Raymond J Hess

and 2 more

UCSC GEOPATHS is an NSF-supported initiative to improve undergraduate success in the geosciences, driven by a desire to broaden academic engagement. One component of the program is a funded undergraduate summer program that provides authentic, professional experiences – across all employment sectors – to increase commitment in the geoscience pipeline. Many hydrologic basins rely on groundwater to supply domestic, municipal, and agricultural demand, but resources are increasingly stressed by rising demand, changes in land use, and a shifting climate. Consequences of groundwater overdraft include drying surface water systems, land subsidence, and seawater intrusion. Managed aquifer recharge (MAR) can help improve groundwater resources by increasing infiltration of excess surface water. We are part of a research team assessing hydrologic conditions during MAR on an active vineyard in Central California, through diversion of high flows from an adjacent river, a strategy known as “flood-MAR.” Our team collected soil samples from the upper 100 cm below ground surface at 24 locations across the 785-acre field site. We analyzed samples for soil texture at 10-cm spacing using a particle size analyzer based on laser light scattering. Preliminary analysis of fractions of sand, silt, and clay-sized particles indicate some lateral continuity from site to site. The northern part of the field area appears to be finer grained, on average, consistent with regional soil maps, but there is also considerable variability with depth. These data will be used to assess variations in expected infiltration rates by combining soil texture (to estimate infiltration capacity) and potential flood and saturation depths (to bracket vertical head gradients). Studies of this kind are helpful for assessing the efficacy of flood-MAR as a strategy to improve groundwater supplies and quality.