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Abstract13

Advances in machine learning (ML) techniques and computational capacity have yielded14

state-of-the-art methodologies for processing, sorting, and analyzing large seismic data15

sets. In this work, we consider an application of ML for automatically identifying dom-16

inant types of impulsive seismicity contained in observations from a 34-station broad-17

band seismic array deployed on the Ross Ice Shelf (RIS), Antarctica from 2014 to 2017.18

The RIS seismic data contain signals and noise generated by many glaciological processes19

that are useful for monitoring the integrity and dynamics of ice shelves. Deep embed-20

ded clustering (DEC) was employed to efficiently investigate these signals. DEC auto-21

matically groups these signals into hypothetical classes without the need for manual la-22

beling, allowing for comparison of their signal characteristics and spatial and temporal23

distribution with potential source mechanisms. The DEC algorithm uses spectrograms24

as input and encodes their salient features into a 9-feature representation. Encoding is25

performed with an autoencoder, a type of deep neural network that is trained iteratively26

and seeks to reconstruct the input spectrograms from the encoded representation. Eight27

classes of dominant seismic signals were identified and compared with environmental data28

such as temperature, wind speed, tides, and sea ice concentration. The greatest seismic-29

ity levels occurred at the RIS front during the 2016 El Niño summer, and near ground-30

ing zones near the front throughout the deployment. We demonstrate the spatial and31

temporal association of certain classes of seismicity with seasonal changes at the RIS front,32

and with tidally driven seismicity at Roosevelt Island.33

Plain Language Summary34

We demonstrate the ability of a machine learning technique called deep embedded35

clustering (DEC) to automatically identify different types of impulsive seismic signals.36

The DEC algorithm encodes spectrograms into simplified representations and separates37

the representations into distinct clusters of signal types. The DEC technique was applied38

to seismic data recorded on the Ross Ice Shelf, Antarctica from 2014 to 2017. In addi-39

tion to knowing when and where signals are detected, DEC enables users to determine40

the signal characteristics. Paired with environmental data, DEC can be used to iden-41

tify whether certain environmental factors are associated with particular classes of seis-42

micity.43
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1 Introduction44

Ice sheets and ice shelves in West Antarctica are experiencing rapid change. Be-45

tween 2003 and 2019, the West Antarctic Ice Sheet (WAIS) experienced a net ice loss46

of 169 billion tons per year, contributing 7.5 mm to sea level rise (Smith et al., 2020).47

Warming oceans are enhancing basal melting of ice shelves that reduces the buttress-48

ing of grounded ice sheets (De Angelis & Skvarca, 2003; Thoma et al., 2008; Pritchard49

et al., 2012; Paolo et al., 2015), leading to increased discharge of ice into the ocean and50

raising sea level (Scambos et al., 2004; Dupont & Alley, 2005; Rignot et al., 2014; Fürst51

et al., 2016). With West Antarctica alone containing a sea level rise potential of 5.6 m52

(Smith et al., 2020), monitoring the loss of ice shelves plays a critical role in anticipat-53

ing future sea level rise and associated societal impacts on coastlines and the environ-54

ment. Increased seismic activity, such as icequakes resulting from fracturing, can give55

indications of changes in iceberg calving rates and the integrity of ice shelves and are ob-56

servable using glacial seismology methods (Aster & Winberry, 2017). However, the preva-57

lence of extensive, continuously recording seismic observing systems has led to an abun-58

dance of data which is becoming increasingly difficult to analyze using conventional sig-59

nal processing. At the same time, advances in computing capabilities and machine learn-60

ing algorithms have enabled more efficient, data-driven approaches to study natural pro-61

cesses and phenomena. To analyze large seismic data sets more efficiently, we adapt con-62

temporary machine learning techniques to augment existing signal processing and data63

analysis techniques.64

Seismology is a data-intensive field with well-developed signal processing and an-65

alytical methods. The recent introduction of machine learning techniques has led to the66

development of complementary tools that give seismologists novel approaches to tradi-67

tional analyses, such as earthquake detection and early warning, phase picking, ground-68

motion prediction, tomography, and geodesy (Kong et al., 2019; Bianco & Gerstoft, 2018;69

Bianco et al., 2019; Johnson et al., 2019). In this study we present an extension of clus-70

tering (Mousavi et al., 2016; Snover et al., 2020), a form of unsupervised machine learn-71

ing used to discover classes of similar signals within a data set (Bishop, 2006; Holtzman72

et al., 2018; Johnson et al., 2020), and which is commonly used as an exploratory tool73

for large, unlabeled data sets. A related approach based on sparse modeling, called dic-74

tionary learning, has been applied to regularizing seismic inverse problems (Bianco &75

Gerstoft, 2018; Bianco et al., 2019).76
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To test the applicability of clustering groups of similar signals for monitoring ice77

shelves, we focus specifically on the Ross Ice Shelf (RIS), Antarctica, where a 34-station78

passive seismic array was deployed from November 2014 to January 2017 to observe the79

response of the RIS to ocean gravity wave impacts and investigate the structural dynam-80

ics of the ice shelf (Bromirski et al., 2015). The array, shown in Figure 1, continuously81

recorded long- and short-period seismic signals that exhibited seasonal and spatial vari-82

ations related to the shelf’s coupling to the ocean, atmosphere, and crust (Baker et al.,83

2019). Signals and ambient noise of interest on the RIS include tidally-driven stick-slip84

seismicity at Whillans Ice Stream (Bindschadler, King, et al., 2003; Bindschadler, Vorn-85

berger, et al., 2003; D. A. Wiens et al., 2008); basal micro-earthquakes and tremor (Barcheck86

et al., 2018); tidally and thermally driven rift fractures (Olinger et al., 2019); diurnal seis-87

micity associated with subsurface melting (MacAyeal et al., 2019); wind-generated res-88

onance in the ice (Chaput et al., 2018); flexural and plate waves generated by ocean swell,89

infragravity waves, and tsunami (Bromirski & Stephen, 2012; Bromirski et al., 2017; Chen90

et al., 2018); regional and teleseismic earthquakes (Baker et al., 2020); and icequakes gen-91

erated by ocean gravity waves (Chen et al., 2019). Ambient seismic noise, which can be92

used to estimate the RIS structure (Diez et al., 2016), also contains spectra from ocean93

gravity waves, whose dispersion can be used to identify their source distance and origin94

(Bromirski et al., 2015; Hell et al., 2019).95

The seismic data recorded on the RIS are diverse and encompass numerous source96

mechanisms with a wide range of spatiotemporal variability. In this study, we apply an97

unsupervised clustering methodology to the RIS array sesimic data to identify classes98

of seismic events with similar temporal and spectral characteristics. The occurrences and99

distributions of these signal classes provide information on glaciological processes affect-100

ing ice shelf evolution.101

2 Background102

Grouping seismic signals with similar characteristics (clustering) allows investiga-103

tion of spatiotemporal variability associated with glaciological processes that result from104

environmental forcing.105
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Figure 1. The passive broadband seismic array deployed from November 2014 to January

2017 consisted of 34 seismic stations and was deployed as part of the Ross Ice Shelf Dynamic

Response to Wave-Induced Vibrations Project (Bromirski et al., 2015). RIS surface elevation,

ice and water layer thicknesses, and grounding and coast lines were obtained from Bedmachine

(Morlighem et al., 2017; Greene et al., 2017).
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2.1 Clustering106

There are numerous methods to cluster data, (Aggarwal & Reddy, 2014), many of107

which have been adapted for use in seismology and geophysics (Kong et al., 2019). Hi-108

erarchical clustering has been used by Mousavi et al. (2016) to automatically discrim-109

inate between shallow and deep earthquakes, and by Trugman and Shearer (2017) to more110

precisely localize earthquakes. Graphical clustering has been used to localize sources in111

a dense seismic array by Riahi and Gerstoft (2017), and by Telesca and Chelidze (2018)112

to cluster seismic events in time. Distance-based clustering, like the popular k -means al-113

gorithm, (MacQueen, 1967; Hartigan & Wong, 1979) has been used by Chamarczuk et114

al. (2020) to cluster seismicity based on features extracted from seismic data. Perol et115

al. (2018) used k -means to define probabilistic earthquake locations as part of their con-116

volutional neural network (CNN) detection and localization technique. A novel approach117

was presented by Seydoux et al. (2020), who detect and cluster seismic signals and back-118

ground noise with the use of a deep scattering neural network and a Guassian mixture119

model.120

Not all clustering methods involve machine learning. Template matching, in which121

a matched filter is constructed from a template waveform, is used to scan through con-122

tinuous recordings to locate similar signals (Gibbons & Ringdal, 2006; Beaucé et al., 2018;123

Chamberlain et al., 2018). Yoon et al. (2015) and Bergen and Beroza (2018) present com-124

putationally efficient techniques in which locality-sensitive hashing is used to map seis-125

mic signals into a hash table, allowing similar signals to be identified by table entry. Hotovec-126

Ellis and Jeffries (2016) developed an approach that uses correlation-based similarity search127

to automatically detect and cluster repeating volcanic seismicity in continuous data. Cole128

(2020) adopted the method of Hotovec-Ellis and Jeffries (2016) to cluster RIS array data129

at stations RS09, RS10, and RS11 in order to characterize tidal forcing of seismicity at130

these stations.131

2.2 Dimensionality132

Data are considered high-dimensional when many features are required to repre-133

sent or describe the data. Seismic data represented as time series, spectrograms, scalo-134

grams, or energy envelopes can contain thousands of features (e.g., discrete samples in135

a time series, or bins in a spectrogram). Clustering performed directly on such input data136
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(Aggarwal & Reddy, 2014) is vulnerable to the “curse of dimensionality” (Bellman, 1961),137

i.e., as the dimensionality of the input data increases, the number of data points required138

to maintain sufficient sampling density increases exponentially. A further consideration139

is that clustering error metrics can give less meaningful results as dimensionality increases.140

As high-dimensional data are difficult to cluster (Aggarwal et al., 2001; Steinbach141

et al., 2004), dimensionality reduction remains a major focus of development (Yang et142

al., 2017). It is often desirable to transform the input data to a lower-dimensional rep-143

resentation described by fewer, more salient features. A popular approach is to use prin-144

cipal component analysis (PCA), which projects higher dimensional data into lower di-145

mensional space (Goodfellow et al., 2016) and was used by Reddy et al. (2012) to com-146

press seismic data to maximize feature variance.147

The approach to reducing dimensionality in this study employs an autoencoder,148

a model whose output aims to reproduce its input via a series of non-linear transforma-149

tions employing a deep neural network (DNN) (Hinton, 2006; Murphy, 2012; Yang et al.,150

2017). These non-linear transformations provide greater capacity in dimension reduc-151

tion, and can better model data with low-dimensional representations than, for exam-152

ple, PCA. The autoencoder first encodes input data such as an image—in our case, a153

spectrogram—into a latent feature vector. Next, the autoencoder decodes the latent fea-154

tures and reconstructs the original image. Since the autoencoder provides a non-linear155

transformation of the data, it must be trained using gradient descent. In this iterative156

training, the error between the input and output is minimized. In doing so, the salient157

features of the data are learned by the network weights. With the dimensionality of the158

input data reduced in the latent feature space, clustering algorithms can be applied to159

the data’s latent feature space.160

2.3 Clustering in Reduced Dimensions161

A method that has shown improvement over traditional clustering techniques was162

developed by Xie et al. (2016), whose deep embedded clustering (DEC) uses the latent163

feature space as input to an adaptive clustering algorithm. DEC consists of two processes:164

(1) An autoencoder is trained to represent the data’s salient features; and (2) the en-165

coding layers and clustering layer are jointly optimized. Yang et al. (2017) extend the166
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approach in DEC by jointly optimizing the clustering step with training the entire au-167

toencoder, not just the encoder layers.168

Additional variations of DEC have been proposed: Xie et al. (2016) used a stacked169

de-noising autoencoder (Vincent et al., 2010), and (Min et al., 2018) employed autoen-170

coders composed of CNN layers and other architectures. More recently, Chazan et al.171

(2019) developed a novel approach in which joint clustering is performed with a mixture172

of autoencoders, each representing a cluster. Mousavi et al. (2019) used DEC to predict173

whether seismic detections were local or teleseismic, and Snover et al. (2020) demonstrated174

DEC’s ability to cluster anthropogenically generated seismic noise.175

In this study, we implement DEC on RIS seismic data collected from December 2014176

to November 2016, identifying several different classes of signals. Additionally, we demon-177

strate the utility of DEC as an exploratory tool for large, real-world seismic data sets178

by associating the clustering results with observed environmental factors.179

3 Ross Ice Shelf (RIS) Seismic Array and Data180

Each station in the RIS seismic array consisted of 3-component Nanometrics Tril-181

lium 120 PHQ seismometers emplaced 1 m below the surface of the ice, powered by so-182

lar panels during the austral summers, and lithium-ion batteries during the austral win-183

ters. Two subarrays comprised the array. The larger subarray consisted of 18 stations184

spaced approximately 80 km apart (prefix RS), primarily oriented parallel to the RIS185

front. The RS stations sampled short-period orthogonal components of ground veloc-186

ity at a sampling rate of 100 Hz, except for two stations that sampled at 200 Hz. The187

smaller subarray consisted of 16 stations (prefix DR) arranged approximately orthog-188

onal to the icefront along the international date line, sampling ground velocity with a189

sampling rate of 200 Hz. For this study, we were primarily interested in the detection190

and classification of icequakes and local/regional earthquakes, using only vertical com-191

ponent observations with frequencies of interest occurring between 3 and 20 Hz. Rep-192

resentative types of signals detected are shown in Figure 2.193

Seismic data from each station were processed in 24-hour segments as follows: 1) Data194

were linearly de-trended and tapered with a Hann window. 2) Instrument responses for195

all stations were removed, giving acceleration in m/s2. 3) Since the bandwidth of inter-196

est was from 3 to 20 Hz, data were decimated to 50 Hz, using low-pass filtering followed-197
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Figure 2. Seismic signals detected on the Ross Ice Shelf were diverse with variation in time,

space, and source mechanism. Shown are examples of acceleration response seismograms and

their respective normalized spectrograms spanning the 3-20 Hz band that were typical for the

data set. The normalized spectrograms were used as input to the deep embedded clustering

(DEC) model.

by downsampling. 4) A band-pass filter with cutoff frequencies at 3 and 20 Hz was ap-198

plied to remove long-period signals originating from tides, tsunamis, infragravity waves,199

ocean swell, and teleseisms. 5) An event detection algorithm, the Z-detector (Swindell200

& Snell, 1977; Withers et al., 1998), was used to detect impulsive signals, particularly201

icequakes and local earthquakes, with a sliding window of 3 s. The detector was applied202

to data from each station between 2 December 2014 and 20 November 2016 for a total203

of 719 days of array data, yielding 427,798 detections.204

Upon detection, a 4 s trace centered on the spectral peak of each triggered event205

was saved for processing. For each seismic trace saved, a spectrogram was computed us-206

ing the short-time Fourier transform with a 0.4 s Kaiser window, NFFT=256, and 90%207

overlap. Spectrograms (samples) contained one channel of amplitude information, 87 fre-208

quency bins, and 100 time bins for a total of 8,700 features per spectrogram. Finally, sam-209

plewise normalization was performed by subtracting the mean spectral level from each210

spectrogram, subsequently normalizing to the interval [0, 1].211
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Figure 3. The deep embedded clustering model uses a convolutional autoencoder that en-

codes the data space X into the latent feature space Z, and a decoder that recovers the original

input X from Z. The mean squared error (MSE) between the input X and the reconstruction

X ′ is used as the autoencoder loss function. The latent feature space Z lies at the bottleneck

between the encoder and decoder, providing the input to the clustering layer, which separately

outputs a loss function. The two loss functions are combined and used to train the parameters

that map X → Z → X ′.

4 Deep Embedded Clustering Model212

The objective of the DEC model, shown in Figure 3, is to encode the input data—213

in this case, spectrograms of seismic signals—into a layer containing latent (lower-dimensional)214

features, called the embedded layer, to which a clustering algorithm is applied. The out-215

come of the clustering performance is then used to refine both the autoencoder model216

and the clustering layer in an effort to obtain more accurate latent space embeddings while217

improving clustering performance. In the implementation that follows, the 8,700 features218

of an input spectrogram are reduced to a latent feature space of just 9 embedded fea-219

tures with the use of a convolutional autoencoder, a type of DNN composed of convo-220

lutional layers and their transposes.221
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4.1 Dimensionality Reduction with a Convolutional Autoencoder222

Autoencoders provide a useful means of data approximation using a lower-dimensional223

representation via a sequence of non-linear transformations. The autoencoder model con-224

sists of three components: an encoder, a bottleneck, and a decoder (Murphy, 2012). First,225

the encoder maps input data from a data space X into a latent feature space Z, which226

is contained within the bottleneck of the model. Next, the decoder attempts to recon-227

struct X from Z. This process is performed iteratively with the objective of minimiz-228

ing the error between X and the decoder output, X ′. In minimizing the error, the au-229

toencoder learns the salient features of X and accurately encodes them in Z, thus re-230

ducing the dimensionality of the clustering task.231

Consider a data set of spectrograms D = {xi ∈ XM}Ni=1, where xi is a vector232

representation of the ith spectrogram in a data set containing N spectrograms, and the233

number of features in xi, M , is the spectrogram size (the product of the number of fre-234

quency bins and time bins). In the encoder stage, the mapping of X to Z is described235

by fθ : X → Z, where θ are parameters that are learned through iterative model train-236

ing. The decoder stage is a mirror operation of the encoder and seeks to map the latent237

feature space Z to the reconstruction X ′ by gθ : Z → X ′. The overall mapping of the238

autoencoder can be described as Fθ : X → Z → X ′, where Fθ = gθ ◦ fθ. Input spec-239

trograms xi map to their corresponding latent feature vectors by zi = fθ(xi) ∈ ZD,240

where D is the number of embedded features, and to their reconstructions by x′
i = Fθ(xi) ∈241

X ′.242

As the autoencoder is composed of convolutional layers and their transposes, Fθ243

is a nonlinear mapping that must be appropriately parameterized. This is accomplished244

by iteratively learning the parameters θ in order to minimize the error between the in-245

put and reconstructed data. The mean squared error (MSE) between an input spectro-246

gram with M features and its reconstruction, defined as247

`(x,x′) =
1

M

M∑
m=1

(xm − x′m)2, (1)

is averaged over the N samples in the data set to obtain the autoencoder loss function:248

LAEC =
1

N

N∑
i=1

`(xi,x
′
i). (2)

Performing this calculation over the entire data set at once is computationally expen-249

sive, memory intensive, and can lead to poor convergence. Instead, the loss is calculated250
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Table 1. Convolutional Autoencoder Architecture

Layer

Name
Type

Input

Shape
Filters Activation

Output

Shape

Trainable

Parameters

Input - - - - [1, 87, 100] -

Conv1 Convolution [1, 87, 100] 8 ReLU [8, 44, 50] 80

Conv2 Convolution [8, 44, 50] 16 ReLU [16, 22, 25] 1,168

Conv3 Convolution [16, 22, 25] 32 ReLU [32, 11, 13] 4,640

Conv4 Convolution [32, 11, 13] 64 ReLU [64, 6, 7] 18,496

Conv5 Convolution [64, 6, 7] 128 ReLU [128, 3, 3] 73,856

Flat Flatten [128, 3, 3] - - [1152] 0

Encoded Fully Connected [1152] - ReLU [9] 10,377

FC Fully Connected [9] - ReLU [1152] 11,520

Reshape Reshape [1,152] - - [128, 3, 3] 0

ConvT1 Transposed Conv [128, 3, 3] 64 ReLU [64, 5, 7] 73,792

ConvT2 Transposed Conv [64, 5, 7] 32 ReLU [32, 11, 13] 18,464

ConvT3 Transposed Conv [32, 11, 13] 16 ReLU [16, 23, 25] 4,624

ConvT4 Transposed Conv [16, 23, 25] 8 ReLU [8, 47, 51] 1,160

Decoded Transposed Conv [8, 47, 51] 1 Linear [1, 95, 101] 73

Output Crop [1, 95, 101] - - [1, 87, 100] -

Total 218,250

in mini-batch subsets of the data space. For each mini-batch loss, stochastic gradient de-251

scent (Goodfellow et al., 2016) is used to update the weights. When all mini-batches have252

been processed, the next training epoch begins and the process is repeated. After each253

epoch, a subset of the data separate from the training data is used to validate the model’s254

performance without updating the weights, yielding a validation MSE. Training is per-255

formed until a specified maximum number of epochs is reached, or stopped early if the256

validation MSE fails to decrease below its minimum value after ten epochs. The early257

stopping criterion prevents the autoencoder from overfitting the training data.258

The design choice of autoencoder architecture can be informed by prior knowledge259

of a data set and its features, as well as practical considerations such as computational260

resources available. Our DNN architecture, detailed in Table 1, is designed to be com-261

putationally efficient, simple to construct, and robust enough to learn salient features262
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Table 2. Sample Sizes and Hyperparameters used to Train the Deep Embedded Clustering

Model.

Samples Hyperparameters

Total

(N)

Training

(Ntrain)

Validation

(Nval)

Initial

learning rate

Mini-batch

size

Classes

(K)

Clustering loss

factor (λ)

427,798 100,000 25,000 0.001 1024 8 0.05

from a noisy seismic data set. In total, θ contains 218,250 trainable parameters under263

this DNN architecture.264

Autoencoder training is implemented using 125,000 spectrograms randomly selected265

without replacement from the 427,298 detections. Of the selected spectrograms, 80% are266

used for training and 20% for validation. The trainable parameters are optimized using267

the Adaptive Moment Estimation (Adam) algorithm (Kingma & Ba, 2017). In training,268

there are two principal hyperparameters to address. First is the initial learning rate, which269

controls the initial step size used by Adam to step down the gradient of the loss. The270

second hyperparameter is the mini-batch size, which sets the number of spectrograms271

to be passed through the model at one time. The optimal configuration is found through272

a grid search of the hyperparameters. A summary of the optimal hyperparameters and273

the number of spectrograms used are listed in Table 2. As seen in Figure 4a, training274

and validation losses fall off exponentially with each training epoch until the early stop-275

ping criterion is met; in this case, after 49 epochs. The effectiveness of the autoencoder’s276

ability to reconstruct the input spectrogram is illustrated in Figure 5. Though some loss277

of resolution in time and frequency is expected due to the convolutional layers and their278

transposes, the structure of the spectrogram is largely preserved, with the salient infor-279

mation of the input encoded into the latent feature space.280

4.2 Clustering Layer281

In the DEC framework, clustering is performed in the latent feature space, Z, with282

the goal of finding K distinct classes of signals within the data. We assume that the data283

form clusters which are separable in Z space, and that these clusters coalesce around unique284

locations {µj ∈ Z}Kj=1, i.e., centroids around which other similar signals may be found.285
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Figure 4. (a) Training and validation losses during autoencoder training. To avoid over-

fitting the model, training is stopped when the early stopping criterion is met (in this case, at 49

epochs). (b) In the upper plot, loss curves are shown for deep embedded clustering (DEC). In the

lower plot, the percentage of samples which undergo class reassignment at each update interval is

shown; training is stopped once the change is less than 0.2%
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Figure 5. A trained autoencoder takes an input spectrogram x, encodes it into an embedded,

9-dimensional latent feature vector z, then reconstructs the input as x′. The autoencoder pre-

serves features correlated within a given cluster and discards the remaining signal. This can help

with signal identification.

The Euclidean distance between a centroid and a latent feature vector is given by286

di,j = ‖zi − µj‖2. (3)

The distance metric di,j is a measure of the similarity between features indexed by i and287

j, based on their Euclidean distance in the latent space.288

Centroids are initialized with the Gaussian mixture model (GMM) clustering al-289

gorithm (Bishop, 2006). Among signal classes, GMM accounts for differences in sample290

size and distributions that are expected in natural seismic data by treating the latent291

data as a mixture of Gaussian distributions, each with a unique centroid and variance.292

The clusters and centroids are then updated using an expectation-maximization (EM)293

algorithm. To accelerate EM convergence, k -means clustering (Hartigan & Wong, 1979)294

is used to initialize the GMM clustering algorithm.295

With the centroids initialized, DEC seeks to further improve clustering by using296

the difference between the embedded spectrograms and the cluster centroids as an ad-297

ditional loss function for updating model parameters. Because the input data is unla-298

beled, a self-supervised method is required. We implement the method developed by Xie299

et al. (2016), who, drawing from the t-Distributed Stochastic Neighbor Embedding (t-300

SNE) algorithm (van der Maaten & Hinton, 2008), propose measuring the difference be-301
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tween a t-Student’s distribution kernel of the embedded spectrograms and an auxiliary302

target distribution. A simplified Student’s t-distribution is used to measure the similar-303

ity between an embedded spectrogram, zi, and the cluster centroids µj :304

qij =
(1+ ‖ zi − µj ‖2)−1∑
j(1+ ‖ zi − µj ‖2)−1

. (4)

Equation (4) results in a set of soft class assignments, i.e., the probability that embed-305

ded spectrogram i will be assigned to class j, which are used to compute the auxiliary306

target distribution, p. The form of p is designed to improve clustering performance, em-307

phasize embeddings with high-confidence assignments, and normalize each cluster cen-308

troid’s contribution to the loss function so that large clusters minimally distort Z (Xie309

et al., 2016):310

pij =
q2ij/

∑
i qij∑

j(q
2
ij/

∑
i qij)

. (5)

The dissimilarity between the distributions given by equations (4) and (5) is measured311

using the Kullback-Leibler divergence (Kullback & Leibler, 1951). From the divergence312

the clustering layer’s loss function is obtained:313

LC = DKL(P ‖ Q) =
∑
i

∑
j

pij log
pij
qij
. (6)

In DEC, the clustering layer is attached to the trained autoencoder’s bottleneck,314

as shown in Figure 3. During training of the DEC model, the loss functions from equa-315

tions (1) and (6) are combined into a total loss function,316

L = LAEC + λLC, (7)

where λ is a hyperparameter that balances the contributions of the two losses, since they317

are of differing magnitudes. λ must be tuned: if it is too large, the clustering loss will318

cause model instability and lead to distortion of the latent space, in which case the la-319

tent space will no longer represent the salient features of the data. If λ is too small, the320

effect on clustering performance will be minimal. We found that λ = 0.05 yielded op-321

timal performance for model training and clustering.322

Two constituent processes occur simultaneously during DEC model training. First,323

the full loss from equation (7) is backpropagated through the DEC model parameters,324

which include the autoencoder as well as the cluster centroids. Second, to account for325

the cluster centroids changing as training progresses, the distributions qij and pij are up-326

dated at intervals. The update interval is a hyperparameter that must be tuned. Through327
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hyperparameter tuning, an update interval of twice per training epoch was found to be328

optimal for clustering performance, minimizing DEC loss, and training within a reason-329

able time frame. Training is stopped after the number of samples changing assignments330

after every update interval reaches less than 0.2% of the total number of samples.331

4.3 Selecting Optimal Number of Clusters332

Determining the optimal number of clusters, K, is a major challenge in unsuper-333

vised machine learning. Although there are statistical methods available for choosing the334

optimal number of clusters (Rousseeuw, 1987; Tibshirani et al., 2001), in this study we335

treat K as a hyperparameter, iterating the DEC workflow over a range of values for K336

and evaluating the results to choose the best value. Results are evaluated both quan-337

titatively and qualitatively. Quantitative evaluation is performed for each class by ex-338

amining cumulative distribution functions and probability density functions as functions339

of distance to each class centroid, di,j (equation (3)). The qualitative approach is to vi-340

sually inspect the similarity of the latent feature vectors zi to their respective class cen-341

troids µj , and to see if the spectrograms and seismograms assigned to each class like-342

wise exhibit similarity. In general, the formation of two or more similar classes may in-343

dicate that too many classes were initialized, and the data can be grouped into a sin-344

gle class in post-processing. Too much variance among the spectrograms within a class345

may indicate the need for one or more additional classes. We found that K = 8 was346

the optimal number of classes for the RIS data set.347

5 Results348

5.1 Clustering Performance349

Clustering with DEC results in two distinct phases: first, the GMM clustering al-350

gorithm sets the initial centroids, but the latent data are left unmodified. Second, dur-351

ing DEC, centroids are further refined while the latent data are moved much closer to352

their respective centroids, with some data reassigned to different classes altogether.353

The performance of DEC is qualitatively checked by comparing centroids to their354

respective assigned latent data samples. Results for the training data set are shown in355

Figure 6. Each class j is represented by the columns in Figure 6, with each centroid µj356

and its reconstruction gθ(µj) plotted along the top row. Although the centroid is not357
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Figure 6. Within a given class j, the cluster centroids µj are similar to the latent feature

data zi. Though the centroids are not members of the data set, their reconstructions gθ(µj) ex-

hibit similar characteristics to the spectrograms xi assigned to each class. Seismograms plotted

above each spectrogram also exhibit similarity within each class. The data samples closest to

their respective centroids are shown.
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a member of the data set, because the centroid represents the salient features of its class,358

its reconstruction is expected to resemble the spectrograms xi assigned to its class. Sub-359

sequent rows show the latent feature vectors zi, spectrograms xi, and associated seis-360

mograms of the data samples assigned to the respective classes.361

For each class, latent feature vectors zi exhibit similar values to the class centroid362

µj , indicating that DEC has successfully grouped similar latent data samples into a class,363

and that the centroid is representative of the data in its class. The spectrograms in each364

class are likewise similar to each other and to the centroid reconstruction gθ(µj), con-365

firming that the latent features embedded in the centroids are representative of the spec-366

trograms in the class. Finally, the similarity in the latent space and the time-frequency367

domain extends to the time domain, where seismograms in each class are similar to one368

another.369

In addition to checking the efficacy of the clustering, visual examination of the re-370

sults in Figure 6 permits an indication of whether or not an appropriate number of clus-371

ters was chosen. For example, classes 4 and 8 exhibit similar characteristics in time and372

frequency, distinct from each other primarily in peak frequency. If such distinctions are373

not useful or if similarities are redundant, classes can be combined in post-processing.374

If too few clusters are selected, classes may contain widely differing signals, indicating375

the need to increase the number of clusters.376

To determine to what extent DEC further improves clustering over GMM cluster-377

ing, t-SNE is used to visualize the 9-dimensional latent space in two dimensions (van der378

Maaten & Hinton, 2008). t-SNE can illuminate possible clusters within data in an un-379

supervised manner by displaying data in geometrically separated clusters. In Figure 7,380

t-SNE results of the latent feature space clustered with GMM show that the data are381

largely contiguous with few exceptions. Applying the labels assigned by GMM cluster-382

ing to the data points shows that, while there is some geometric separation between the383

clusters, the embedding is characterized by overlapping and dispersed class members,384

indicating poor separation in the latent space and potentially incorrect assignment of385

samples to classes. Contrast this with Figure 7, in which t-SNE results at the conclu-386

sion of DEC show both geometric separation as well as homogeneous class assignments.387

While t-SNE offers an intuitively visual way to look for clusters in data, results are388

sometimes difficult to interpret and are impossible to reproduce exactly due to the in-389
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Figure 7. Visualization of the 9-dimensional latent data space is shown in two dimensions

using the t-Student Stochastic Neighbor Embedding (t-SNE) plot. (a) Clustering and label as-

signment is performed with Gaussian mixture model clustering and exhibits limited separation

within the data and overlapping classes. (b) After DEC, clusters are well separated and contain

nearly homogeneous class members. Class histograms (a) before and (b) after DEC reveal the

extent to which DEC reassigns latent data samples to different classes.
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herent randomness of the algorithm. Running t-SNE iteratively and with the same ran-390

dom seed can mitigate these limitations, but examination of the effects of DEC on the391

densities of the clusters provides a more concrete visualization. In Figure 8a, the cumu-392

lative distribution functions (CDF) for each class are shown as functions of distance to393

the centroid (equation (3)). For each class, the latent data move substantially closer to394

their assigned centroid, as evidenced by the decreased mean and variance of the CDF.395

Of interest to the ability for DEC to distinguish between clusters is the relation of each396

cluster to the others. In Figure 8b, the probability density functions (PDF) of all clus-397

ters are shown as functions of distance to each centroid. Before DEC, though GMM clus-398

tering results in the PDF of each class being closest to its centroid, there is significant399

overlap with other clusters, and the clusters themselves are not particularly dense. Af-400

ter DEC, the PDF of each class is closer to its centroid, denser, and farther removed from401

the other clusters. Thus, DEC effectively separates each cluster from the others, allow-402

ing for better distinction between clusters in the latent space.403

The effects of DEC become readily apparent when the latent feature vectors are404

stacked and sorted according to their distance from each centroid, as shown in Figure 9.405

By sorting the latent space by sample index i such that di+1,j > di,j , cluster separa-406

tion can be visualized directly in the latent space. Before DEC, centroids are initialized407

with the GMM clustering algorithm without modification to the latent data. Closest to408

each class centroid, the latent feature vectors are similar in appearance to the centroid,409

but transition continuously to different patterns as the sorted index i increases. The con-410

trast with the latent space after DEC is stark: because DEC moves latent data assigned411

to a particular class closer to the centroid, the effect is that the latent feature vectors412

take on similar values, and therefore appearance, to the centroid. The result is that the413

latent space appears more sharply segmented after DEC, with the samples closest to the414

centroid of nearly uniform appearance to the centroid itself. For reference, the relative415

location of the other class centroids are marked with white vertical lines. Before DEC,416

the latent feature vectors belonging to the other classes are not readily apparent, whereas417

after DEC, most of the other centroid locations are associated with their distinctive la-418

tent feature vectors.419
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Figure 8. (a) Within each class, deep embedded clustering (DEC) reduces the mean distance

of the assigned latent data to the centroid. The variance of the distance also decreases. As a

result, the cumulative distribution functions shift to the left and have a steeper slope. (b) The

effects of DEC are also evident for each class probability density function (PDF) with respect to

the distance from the centroids. In addition to moving the assigned class members closer to the

centroid, DEC also increases the distance to the other class centroids and PDFs. The total effect

is to separate the latent data samples of one class from the other classes.
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Figure 9. For each class j, latent data samples zi are shown stacked according to their dis-

tance ‖zi − µj‖ from the centroid µj (shown to the left). Distance of the other cluster centroids

relative to the selected class j are indicated with vertical dotted lines. Deep embedded clustering

(DEC) brings assigned data zi closer to the class centroid, resulting in homogeneity among the

latent feature vectors assigned to that class.
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5.2 DEC Methodology Considerations420

One of the key strengths of DEC is its employment of an autoencoder to reduce421

the dimensionality of the input data to obtain more effective clustering performance. By422

reducing the dimensionality of the data space, the complexity of the clustering problem423

is similarly decreased and the distance metrics gain relevance. The ability of the autoen-424

coder to quickly learn the salient features of the data and embed them into the latent425

space makes the technique adaptable to new data sets. While the autoencoder design426

choice for this study was sufficiently robust, autoencoder design presents opportunities427

for further experimentation and improvement. Design variables that could be altered in428

the DNN architecture include the number of layers, dimensions of the latent feature space,429

activation function types, incorporation of max-pooling and drop-out layers, and filter430

size, depth, and stride.431

A second key strength of DEC is that clustering improvement and model optimiza-432

tion occur simultaneously. The outcome is denser, more separated clusters. This is a de-433

sirable effect in distance-based clustering, but it introduces a vulnerability: the success434

of the results may depend on the quality of the initial centroids. This challenge can be435

suitably mitigated by initializing the centroids with the GMM clustering algorithm, which436

accommodates clusters with unbalanced populations, elongated shapes, and differing vari-437

ances. Additionally, Xie et al. (2016) demonstrated that DEC is robust against imbal-438

ances in class sample sizes, including size disparities up to a factor of 10. We assess that439

further refinement of centroid initialization is not necessary to achieve a workflow capa-440

ble of performing satisfactory data exploration.441

The flexibility afforded by DEC extends not only to model design, but also to data442

pre- and post-processing. Whereas model design is largely concerned with how the salient443

features are learned, data pre-processing is concerned with what is supplied to the model.444

This information is dependent on the choice of signal processing parameters, particularly445

signal duration, filter cutoff frequencies, and seismic event detection algorithm. Addi-446

tionally, various data transforms commonly used to characterize seismic waveforms can447

be used as input to DEC (Mousavi et al., 2016). In our case, we used spectrograms, but448

other transforms, such as continuous wavelet transform scalograms, could just as eas-449

ily be used as input to the DEC model. In post-processing, redundant or similar results450

can be combined.451
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6 Discussion: Glaciological Implications452

The full RIS array data set contains 427,798 seismic detections. A summary of the453

data set statistics and class characteristics (Table 3) shows the total number of detec-454

tions for each class, as well as the percentage of detections occurring in the austral sum-455

mers (January, February, and March) versus the austral winters (June, July and August).456

Classes 1, 4, and 7 have pronounced differences (more than 10%) between the number457

of detections occurring in the summers versus the winters, while differences for classes458

2, 3, 5, and 8 are less pronounced (between 5% and 10%). Class 6 appears to have lit-459

tle difference (less than 5%) between austral summers and winters. Inter-annual com-460

parisons for each season show that classes 1, 2, 5, and 8 experienced an increase in ac-461

tivity in the 2016 austral summer over the 2015 austral summer, with classes 5 and 8462

exhibiting the largest changes. Classes 5 and 8 also increase by factors of three and two,463

respectively, in the 2016 austral winter over the 2015 austral winter. These trends can464

be investigated in more detail from Figure 10a, where detection occurrences shown as465

a function of station and month exhibit spatiotemporal patterns that reveal associations466

between environmental forcing and seismicity. Clustering enables these patterns to be467

further explored by class and month (Figure 10b), and by class and station (Figure 10c).468

From Figure 10a, certain patterns are readily apparent, such as increased seismic469

detections during the austral summer months at stations DR01, DR02, and DR03. These470

three stations were located approximately 2 km from the ice front and detected seismic-471

ity associated with ocean gravity waves impacting the shelf front that cause fracturing472

(icequakes) and calving (Chen et al., 2019). Furthermore, seismicity at these stations dur-473

ing the 2016 austral summer is higher than the same period in 2015, indicative of the474

impact of El Niño on Antarctic ice shelf fronts (Nicolas et al., 2017). The remaining DR475

stations and stations RS01 through RS07 exhibit the opposite pattern: austral summers476

are relatively quiet, with increased detection frequencies in the austral winters. The four477

most seismically active stations were located near grounding zones: station RS09 (41,615478

detections) on the eastern flank of Roosevelt Island; station RS11 (25,884 detections) on479

the Shirase Coast; station RS08 (18,655 detections) on the western flank of Roosevelt480

Island; and station RS17 (18,653 detections) on Steershead Ice Rise. All of these stations481

exhibited persistent seismicity throughout the two deployment years, with the exception482

of station RS17, which was offline for several weeks from August to September 2016. These483
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Table 3. Austral Summer (January-February-March) and Winter (June-July-August) Detection

Statistics, Average Peak Frequencies, and Amplitude Characteristics for Each Signal Class over

the Entire Seismic Array

Detections Amplitude (accel., nm/s2)

Class N

%N Summer (JFM)

Total | 2015 | 2016

%N Winter (JJA)

Total | 2015 | 2016

Mean peak

freq (Hz)

Mean Median

Std.

dev.

Max.

1 34,919 19 | 9 | 10 31 | 10 | 21 10.5 53 5 400 26,780

2 45,079 31 | 15 | 16 23 | 11 | 12 7.2 150 46 992 69,410

3 78,861 32 | 17 | 15 24 | 14 | 11 5.3 187 38 6,706 1,632,000

4 100,009 19 | 10 | 9 31 | 17 | 13 4.8 13 6 129 23,650

5 18,268 18 | 7 | 11 25 | 6 | 18 14.8 409 15 5,684 461,200

6 55,633 30 | 17 | 13 27 | 16 | 11 4.4 54 8 315 25,166

7 32,276 11 | 7 | 4 43 | 27 | 16 16.1 7 4 22 2,709

8 62,753 23 | 10 | 13 29 | 10 | 19 6.9 18 4 334 41,923

Figure 10. (a) The frequency of detections comprising the Ross Ice Shelf data set is shown by

station and month. Deep embedded clustering (DEC) provides a further breakdown by (b) class

and month for all stations, and (c) class and station.
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stations are on either fully or partially grounded ice, suggesting that the seismicity re-484

sults from interactions of basal ice with the solid earth.485

Some classes of signal detections exhibit temporal patterns that are visible in Fig-486

ure 10b. Classes 1 and 5 have increased detection frequencies in the austral winter of 2016,487

while classes 2 and 3 have increased detections in the austral summers. Class 6 also ex-488

hibits increased detections in the austral summers, though detections in the austral win-489

ter of 2015 are also high. Meanwhile, classes 4, 7, and 8 exhibit low seismicity during the490

austral summers. A further dimension to the analysis is shown in Figure 10c, which shows491

the distribution of classes by station. The most frequently occurring class in the data492

set is class 4, whose waveform and spectral variation resemble seismic tremor (Figure 6).493

Class 4 signals occur across the array with peak activity in the austral winters when lo-494

cal storms are more intense, suggesting meteorological forcing. Class 3 is the prominent495

signal type at stations near grounding zones (RS08, RS09, RS11, and RS17), as is class496

2 at RS09.497

An important caveat for the detection statistics shown in Table 3 and Figure 10498

arises from the physics governing seismic propagation. For a given amplitude, low fre-499

quency seismic energy propagates farther than high frequency seismic energy. We thus500

expect the seismometers in the RIS array to detect low-frequency signals originating far-501

ther away than high-frequency signals. For example, from Figure 6, class 6 is similar to502

classes 2 and 3, with the notable difference in that class 6 lacks energy above 8 Hz, and503

has much smaller amplitude than classes 2 and 3. Thus, class 6 may be generated by a504

similar source mechanism as classes 2 and 3, but has a longer propagation path.505

Factoring in signal amplitude also affects the range at which seismic energy is de-506

tected. From Table 3, class 7 has an average spectral peak at 16.1 Hz, the highest of the507

classes, with a total of 32,276 detections, the second lowest of the classes. Similarly, class508

5 has the second-highest average spectral peak at 14.8 Hz, with the least amount of de-509

tections among the classes. These two classes are nevertheless distinct from each other510

in amplitude and waveform type: from Table 3, class 7 has a mean amplitude of 7.0 nm/s2,511

while class 5 has a mean amplitude of 408.5 nm/s2. From Figure 6, class 7 consists of512

continuous signals, while class 5 signals are impulsive and likely result from fracturing.513

Detection statistics are further affected by signal-to-noise ratios at the seismometers and514
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by limitations of the automated seismic event detector, such as the inability to separate515

signals from different classes that are received nearly simultaneously.516

Consideration should also be given to determining if classes are duplicates of the517

same seismic source mechanism. Seismic surface waves in the ice undergo dispersion as518

they propagate, which DEC may interpret as separate signal classes. Propagation mod-519

eling can be used to calculate expected dispersion relations to confirm if this is the case.520

Such distinctions could be useful in identifying common propagation paths or provid-521

ing source range discrimination.522

Though the sources of uncertainty in the detection statistics are nontrivial, with523

a proper understanding of these limitations and when paired with environmental data,524

the clustering results can nevertheless be used to analyze the association of potential seis-525

mic source mechanisms that may be related to ice shelf dynamics. In the following sec-526

tions, we provide vignettes using stations DR02 and RS09 to demonstrate the utility of527

DEC in exploring data and identifying potential causes of seismicity when examined in528

conjunction with environmental data.529

6.1 Seasonal seismicity at the RIS front530

Approximately 2 km from the RIS front on Nascent Iceberg, station DR02 exhibits531

a seasonal pattern of seismicity associated with changes in air temperature and sea ice532

concentration in the Ross Sea. During the austral winter, sea ice coverage on the Ross533

Sea reaches nearly 100%, damping ocean swell. During the austral summer, sea ice con-534

centration (Figure 11a) decreases to approximately 25%, permitting ocean gravity waves535

to directly impact the ice shelf front and cause iceberg calving. Additionally, warmer air536

temperatures (Figure 11b) may promote calving with associated increased icequake ac-537

tivity (Chen et al., 2019).538

Increased levels of seismicity are observed for classes 2, 3, and 6 at DR02 (Figure 11e,f,i)539

during the austral summers. Classes 3 and 6 are especially active during the 2016 aus-540

tral summer, when strong El Niño conditions led to anomalously persistent high tem-541

peratures across West Antarctica (Nicolas et al., 2017) and ocean-ice shelf interactions542

were enhanced. Patterns similar to the seismicity at DR02 were observed at stations DR01543

and DR03, also located near the RIS front, and can be seen in the total detections by544

station and month in Figure 10a. Widespread surface melt on the RIS was observed be-545
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Figure 11. Two years of (a) sea ice coverage on the Ross Sea, (b) temperature and (c) wind

speed at Gill automated weather station (approximately 223 km south of DR02), and (d-k) ice-

quake detection statistics for each signal class. Classes 2, 3, and 6 exhibit increased seismicity

during the austral summers. Sea ice concentration from NSIDC (Cavalieri et al., 1996, updated

yearly); weather station data from AMRC, SSEC, UW–Madison.
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tween 10-21 January 2016 (Nicolas et al., 2017; Chaput et al., 2018), which can lead to546

hydrofracture and contribute to ice shelf disintegration (Hubbard et al., 2016; Alley et547

al., 2018).548

Although class 1 has elevated activity during the summers, it maintains activity549

throughout the winter months, suggesting that gravity wave activity is not the dominant550

forcing. The persistence of class 1 signals, which often consist of impulse trains, suggests551

they may be caused by icequakes resulting from the motion of the ice shelf itself, as the552

ice flow velocity in the vicinity of station DR02 is among the highest observed on the553

RIS (Klein et al., 2020). Classes 4, 5, 7, and 8 (Figure 11g,h,j,k) are more active dur-554

ing the coldest periods of the year (April-September), suggesting that these signals may555

be associated with extremely cold temperatures or strong wind events. Cold-weather en-556

hanced seismicity occurs at a rift approximately 140 km south of the ice front (Olinger557

et al., 2019). Alternatively, from Table 3, these classes are lower amplitude than those558

most active during the austral summer, which suggests that these detections may be masked559

by higher amplitude signals associated with classes 2 and 3. Across all classes, discrete560

instances of high seismicity occur that do not correspond to environmental forcing. Such561

instances may indicate the occurrence of fracturing ice (icequakes) or events associated562

with crevasse expansion.563

6.2 Diurnal seismicity on Roosevelt Island564

Station RS09 on the eastern flank of Roosevelt Island experienced the most detec-565

tions on the array, comprising 9.7% of detections in the full data set. In Figure 12, po-566

tential environmental sources of seismicity are compared to the seismicity of each class.567

Temperature and wind speed (Figure 12a,b) were recorded at a nearby automated weather568

station, Margaret, 122 km southwest of RS09. Tides (Figure 12c) were realized from the569

CATS2008 model (Padman et al., 2002) at station RS10, which is on floating ice and ap-570

proximates the tidal signal in the basin between Roosevelt Island and the Shirase Coast.571

Seismicity for classes 2, 3, and 6 (Figure 12d,e,i) dominate the detections at RS09 and572

are active throughout the year, with classes 2 and 3 comprising 52.8% and 38.0% of the573

detections, respectively. Classes 1, 4, 5, 7, and 8 (Figure 12d,g,h,j,k) are comparatively574

sparse, with seismicity limited to what appear to be discrete signals that could be as-575

sociated with large fracture or crevasse events.576
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Figure 12. Two years of (a) temperature and (b) wind speed at Margaret automated weather

station (MGT, approximately 122 km southwest of RS09, Figure 1), c) model-derived tides

calculated at station DR10, and (d-k) icequake detection statistics for each signal class. Inter-

annual timescale is shown at left with vertical red lines indicating the subset weekly time-scale at

right. The diurnal tidal signal corresponds to seismicity for classes 2, 3, and 6. Tidal model from

(Padman et al., 2002); weather station data from AMRC, SSEC, UW–Madison.

Of particular interest at station RS09 is evidence of seismicity associated with the577

diurnal tide (Figure 12). On an inter-annual timescale, class 6 exhibits a periodic mod-578

ulation of seismicity which tends to correlate with spring tides. Variability over fortnight579

tidal cycles is shown between 15 June 2016 and 15 July 2016. This weekly timescale shows580

that classes 2 and 3, the dominant signal classes, correlate with diurnal tides. Even some581

relatively non-active classes (1, 4, and 8) show signs of diurnal seismicity. These results582

are consistent with a previous study that found more than 95% of detections at RS09583

were from tidally induced swarms of icequakes that occur throughout the year (Cole, 2020).584

Other stations located at grounding zones exhibit similar patterns of seismicity, though585

to a lesser extent than RS09. Station RS11, located east of RS09 on the Shirase Coast,586

exhibits patterns of seismicity similar to RS09. These similarities indicate that ice shelf587

seismicity at grounding zones is associated with similar ice shelf processes. RS08, on the588

western flank of Roosevelt Island0, and RS17, at Steershead Ice Rise, also exhibit diur-589

nal seismicity, suggesting a dynamic diurnal process common to the grounding zones.590

These patterns of seismicity indicate that the interaction of the ice shelf with the solid591
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earth at grounding zones is modulated by tides. Among the four stations at grounding592

zones, class 3 signals are the most common. With a mean peak frequency of 5.3 Hz and593

a mean amplitude of 187 nm/s2, these signals are among the strongest detected on the594

array.595

7 Conclusions596

Application of deep embedded clustering (DEC) to the Ross Ice Shelf (RIS) array597

data set identified eight classes of impulsive signals, with linkage of three of the classes598

to tidal variability near grounding zones. Additionally, stations near the RIS front showed599

increased icequake activity during the 2016 El Niño austral summer. The highest seis-600

micity was observed at grounding zones, particularly along the eastern flank of Roosevelt601

Island.602

DEC is an effective way to explore large seismic data sets, particularly in its abil-603

ity to identify dominant types of seismicity. The results provided by DEC, when con-604

textualized with non-seismic environmental data, can assist in the identification or cor-605

relation of seismic source mechanisms, as demonstrated with the RIS environmental data.606

Additionally, DEC can be readily tailored to investigate different aspects of the same or607

new data sets. Combined with its effectiveness at clustering seismic detections, this flex-608

ibility suggests that DEC can be incorporated into existing seismic workflows in order609

to speed up exploratory data analysis.610

As seismic data sets grow ever larger, novel machine learning techniques will be nec-611

essary to enable researchers to fully utilize this data. DEC has the potential to become612

an important tool for exploring these large data sets, and to complement other machine613

learning-based tools as well as conventional signal processing approaches. The incorpo-614

ration of such tools will enable more thorough and timely geophysical data analysis, thus615

improving the response of geophysical research to the needs of society in a rapidly chang-616

ing earth.617
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Holtzman, B. K., Paté, A., Paisley, J., Waldhauser, F., & Repetto, D. (2018,752

–36–



manuscript submitted to JGR: Solid Earth

May). Machine learning reveals cyclic changes in seismic source spec-753

tra in Geysers geothermal field. Science Advances, 4 (5), eaao2929. doi:754

10.1126/sciadv.aao2929755

Hotovec-Ellis, A. J., & Jeffries, C. (2016, April). Near Real-time Detection, Cluster-756

ing, and Analysis of Repeating Earthquakes: Application to Mount St. Helens757

and Redoubt Volcanoes [Invited]. Reno, NV, USA.758

Hubbard, B., Luckman, A., Ashmore, D. W., Bevan, S., Kulessa, B.,759

Kuipers Munneke, P., . . . Rutt, I. (2016, September). Massive subsurface760

ice formed by refreezing of ice-shelf melt ponds. Nature Communications, 7 (1),761

11897. doi: 10.1038/ncomms11897762

Johnson, C. W., Ben-Zion, Y., Meng, H., & Vernon, F. (2020, August). Identifying763

Different Classes of Seismic Noise Signals Using Unsupervised Learning. Geo-764

physical Research Letters, 47 (15). doi: 10.1029/2020GL088353765

Johnson, C. W., Meng, H., Vernon, F., & Ben-Zion, Y. (2019, August). Characteris-766

tics of Ground Motion Generated by Wind Interaction With Trees, Structures,767

and Other Surface Obstacles. Journal of Geophysical Research: Solid Earth,768

124 (8), 8519–8539. doi: 10.1029/2018JB017151769

Kingma, D. P., & Ba, J. (2017, January). Adam: A Method for Stochastic Opti-770

mization. arXiv:1412.6980 [cs] .771

Klein, E., Mosbeux, C., Bromirski, P. D., Padman, L., Bock, Y., Springer, S. R., &772

Fricker, H. A. (2020, October). Annual cycle in flow of Ross Ice Shelf, Antarc-773

tica: Contribution of variable basal melting. Journal of Glaciology , 66 (259),774

861–875. doi: 10.1017/jog.2020.61775

Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., & Gerstoft, P.776

(2019, January). Machine Learning in Seismology: Turning Data into Insights.777

Seismological Research Letters, 90 (1), 3–14. doi: 10.1785/0220180259778

Kullback, S., & Leibler, R. A. (1951, March). On Information and Sufficiency.779

The Annals of Mathematical Statistics, 22 (1), 79–86. doi: 10.1214/aoms/780

1177729694781

MacAyeal, D. R., Banwell, A. F., Okal, E. A., Lin, J., Willis, I. C., Goodsell, B.,782

& MacDonald, G. J. (2019, September). Diurnal seismicity cycle linked to783

subsurface melting on an ice shelf. Annals of Glaciology , 60 (79), 137–157. doi:784

10.1017/aog.2018.29785

–37–



manuscript submitted to JGR: Solid Earth

MacQueen, J. (1967). Some methods for classification and analysis of multivariate786

observations. In Proceedings of the fifth berkeley symposium on mathematical787

statistics and probability, volume 1: Statistics (pp. 281–297). Berkeley, Calif.:788

University of California Press.789

Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., & Long, J. (2018). A Survey of Clus-790

tering With Deep Learning: From the Perspective of Network Architecture.791

IEEE Access, 6 , 39501–39514. doi: 10.1109/ACCESS.2018.2855437792

Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., . . .793

Zinglersen, K. B. (2017, November). BedMachine v3: Complete Bed Topog-794

raphy and Ocean Bathymetry Mapping of Greenland From Multibeam Echo795

Sounding Combined With Mass Conservation. Geophysical Research Letters,796

44 (21). doi: 10.1002/2017GL074954797

Mousavi, S. M., Horton, S. P., Langston, C. A., & Samei, B. (2016, October).798

Seismic features and automatic discrimination of deep and shallow induced-799

microearthquakes using neural network and logistic regression. Geophysical800

Journal International , 207 (1), 29–46. doi: 10.1093/gji/ggw258801

Mousavi, S. M., Zhu, W., Ellsworth, W., & Beroza, G. (2019, November). Un-802

supervised Clustering of Seismic Signals Using Deep Convolutional Autoen-803

coders. IEEE Geoscience and Remote Sensing Letters, 16 (11), 1693–1697. doi:804

10.1109/LGRS.2019.2909218805

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge,806

MA: MIT Press.807

Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M. P.,808

Bromwich, D. H., . . . Wille, J. D. (2017, August). January 2016 extensive809

summer melt in West Antarctica favoured by strong El Niño. Nature Commu-810

nications, 8 (1), 15799. doi: 10.1038/ncomms15799811

Olinger, S. D., Lipovsky, B. P., Wiens, D. A., Aster, R. C., Bromirski, P. D., Chen,812

Z., . . . Stephen, R. A. (2019, June). Tidal and Thermal Stresses Drive Seismic-813

ity Along a Major Ross Ice Shelf Rift. Geophysical Research Letters, 46 (12),814

6644–6652. doi: 10.1029/2019GL082842815

Padman, L., Fricker, H. A., Coleman, R., Howard, S., & Erofeeva, L. (2002). A new816

tide model for the Antarctic ice shelves and seas. Annals of Glaciology , 34 ,817

247–254. doi: 10.3189/172756402781817752818

–38–



manuscript submitted to JGR: Solid Earth

Paolo, F. S., Fricker, H. A., & Padman, L. (2015). Volume loss from Antarctic ice819

shelves is accelerating. Science, 348 (6232), 327–331. doi: 10.1126/science820

.aaa0940821

Perol, T., Gharbi, M., & Denolle, M. (2018, February). Convolutional neural net-822

work for earthquake detection and location. Science Advances, 4 (2), e1700578.823

doi: 10.1126/sciadv.1700578824

Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den825

Broeke, M. R., & Padman, L. (2012, April). Antarctic ice-sheet loss826

driven by basal melting of ice shelves. Nature, 484 (7395), 502–505. doi:827

10.1038/nature10968828

Reddy, T. A., Devi, K. R., & Gangashetty, S. V. (2012, March). Nonlinear principal829

component analysis for seismic data compression. In 2012 1st International830

Conference on Recent Advances in Information Technology (RAIT) (pp. 927–831

932). Dhanbad, India: IEEE. doi: 10.1109/RAIT.2012.6194558832

Riahi, N., & Gerstoft, P. (2017, March). Using graph clustering to locate sources833

within a dense sensor array. Signal Processing , 132 , 110–120. doi: 10.1016/j834

.sigpro.2016.10.001835

Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., & Scheuchl, B. (2014).836

Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and837

Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research838

Letters, 41 (10), 3502–3509. doi: 10.1002/2014GL060140839

Rousseeuw, P. J. (1987, November). Silhouettes: A graphical aid to the interpre-840

tation and validation of cluster analysis. Journal of Computational and Applied841

Mathematics, 20 , 53–65. doi: 10.1016/0377-0427(87)90125-7842

Scambos, T. A., Bohlander, J. A., Shuman, C. A., & Skvarca, P. (2004). Glacier843

acceleration and thinning after ice shelf collapse in the Larsen B embay-844

ment, Antarctica. Geophysical Research Letters, 31 (18). doi: 10.1029/845

2004GL020670846

Seydoux, L., Balestriero, R., Poli, P., de Hoop, M., Campillo, M., & Baraniuk, R.847

(2020, December). Clustering earthquake signals and background noises in848

continuous seismic data with unsupervised deep learning. Nature Communica-849

tions, 11 (1), 3972. doi: 10.1038/s41467-020-17841-x850

Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., . . .851

–39–



manuscript submitted to JGR: Solid Earth

Zwally, H. J. (2020, June). Pervasive ice sheet mass loss reflects compet-852

ing ocean and atmosphere processes. Science, 368 (6496), 1239–1242. doi:853

10.1126/science.aaz5845854

Snover, D., Johnson, C. W., Bianco, M. J., & Gerstoft, P. (2020). Deep clustering855

to identify sources of urban seismic noise in Long Beach, CA. Geophysical Re-856

search Letters, 33.857
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