References
Baumann, M., Kuemmerle, T., 2016. The impacts of warfare and armed
conflict on land systems. J. Land Use Sci. 11, 672–688.
https://doi.org/https://doi.org/10.1080/1747423X.2016.1241317
Chen, Z., Yu, B., Zhou, Y., Liu, H., Yang, C., Shi, K., Wu, J., 2019.
Mapping Global Urban Areas from 2000 to 2012 Using Time-Series Nighttime
Light Data and MODIS Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 12, 1143–1153. https://doi.org/10.1109/JSTARS.2019.2900457
Coesfeld, J., Anderson, S.J., Baugh, K., Elvidge, C.D., Schernthanner,
H., Kyba, C.C.M., 2018. Variation of Individual Location Radiance in
VIIRS DNB Monthly Composite Images. Remote Sens. 10, 1964.
https://doi.org/10.3390/RS10121964
Deng, J.S., Wang, K., Hong, Y., Qi, J.G., 2009. Spatio-temporal dynamics
and evolution of land use change and landscape pattern in response to
rapid urbanization. Landsc. Urban Plan. 92, 187–198.
https://doi.org/10.1016/J.LANDURBPLAN.2009.05.001
Elvidge, C.D., Baugh, K., Zhizhin, M., Hsu, F.C., Ghosh, T., 2017. VIIRS
night-time lights. Int. J. Remote Sens. 38, 5860–5879.
https://doi.org/10.1080/01431161.2017.1342050
Elvidge, C.D., Baugh, K.E., Hobson, V.R., Kihn, E.A., Kroehl, H.W.,
Davis, E.R., Cocero, D., 1997. Satellite inventory of human settlements
using nocturnal radiation emissions: a contribution for the global
toolchest. Glob. Chang. Biol. 3, 387–395.
https://doi.org/10.1046/J.1365-2486.1997.00115.X
Elvidge, C.D., Zhizhin, M., Ghosh, T., Hsu, F.C., Taneja, J., 2021.
Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly
Averages: 2012 to 2019. Remote Sens. 13, 922.
https://doi.org/10.3390/RS13050922
Elvidge, C.D., Zhizhin, M., Keith, D., Miller, S.D., Hsu, F.C., Ghosh,
T., Anderson, S.J., Monrad, C.K., Bazilian, M., Taneja, J., Sutton,
P.C., Barentine, J., Kowalik, W.S., Kyba, C.C.M., Pack, D.W.,
Hammerling, D., 2022. The VIIRS Day/Night Band: A Flicker Meter in
Space? Remote Sens. 14, 1316. https://doi.org/10.3390/RS14061316
Green, J., Perkins, C., Steinbach, R., Edwards, P., 2015. Reduced street
lighting at night and health: A rapid appraisal of public views in
England and Wales. Health Place 34, 171–180.
https://doi.org/10.1016/J.HEALTHPLACE.2015.05.011
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A., 2011.
Robust statistics: the approach based on influence functions. John Wiley
& Sons.
Hölker, F., Moss, T., Griefahn, B., Kloas, W., Voigt, C.C., Henckel, D.,
Hänel, A., Kappeler, P.M., Völker, S., Schwope, A., 2010. The dark side
of light: a transdisciplinary research agenda for light pollution
policy. Ecol. Soc. 15.
Jensen, J.R., Cowen, D.C., 1999. Remote sensing of urban/suburban
infrastructure and socio-economic attributes. Photogramm. Eng. Remote
Sensing 65, 611–622.
Leu, J., Yen, I.H., Gansky, S.A., Walton, E., Adler, N.E., Takeuchi,
D.T., 2008. The association between subjective social status and mental
health among Asian immigrants: Investigating the influence of age at
immigration. Soc. Sci. Med. 66, 1152–1164.
https://doi.org/10.1016/J.SOCSCIMED.2007.11.028
Levin, N., 2017. The impact of seasonal changes on observed nighttime
brightness from 2014 to 2015 monthly VIIRS DNB composites. Remote Sens.
Environ. 193, 150–164. https://doi.org/10.1016/j.rse.2017.03.003
Levin, N., Kyba, C.C.M., Zhang, Q., Sánchez de Miguel, A., Román, M.O.,
Li, X., Portnov, B.A., Molthan, A.L., Jechow, A., Miller, S.D., Wang,
Z., Shrestha, R.M., Elvidge, C.D., 2020. Remote sensing of night lights:
A review and an outlook for the future. Remote Sens. Environ. 237.
https://doi.org/10.1016/j.rse.2019.111443
Li, X., Levin, N., Xie, J., Li, D., 2020. Monitoring hourly night-time
light by an unmanned aerial vehicle and its implications to satellite
remote sensing. Remote Sens. Environ. 247, 111942.
https://doi.org/10.1016/j.rse.2020.111942
Li, X., Liu, S., Jendryke, M., Li, D., Wu, C., 2018. Night-Time Light
Dynamics during the Iraqi Civil War. Remote Sens. 10, 858.
https://doi.org/10.3390/RS10060858
Li, X., Ma, R., Zhang, Q., Li, D., Liu, S., He, T., Zhao, L., 2019.
Anisotropic characteristic of artificial light at night – Systematic
investigation with VIIRS DNB multi-temporal observations. Remote Sens.
Environ. 233. https://doi.org/10.1016/j.rse.2019.111357
Li, X., Shang, X., Zhang, Q., Li, D., Chen, F., Jia, M., Wang, Y., 2022.
Using radiant intensity to characterize the anisotropy of
satellite-derived city light at night. Remote Sens. Environ. 271,
112920. https://doi.org/10.1016/J.RSE.2022.112920
Liu, S., Li, X., Levin, N., Jendryke, M., 2019. Tracing cultural
festival patterns using time-series of VIIRS monthly products. Remote
Sens. Lett. 10, 1172–1181.
https://doi.org/10.1080/2150704X.2019.1666313
Ma, T., Zhou, C., Pei, T., Haynie, S., Fan, J., 2012. Quantitative
estimation of urbanization dynamics using time series of DMSP/OLS
nighttime light data: A comparative case study from China’s cities.
Remote Sens. Environ. 124, 99–107.
https://doi.org/10.1016/J.RSE.2012.04.018
Machlis, G.E., Román, M.O., Pickett, S.T.A., 2022. A framework for
research on recurrent acute disasters. Sci. Adv. 8, 2458.
https://doi.org/10.1126/SCIADV.ABK2458
Malecki, E.J., 1997. Technology and economic development: the dynamics
of local, regional, and national change. Univ. Illinois
Urbana-Champaign’s Acad. Entrep. Leadersh. Hist. Res. Ref. Entrep.
Ojima, D.S., Galvin, K.A., Turner, B.L.I.I., 1994. The global impact of
land-use change. Bioscience 44, 300–304.
https://doi.org/10.2307/1312379
Olofsson, P., Foody, G.M., Herold, M., Stehman, S. V., Woodcock, C.E.,
Wulder, M.A., 2014. Good practices for estimating area and assessing
accuracy of land change. Remote Sens. Environ. 148, 42–57.
https://doi.org/10.1016/j.rse.2014.02.015
Ramiaramanana, F.N., Lam, K., Martinez, L., 2021. Policy making and
political implications and contradictions in changing urban
environment-Housing and public transport in Abidjan, Ivory Coast.
Román, M.O., Stokes, E.C., 2015. Holidays in lights: Tracking cultural
patterns in demand for energy services. Earth’s Futur. 3, 182–205.
https://doi.org/10.1002/2014EF000285
Román, M.O., Stokes, E.C., Shrestha, R., Wang, Z., Schultz, L., Carlo,
E.A.S., Sun, Q., Bell, J., Molthan, A., Kalb, V., Ji, C., Seto, K.C.,
McClain, S.N., Enenkel, M., 2019. Satellite-based assessment of
electricity restoration efforts in Puerto Rico after Hurricane Maria.
PLoS One 14, e0218883. https://doi.org/10.1371/journal.pone.0218883
Román, M.O., Wang, Z., Sun, Q., Kalb, V., Miller, S.D., Molthan, A.,
Schultz, L., Bell, J., Stokes, E.C., Pandey, B., Seto, K.C., Hall, D.,
Oda, T., Wolfe, R.E., Lin, G., Golpayegani, N., Devadiga, S., Davidson,
C., Sarkar, S., Praderas, C., Schmaltz, J., Boller, R., Stevens, J.,
Ramos González, O.M., Padilla, E., Alonso, J., Detrés, Y., Armstrong,
R., Miranda, I., Conte, Y., Marrero, N., MacManus, K., Esch, T.,
Masuoka, E.J., 2018. NASA’s Black Marble nighttime lights product suite.
Remote Sens. Environ. 210, 113–143.
https://doi.org/10.1016/j.rse.2018.03.017
Shi, K., Huang, C., Yu, B., Yin, B., Huang, Y., Wu, J., 2014. Evaluation
of NPP-VIIRS night-time light composite data for extracting built-up
urban areas. Remote Sens. Lett. 5, 358–366.
https://doi.org/10.1080/2150704X.2014.905728
Steffen, W., Sanderson, R.A., Tyson, P.D., Jäger, J., Matson, P.A.,
Moore III, B., Oldfield, F., Richardson, K., Schellnhuber, H.-J.,
Turner, B.L., 2006. Global change and the earth system: a planet under
pressure. Springer Science & Business Media.
Stokes, E.C., Seto, K.C., 2019. Characterizing urban infrastructural
transitions for the Sustainable Development Goals using multi-temporal
land, population, and nighttime light data. Remote Sens. Environ. 234,
111430. https://doi.org/10.1016/J.RSE.2019.111430
Tan, X., Zhu, X., Chen, J., Chen, R., 2022. Modeling the direction and
magnitude of angular effects in nighttime light remote sensing. Remote
Sens. Environ. 269, 112834. https://doi.org/10.1016/J.RSE.2021.112834
Tang, Y., Shao, Z., Huang, X., Cai, B., 2021. Mapping Impervious Surface
Areas Using Time-Series Nighttime Light and MODIS Imagery. Remote Sens.
13, 1900. https://doi.org/10.3390/RS13101900
Tibshiranit, R., 1996. Regression Shrinkage and Selection Via the Lasso.
J. R. Stat. Soc. Ser. B 58, 267–288.
https://doi.org/10.1111/J.2517-6161.1996.TB02080.X
Turner, M.G., 2010. Disturbance and landscape dynamics in a changing
world. Ecology 91, 2833–2849. https://doi.org/10.1890/10-0097.1
Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones,
K.R., Possingham, H.P., Laurance, W.F., Wood, P., Fekete, B.M., Levy,
M.A., Watson, J.E.M., 2016. Global terrestrial Human Footprint maps for
1993 and 2009. Sci. Data 2016 31 3, 1–10.
https://doi.org/10.1038/sdata.2016.67
Wang, Z., Román, M.O., Kalb, V.L., Miller, S.D., Zhang, J., Shrestha,
R.M., 2021. Quantifying uncertainties in nighttime light retrievals from
Suomi-NPP and NOAA-20 VIIRS Day/Night Band data. Remote Sens. Environ.
263, 112557. https://doi.org/10.1016/J.RSE.2021.112557
Xie, Y., Weng, Q., 2016. Updating urban extents with nighttime light
imagery by using an object-based thresholding method. Remote Sens.
Environ. 187, 1–13. https://doi.org/10.1016/J.RSE.2016.10.002
Xie, Y., Weng, Q., Fu, P., 2019. Temporal variations of artificial
nighttime lights and their implications for urbanization in the
conterminous United States, 2013–2017. Remote Sens. Environ. 225,
160–174. https://doi.org/10.1016/j.rse.2019.03.008
Yang, D., Luan, W., Qiao, L., Pratama, M., 2020. Modeling and
spatio-temporal analysis of city-level carbon emissions based on
nighttime light satellite imagery. Appl. Energy 268, 114696.
https://doi.org/10.1016/J.APENERGY.2020.114696
Yu, B., Shi, K., Hu, Y., Huang, C., Chen, Z., Wu, J., 2015. Poverty
Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County
Level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8,
1217–1229. https://doi.org/10.1109/JSTARS.2015.2399416
Zhang, Q., Seto, K.C., 2011. Mapping urbanization dynamics at regional
and global scales using multi-temporal DMSP/OLS nighttime light data.
Remote Sens. Environ. 115, 2320–2329.
https://doi.org/10.1016/j.rse.2011.04.032
Zhao, N., Liu, Y., Hsu, F.C., Samson, E.L., Letu, H., Liang, D., Cao,
G., 2020. Time series analysis of VIIRS-DNB nighttime lights imagery for
change detection in urban areas: A case study of devastation in Puerto
Rico from hurricanes Irma and Maria. Appl. Geogr. 120, 102222.
https://doi.org/10.1016/j.apgeog.2020.102222
Zheng, Q., Weng, Q., Wang, K., 2021. Characterizing urban land changes
of 30 global megacities using nighttime light time series stacks. ISPRS
J. Photogramm. Remote Sens. 173, 10–23.
https://doi.org/10.1016/J.ISPRSJPRS.2021.01.002
Zhu, Z., Woodcock, C.E., Holden, C., Yang, Z., 2015. Generating
synthetic Landsat images based on all available Landsat data: Predicting
Landsat surface reflectance at any given time. Remote Sens. Environ.
162, 67–83. https://doi.org/10.1016/J.RSE.2015.02.009
Zhu, Z., Woodcock, C.E., Rogan, J., Kellndorfer, J., 2012. Assessment of
spectral, polarimetric, temporal, and spatial dimensions for urban and
peri-urban land cover classification using Landsat and SAR data. Remote
Sens. Environ. 117, 72–82. https://doi.org/10.1016/j.rse.2011.07.020
Zhu, Z., Zhang, J., Yang, Z., Aljaddani, A.H., Cohen, W.B., Qiu, S.,
Zhou, C., 2020. Continuous monitoring of land disturbance based on
Landsat time series. Remote Sens. Environ. 238, 111116.
https://doi.org/10.1016/j.rse.2019.03.009
Zhu, Z., Zhou, Y., Seto, K.C., Stokes, E.C., Deng, C., Pickett, S.T.A.,
Taubenböck, H., 2019. Understanding an urbanizing planet: Strategic
directions for remote sensing. Remote Sens. Environ. 228, 164–182.
https://doi.org/10.1016/J.RSE.2019.04.020