References
Baumann, M., Kuemmerle, T., 2016. The impacts of warfare and armed conflict on land systems. J. Land Use Sci. 11, 672–688. https://doi.org/https://doi.org/10.1080/1747423X.2016.1241317
Chen, Z., Yu, B., Zhou, Y., Liu, H., Yang, C., Shi, K., Wu, J., 2019. Mapping Global Urban Areas from 2000 to 2012 Using Time-Series Nighttime Light Data and MODIS Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12, 1143–1153. https://doi.org/10.1109/JSTARS.2019.2900457
Coesfeld, J., Anderson, S.J., Baugh, K., Elvidge, C.D., Schernthanner, H., Kyba, C.C.M., 2018. Variation of Individual Location Radiance in VIIRS DNB Monthly Composite Images. Remote Sens. 10, 1964. https://doi.org/10.3390/RS10121964
Deng, J.S., Wang, K., Hong, Y., Qi, J.G., 2009. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 92, 187–198. https://doi.org/10.1016/J.LANDURBPLAN.2009.05.001
Elvidge, C.D., Baugh, K., Zhizhin, M., Hsu, F.C., Ghosh, T., 2017. VIIRS night-time lights. Int. J. Remote Sens. 38, 5860–5879. https://doi.org/10.1080/01431161.2017.1342050
Elvidge, C.D., Baugh, K.E., Hobson, V.R., Kihn, E.A., Kroehl, H.W., Davis, E.R., Cocero, D., 1997. Satellite inventory of human settlements using nocturnal radiation emissions: a contribution for the global toolchest. Glob. Chang. Biol. 3, 387–395. https://doi.org/10.1046/J.1365-2486.1997.00115.X
Elvidge, C.D., Zhizhin, M., Ghosh, T., Hsu, F.C., Taneja, J., 2021. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 13, 922. https://doi.org/10.3390/RS13050922
Elvidge, C.D., Zhizhin, M., Keith, D., Miller, S.D., Hsu, F.C., Ghosh, T., Anderson, S.J., Monrad, C.K., Bazilian, M., Taneja, J., Sutton, P.C., Barentine, J., Kowalik, W.S., Kyba, C.C.M., Pack, D.W., Hammerling, D., 2022. The VIIRS Day/Night Band: A Flicker Meter in Space? Remote Sens. 14, 1316. https://doi.org/10.3390/RS14061316
Green, J., Perkins, C., Steinbach, R., Edwards, P., 2015. Reduced street lighting at night and health: A rapid appraisal of public views in England and Wales. Health Place 34, 171–180. https://doi.org/10.1016/J.HEALTHPLACE.2015.05.011
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A., 2011. Robust statistics: the approach based on influence functions. John Wiley & Sons.
Hölker, F., Moss, T., Griefahn, B., Kloas, W., Voigt, C.C., Henckel, D., Hänel, A., Kappeler, P.M., Völker, S., Schwope, A., 2010. The dark side of light: a transdisciplinary research agenda for light pollution policy. Ecol. Soc. 15.
Jensen, J.R., Cowen, D.C., 1999. Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogramm. Eng. Remote Sensing 65, 611–622.
Leu, J., Yen, I.H., Gansky, S.A., Walton, E., Adler, N.E., Takeuchi, D.T., 2008. The association between subjective social status and mental health among Asian immigrants: Investigating the influence of age at immigration. Soc. Sci. Med. 66, 1152–1164. https://doi.org/10.1016/J.SOCSCIMED.2007.11.028
Levin, N., 2017. The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites. Remote Sens. Environ. 193, 150–164. https://doi.org/10.1016/j.rse.2017.03.003
Levin, N., Kyba, C.C.M., Zhang, Q., Sánchez de Miguel, A., Román, M.O., Li, X., Portnov, B.A., Molthan, A.L., Jechow, A., Miller, S.D., Wang, Z., Shrestha, R.M., Elvidge, C.D., 2020. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 237. https://doi.org/10.1016/j.rse.2019.111443
Li, X., Levin, N., Xie, J., Li, D., 2020. Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing. Remote Sens. Environ. 247, 111942. https://doi.org/10.1016/j.rse.2020.111942
Li, X., Liu, S., Jendryke, M., Li, D., Wu, C., 2018. Night-Time Light Dynamics during the Iraqi Civil War. Remote Sens. 10, 858. https://doi.org/10.3390/RS10060858
Li, X., Ma, R., Zhang, Q., Li, D., Liu, S., He, T., Zhao, L., 2019. Anisotropic characteristic of artificial light at night – Systematic investigation with VIIRS DNB multi-temporal observations. Remote Sens. Environ. 233. https://doi.org/10.1016/j.rse.2019.111357
Li, X., Shang, X., Zhang, Q., Li, D., Chen, F., Jia, M., Wang, Y., 2022. Using radiant intensity to characterize the anisotropy of satellite-derived city light at night. Remote Sens. Environ. 271, 112920. https://doi.org/10.1016/J.RSE.2022.112920
Liu, S., Li, X., Levin, N., Jendryke, M., 2019. Tracing cultural festival patterns using time-series of VIIRS monthly products. Remote Sens. Lett. 10, 1172–1181. https://doi.org/10.1080/2150704X.2019.1666313
Ma, T., Zhou, C., Pei, T., Haynie, S., Fan, J., 2012. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 124, 99–107. https://doi.org/10.1016/J.RSE.2012.04.018
Machlis, G.E., Román, M.O., Pickett, S.T.A., 2022. A framework for research on recurrent acute disasters. Sci. Adv. 8, 2458. https://doi.org/10.1126/SCIADV.ABK2458
Malecki, E.J., 1997. Technology and economic development: the dynamics of local, regional, and national change. Univ. Illinois Urbana-Champaign’s Acad. Entrep. Leadersh. Hist. Res. Ref. Entrep.
Ojima, D.S., Galvin, K.A., Turner, B.L.I.I., 1994. The global impact of land-use change. Bioscience 44, 300–304. https://doi.org/10.2307/1312379
Olofsson, P., Foody, G.M., Herold, M., Stehman, S. V., Woodcock, C.E., Wulder, M.A., 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015
Ramiaramanana, F.N., Lam, K., Martinez, L., 2021. Policy making and political implications and contradictions in changing urban environment-Housing and public transport in Abidjan, Ivory Coast.
Román, M.O., Stokes, E.C., 2015. Holidays in lights: Tracking cultural patterns in demand for energy services. Earth’s Futur. 3, 182–205. https://doi.org/10.1002/2014EF000285
Román, M.O., Stokes, E.C., Shrestha, R., Wang, Z., Schultz, L., Carlo, E.A.S., Sun, Q., Bell, J., Molthan, A., Kalb, V., Ji, C., Seto, K.C., McClain, S.N., Enenkel, M., 2019. Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria. PLoS One 14, e0218883. https://doi.org/10.1371/journal.pone.0218883
Román, M.O., Wang, Z., Sun, Q., Kalb, V., Miller, S.D., Molthan, A., Schultz, L., Bell, J., Stokes, E.C., Pandey, B., Seto, K.C., Hall, D., Oda, T., Wolfe, R.E., Lin, G., Golpayegani, N., Devadiga, S., Davidson, C., Sarkar, S., Praderas, C., Schmaltz, J., Boller, R., Stevens, J., Ramos González, O.M., Padilla, E., Alonso, J., Detrés, Y., Armstrong, R., Miranda, I., Conte, Y., Marrero, N., MacManus, K., Esch, T., Masuoka, E.J., 2018. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 210, 113–143. https://doi.org/10.1016/j.rse.2018.03.017
Shi, K., Huang, C., Yu, B., Yin, B., Huang, Y., Wu, J., 2014. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 5, 358–366. https://doi.org/10.1080/2150704X.2014.905728
Steffen, W., Sanderson, R.A., Tyson, P.D., Jäger, J., Matson, P.A., Moore III, B., Oldfield, F., Richardson, K., Schellnhuber, H.-J., Turner, B.L., 2006. Global change and the earth system: a planet under pressure. Springer Science & Business Media.
Stokes, E.C., Seto, K.C., 2019. Characterizing urban infrastructural transitions for the Sustainable Development Goals using multi-temporal land, population, and nighttime light data. Remote Sens. Environ. 234, 111430. https://doi.org/10.1016/J.RSE.2019.111430
Tan, X., Zhu, X., Chen, J., Chen, R., 2022. Modeling the direction and magnitude of angular effects in nighttime light remote sensing. Remote Sens. Environ. 269, 112834. https://doi.org/10.1016/J.RSE.2021.112834
Tang, Y., Shao, Z., Huang, X., Cai, B., 2021. Mapping Impervious Surface Areas Using Time-Series Nighttime Light and MODIS Imagery. Remote Sens. 13, 1900. https://doi.org/10.3390/RS13101900
Tibshiranit, R., 1996. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 58, 267–288. https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
Turner, M.G., 2010. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849. https://doi.org/10.1890/10-0097.1
Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., Possingham, H.P., Laurance, W.F., Wood, P., Fekete, B.M., Levy, M.A., Watson, J.E.M., 2016. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 2016 31 3, 1–10. https://doi.org/10.1038/sdata.2016.67
Wang, Z., Román, M.O., Kalb, V.L., Miller, S.D., Zhang, J., Shrestha, R.M., 2021. Quantifying uncertainties in nighttime light retrievals from Suomi-NPP and NOAA-20 VIIRS Day/Night Band data. Remote Sens. Environ. 263, 112557. https://doi.org/10.1016/J.RSE.2021.112557
Xie, Y., Weng, Q., 2016. Updating urban extents with nighttime light imagery by using an object-based thresholding method. Remote Sens. Environ. 187, 1–13. https://doi.org/10.1016/J.RSE.2016.10.002
Xie, Y., Weng, Q., Fu, P., 2019. Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013–2017. Remote Sens. Environ. 225, 160–174. https://doi.org/10.1016/j.rse.2019.03.008
Yang, D., Luan, W., Qiao, L., Pratama, M., 2020. Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery. Appl. Energy 268, 114696. https://doi.org/10.1016/J.APENERGY.2020.114696
Yu, B., Shi, K., Hu, Y., Huang, C., Chen, Z., Wu, J., 2015. Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 1217–1229. https://doi.org/10.1109/JSTARS.2015.2399416
Zhang, Q., Seto, K.C., 2011. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 115, 2320–2329. https://doi.org/10.1016/j.rse.2011.04.032
Zhao, N., Liu, Y., Hsu, F.C., Samson, E.L., Letu, H., Liang, D., Cao, G., 2020. Time series analysis of VIIRS-DNB nighttime lights imagery for change detection in urban areas: A case study of devastation in Puerto Rico from hurricanes Irma and Maria. Appl. Geogr. 120, 102222. https://doi.org/10.1016/j.apgeog.2020.102222
Zheng, Q., Weng, Q., Wang, K., 2021. Characterizing urban land changes of 30 global megacities using nighttime light time series stacks. ISPRS J. Photogramm. Remote Sens. 173, 10–23. https://doi.org/10.1016/J.ISPRSJPRS.2021.01.002
Zhu, Z., Woodcock, C.E., Holden, C., Yang, Z., 2015. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 162, 67–83. https://doi.org/10.1016/J.RSE.2015.02.009
Zhu, Z., Woodcock, C.E., Rogan, J., Kellndorfer, J., 2012. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 117, 72–82. https://doi.org/10.1016/j.rse.2011.07.020
Zhu, Z., Zhang, J., Yang, Z., Aljaddani, A.H., Cohen, W.B., Qiu, S., Zhou, C., 2020. Continuous monitoring of land disturbance based on Landsat time series. Remote Sens. Environ. 238, 111116. https://doi.org/10.1016/j.rse.2019.03.009
Zhu, Z., Zhou, Y., Seto, K.C., Stokes, E.C., Deng, C., Pickett, S.T.A., Taubenböck, H., 2019. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 228, 164–182. https://doi.org/10.1016/J.RSE.2019.04.020