al., 2020).301

Among all Mexican SSEs, the 2006 Guerrero event has been the most investigated despite the poor GPS instrumentation on302

that time (Kostoglodov et al., 2010; Vergnolle et al., 2010; Radiguet et al., 2011, 2012; Cavalié et al., 2013; Bekaert et al., 2015;303

Villafuerte and Cruz-Atienza, 2017). One of its most interesting features is that, unlike adjacent subduction segments, the slow304

slip seems to have penetrated the updip seismogenic region of the plate interface up to 15 km depth in the Guerrero seismic305

gap. In this section we perform a thorough analysis of the inverse problem resolution for that event and provide what we think306

are its most reliable features as compared with previous results reported in the literature.307

Resolution308

In previous sections we found that the problem resolution depends on two main parameters: (1) the slip characteristic length309

(PS) and (2) the inverse-problem correlation length (L). This is true for a given problem geometry (i.e. for a stations array and310

plate interface geometry). For this reason, we can determine fault regions where resolution (i.e. the restitution index) is high311

enough for a given L and PS, which means that the inverted slip in those regions is valid within the wavenumber bandwidth312

associated to the von Karman spectrum for that L. Since only 12 significant GPS stations registered the 2006 SSE, we performed313

three different MOC tests considering only the location of these sites and CP periodic pc-slip values of -8 and 25 cm. The tests314

were done for checkerboard unit lengths (PS) of 80, 100 and 120 km, and for L = 0 (no regularization), 10, 20, 30, 40, 50 and315

60 km. This resolution exercises assumed reasonable backslip and rake angle restrictions by means of the GPM (i.e. a lower316

slip limit of -8 cm, and a rake angle restriction of [20,−20]◦ range with respect to the pc-direction.317
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Plate-interface resolution maps (i.e. for the mcri metric) are shown in Figure 7 as a function of PS and L. As expected,318

overall mcri values increase with PS for a given L. Although less evident, they also increase with L for a given PS. However,319

supplementary results not shown reveal that, in the latter case, the high-resolution regions stop expanding for L above 30 km for320

all three PS cases. The maps show isocontours for mcri = 0.6, which delineate fault regions where the slip solutions are likely321

to resolve the actual slip within 40% error. As explained previously, these maps represent a lower resolution bound because the322

MOC tests assume unrealistically sharp slip discontinuities that strongly penalize the restitution index due to the boundaries of323

the square slip patches (e.g. see Figure 1). For this reason, we expect the resolution within the regions to be higher than the324

mcri isocontours value. Either way, even in the MOC test for the maximum PS and L values, the high resolution region does325

not extend across the whole expected SSE area, as claimed by previous authors using different inversion techniques (Radiguet326

et al., 2011). Our resolutions maps represent the key piece allowing us to tell something reliable (to some point) about the 2006327

SSE.328

Figure 8 summaries the results from all MOC tests in terms of the average mcri and data-misfit L2 error. Although errors are329

similar for all slip characteristic lengths PS, the maximum average mcri value increase with PS and follow a concave trajectory330

with L as previously noticed from Figure 7. However, unlike the previous MOC exercises considering all currently available331

geodetic stations (Figures 2 and 3), the optimum correlation lengths (i.e. those maximizing the restitution) increase with PS.332

This remarkable and reasonable result is due to both the slip restrictions and the sparse stations array. It tells us that, depending333

on the characteristic size of the SSE patch we want to solve best, the regularization of the problem must be adapted. For334

instance, if we are interested in SSE patches with a characteristic length of 80 km, then L = 10 km is the optimum choice. Of335

course, such small value is detrimental to the extent of the acceptable resolution region, as seen in Figure 7. If L = 20 km, then336

patches with characteristic length of 100 km will be optimally solved in a larger fault region.337

2006 SSE Inversions338

The next inversions we present were done using the same GPS data as Radiguet et al. (2011). This means that the displacement339

timeseries were carefully pre-processed (Vergnolle et al., 2010) and then corrected for inter-SSE long-term deformations by340

subtracting the linear trends from the period 2003-2005 per station. The resulting time series thus show the deviations from the341

long-term steady motion during the 2006 Guerrero SSE.342

Since the inter-SSE displacement trends per station are significantly different in Guerrero (Radiguet et al., 2012), the data343

correction makes the time series difficult to interpret altogether. By removing the secular deformation patterns, we are implicitly344

eliminating the common reference frame given by the North American plate, which also leads to a possible overestimation of345

the SSE-induced displacements. Either way, for the sake of comparison with previous solutions using this dataset, we have346

inverted the time series from January 30 (2006) to January 15 (2007) for four different correlations lengths (L = 10, 20, 30347

and 40 km) and considering slip restrictions (i.e. applying the GPM), so that the backslip could not overcome the full-coupling348
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regime in that period and the rake vector could vary +/- 20◦ from the plate-convergence (pc) direction.349

Figure 9 shows the inversion results for two optimal correlation lengths (L = 20 and 30 km). Since the data is almost perfectly350

explained in both cases, the preferred solution will depend on both the scale at which we are interested in for interpretations and351

reasonable physical considerations. Taking the 1 cm slip contour as the effective SSE area, then the moment magnitude of the352

2006 event is consistent for both inversions and equal to Mw7.4. For estimating Mw, we considered a typical crustal rigidity353

µ = 32× 109 Pa.354

As shown in the last section, given the poor GPS coverage during the 2006 SSE, the inverse problem regularization plays355

a critical role to have some confidence in the slip solutions. In the absence of resolution analysis, it is difficult to justify356

any conclusion, especially between distant stations. For instance, the absence of data along most of the north-west Guerrero357

seismic gap (NW-GGap) (i.e. between ZIHP and CAYA) (UNAM, 2015) and the Guerrero Costa Chica (i.e. between CPDP and358

PINO) is unfortunate and obliges us to be cautious in the interpretations. Previous investigations concluded that SSEs behave359

differently between these two Guerrero subduction segments so that, unlike the Costa Chica, the slow slip in the NW-GGap360

reaches the updip seismogenic interface zone (i.e. up to 15 km depth) (Radiguet et al., 2011; Cavalié et al., 2013) releasing361

aseismically a significant part of the accumulated inter-SSE strain (Radiguet et al., 2012; Bekaert et al., 2015).362

Figure 10 shows a comparison between our preferred solution (model A) (i.e. for L = 30 km) and two previously published363

solutions, one from the simultaneous inversion of both GPS and InSAR data (Model B by Cavalié et al. (2013)) and the364

other from GPS data only (model C by Radiguet et al. (2011)). Our solution is shown together with the associated 60%365

resolution regions (regions where the average mcri is higher than 0.6), which are taken from Figure 7 according to the optimal366

solutions of Figure 8. Confidence contours thus delineate the fault regions where solutions disagree with the actual slip by367

less than 40% in different wavenumber bandwidths depending on L. The red contour delineate the 60% confidence regions368

for a slip characteristic length of 80 km, while the green contours depict the same regions for a 120 km characteristic length.369

Although the three slip solutions are in general consistent, there are clear differences among them. The most visible are (1) the370

concentration of separated patches in model C (i.e. one of them far from the coast and below 40 km depth, and another one371

to the east) which may be artifacts to explain the data due to a lack of regularization as neither of both are present in solutions372

A and B, which are consistent north of the CAYA and COYU stations, and (2) the peak slip values that range between 20 and373

25 cm. Moment magnitudes are also slightly different (i.e. 7.4 and 7.6 for models A and C, respectively). However, all three374

models coincide on the updip SSE spreading west of station CAYA, where our model has resolution higher than 60% up to a375

distance no more than 30 km west of that station. This region is of critical importance because it extends along the NW-GGap,376

where recent onshore and offshore observations show that slow earthquake indeed happen in a particular way, and thus where377

the mechanical properties of the plate interface are different (Cruz-Atienza et al., 2020; Plata-Martnez et al., 2020). Models B378

and C are remarkably different between stations ZIHP and CAYA, where the InSAR data used for model B does not play any379
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significant role. West of this region, model B predicts a very large shallow penetration of the SSE across the mechanically stable380

zone where M7+ earthquakes occur every ∼35 years (see past rupture areas)(UNAM, 2015). For this reason, model C, which381

is consistent with our model A, is the most plausible solution for that zone. Besides, our resolution close to the ZIHP station382

is higher than 60% as well. In conclusion, our preferred ELADIN solution has the most reliable features of both previously383

published slip models.384

Conclusions385

We have introduced the ELADIN method, a new fault-slip inversion technique based on the adjoint elastostatic equations386

under a constrained optimization framework. The method takes advantage of both the von Karman autocorrelation function387

to control the problem of regularization and the gradient projection method to impose physically-consistent slip restrictions388

(i.e. interplate coupling smaller than any given value and rake angles consistent with the relative plate motion). To account for389

the data uncertainty, the method weights the observations according to their individual covariance using the precision matrix.390

Synthetic slip inversions from strongly perturbed data show that the model restitution across the plate interface is surprisingly391

high when this uncertainty is taken into account (i.e. for both SSE and coupled interface regions). The ELADIN method thus392

allows determining the aseismic slip on any 3D plate interface (or any fault surface) by simultaneously inverting slipping and393

coupled fault areas with a spectral control of the problem solution that guaranties a given resolution criterion. We defined394

this criterion by means of the mobile checkerboard restitution index (mcri), which allows determining fault regions where the395

resolution (i.e. the slip restitution index) is high enough for a given von Karman autocorrelation length, L. This means that the396

inverted slip in those regions is valid (to some desired extent) within the wavenumber bandwidth associated to the von Karman397

spectrum for that L.398

After a thorough resolution analysis of the study region, we inverted the 2006 Guerrero SSE. Our preferred slip model (Model399

A), obtained for L = 30km, was compared with two previously published solutions and found that it retains the most reliable400

features of these two models. On one hand, our model is consistent with the solution of Cavalié et al. (2013) (Model B) in that401

it places the maximum slip region above 40 km depth (i.e. downdip from stations CAYA and COYU), where this solution is402

well constrained by the InSAR data. On the other, although all solutions predict the SSE shallow penetration along a large part403

of the NW-GGap segment (west of CAYA), our resolution analysis clearly shows that this penetration might not be a reliable404

feature of the 2006 SSE. However, our Model A is much closer to the solution of Radiguet et al. (2011) (Model C) close to405

station ZIHP, where only GPS data is available. In this sense and considering also that M7+ earthquakes occur every∼35 years406

east from that station (see previous rupture areas in Figure 10), which implies that the plate interface there is mechanically407

unstable, then the extremely large updip SSE penetration predicted by Model B (Cavalié et al., 2013) between stations ZIHP408

and CAYA seems unrealistic.409

16



REFERENCES To be submitted to Geophysical Journal International

A systematic application of the ELADIN method has been made in an associated work (Cruz-Atienza et al., 2020) to invert410

recent data from the large GPS array shown in Figure 1, which has produced interesting results for the period 2016-2019, where411

three major earthquakes and multiple SSEs occurred throughout the Mexican subduction zone.412
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A Gradient projection method: Cauchy point calculation510

The Cauchy point is an optimal state computed with a descent direction that respects the feasible solution region. We begin by511

reformulating our inverse problem, eqs. (9-11), as the quadratic problem512

1

2
DTGD + cTD, (16)

subject to513

Dj,l
i ≤ (FD)i ≤ Dj,u

i , i ∈ {p, c} ∧ j ∈ {SSE,Coupling} regime, (17)

where514

G = FTT TC−1

d
T F + βFTWTWF, (18)

c = −
[
UTo C

−1

d
T F +DT

pW
TWF

]
. (19)

The gradient without considering the inequality contraint, eq. (17),is515

g = GD + c, (20)

First, we need to identify the step lengths for which each slip component reaches its bound along the direction −g and store516

them in t̄. Then, we eliminate duplicate and zero values of t̄ to obtain a sorted reduced set of breakpoints {t1, t2, . . . , tl} such517

that ti < ti+1 for i ∈ {1, 2, . . . , l−1}. With this set, we construct a set of intervals like {[0, t1], [t1, t2], . . . , [tl−1, tl]}. Suppose518

that we have not found the minimizer up to the interval [tj−1, tj ], then we can model the slip along that interval as519

D(t) = D(tj−1) + (∆t)pj−1, (21)

where520

∆t = t− tj−1 ∈ [0, tj − tj−1], (22)

pj−1
i =

 −gi if tj−1 < t̄i,

0 otherwise.
(23)

If we substitute eq. (21) in the quadratic cost function (16), we leave it as a function of ∆t521

q(∆t) =
1

2

(
D(tj−1) + (∆t)pj−1

)T
G
(
D(tj−1) + (∆t)pj−1

)
+ cT

(
∆t)pj−1

)
, (24)
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which can be reformulated as522

q(∆t) = fj−1 + gj−1∆t+
1

2
hj−1(∆t)2, (25)

where523

fj−1 =
1

2
D(tj−1)TGD(tj−1) + cTD(tj − 1), (26)

gj−1 = D(tj−1)TGpj−1 + cT pj−1, (27)

hj−1 =
(
pj−1

)T
Gpj−1. (28)

The solution of this problem is524

∆t∗ = − gj−1

hj−1
. (29)

Only one of the following three cases can occur525

(i) If gj−1 > 0 the minimizer is at ∆t∗ = 0 with t∗ = tj−1 and p∗ = pj−1.526

(ii) If ∆t∗ ∈ [0, tj − tj−1) the minimizer is in the interval with t∗ = tj−1 and p∗ = pj−1.527

(iii) If ∆t∗ > tj − tj−1 then try the nex interval.528

Once the optimal step has been found, ∆t∗, the Cauchy point is evaluated as529

Dc = D(t∗) + ∆t∗p∗. (30)

B Gaussian slip inversions530

Figures S1 and S2 show the synthetic data inversions and restitution indexes with and without noise of the Gaussian-like pulses531

shown in Figures 4A and 4B, respectively.532
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Figure 1: Checkerboard inversions for PS of (A) 60, (B) 80 and (C) 100 km, and correlation length, L, of 20 km. The inverted
slip along with the surface displacement fits (left column) and the associated restitution index (right column) are displayed on
the 3D plate interface (gray contours). Green triangles are the GPS stations.
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Figure 2: MOC tests for PS of (A) 60, (B) 80 and (C) 100 km and correlation length, L, of 20 km. Distributions of mcri (first
row), the optimum correlation length (second row) and the multiscale assembly of the restitution index (i.e. computed from
the assembly of the best slip solutions for the CBs shown in Figure 1), all of them displayed on the 3D plate interface (gray
contours). Green triangles are the GPS stations.
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Figure 3: Results from all MOC tests in terms of the whole-interface average mcri (blue) and the average data-misfit error
(red) as a function of the inversions correlation length L. PS (Patch Size) refers to the slip-patch characteristic length (i.e. the
checkerboard unit size).
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Figure 4: Slip models on the plate interface (background colors) and the associated model displacement predictions (arrows)
for three Gaussian-like slip patches with different characteristic lengths. Blue and black-solid arrows show the exact surface
displacements while red and black-dashed arrows show the same predictions but stochastically perturbed according to the
normal distributions given by the data variance per component.
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Figure 5: Synthetic inversion results for the slip model shown in Figure 4C from the exact target displacements (panel A) and
from the perturbed (noisy) displacements (panel B). The second row of each panel shows the distribution of the restitution index
over the plate interface without regularization and for different values of the correlation length, L.
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Figure 6: Synthetic inversion results for the three Gaussian-like slip functions shown in Figure 4 in terms of the whole-interface
average restitution index (ari) and average data-misfit error (red) as a function of the inversions correlation length L. Solid lines
correspond to the inversions using the exact data while dashed lines to the inversions with nosy data (see Figure 4). Notice that
in all cases the maximum restitutions (ari) are above 0.9.
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Figure 7: Plate interface distribution of the mobile checkerboard restitution index (mcri) for MOC tests corresponding to patch
sizes (PS) of 80, 100 ans 120 km and correlation lengths L = 10, 20 and 30 km for the 2006 SSE stations configuration. Black
contours correspond to mcri values of 0.6 (i.e. slip resolution of 60%).
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Figure 8: Results from all MOC tests for the 2006 SSE stations configuration in terms of the whole-interface average mcri
(blue) and the average data-misfit error (red) as a function of the inversions correlation length L. PS (Patch Size) refers to the
slip-patch characteristic length (i.e. the checkerboard unit size).
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Figure 9: Aseismic slip inversions (in the plate convergence (PC) direction) of the 2006 Guerrero SSE for correlation lengths
L = 20 km (A) and L = 30 km (B). The plate interface coupling is determined from the ratio between the back slip and the
cumulative slip in the inverted period given a plate convergence rate of 6 cm/yr.
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Figure 10: Comparison of our preferred solution (model A - for L = 30 km, Figure 9) with two previously published model
for the 2006 Guerrero SSE, the one of Cavalié et al. (2013) (model B) and the one of Radiguet et al. (2011) (model C). 60%
resolution contours for slip-patch (PS) characteristic lengths of 80 and 120 km are shown over model A.
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Figure S1: Synthetic inversion results for the Gaussian-like slip model shown in Figure 4A from the exact target displacements
(panel A) and from the perturbed (noisy) displacements (panel B). The second row of each panel shows the distribution of the
restitution index over the plate interface without regularization and for different values of the correlation length, L.
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Figure S2: Synthetic inversion results for the Gaussian-like slip model shown in Figure 4B from the exact target displacements
(panel A) and from the perturbed (noisy) displacements (panel B). The second row of each panel shows the distribution of the
restitution index over the plate interface without regularization and for different values of the correlation length, L.
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